]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gicv3_common.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / hw / intc / arm_gicv3_common.c
1 /*
2 * ARM GICv3 support - common bits of emulated and KVM kernel model
3 *
4 * Copyright (c) 2012 Linaro Limited
5 * Copyright (c) 2015 Huawei.
6 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7 * Written by Peter Maydell
8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/module.h"
27 #include "qemu/error-report.h"
28 #include "hw/core/cpu.h"
29 #include "hw/intc/arm_gicv3_common.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "gicv3_internal.h"
33 #include "hw/arm/linux-boot-if.h"
34 #include "sysemu/kvm.h"
35
36
37 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs)
38 {
39 if (cs->gicd_no_migration_shift_bug) {
40 return;
41 }
42
43 /* Older versions of QEMU had a bug in the handling of state save/restore
44 * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
45 * so that instead of the data for external interrupts 32 and up
46 * starting at bit position 32 in the bitmap, it started at bit
47 * position 64. If we're receiving data from a QEMU with that bug,
48 * we must move the data down into the right place.
49 */
50 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
51 sizeof(cs->group) - GIC_INTERNAL / 8);
52 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
53 sizeof(cs->grpmod) - GIC_INTERNAL / 8);
54 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
55 sizeof(cs->enabled) - GIC_INTERNAL / 8);
56 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
57 sizeof(cs->pending) - GIC_INTERNAL / 8);
58 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
59 sizeof(cs->active) - GIC_INTERNAL / 8);
60 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
61 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
62
63 /*
64 * While this new version QEMU doesn't have this kind of bug as we fix it,
65 * so it needs to set the flag to true to indicate that and it's necessary
66 * for next migration to work from this new version QEMU.
67 */
68 cs->gicd_no_migration_shift_bug = true;
69 }
70
71 static int gicv3_pre_save(void *opaque)
72 {
73 GICv3State *s = (GICv3State *)opaque;
74 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
75
76 if (c->pre_save) {
77 c->pre_save(s);
78 }
79
80 return 0;
81 }
82
83 static int gicv3_post_load(void *opaque, int version_id)
84 {
85 GICv3State *s = (GICv3State *)opaque;
86 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
87
88 gicv3_gicd_no_migration_shift_bug_post_load(s);
89
90 if (c->post_load) {
91 c->post_load(s);
92 }
93 return 0;
94 }
95
96 static bool virt_state_needed(void *opaque)
97 {
98 GICv3CPUState *cs = opaque;
99
100 return cs->num_list_regs != 0;
101 }
102
103 static const VMStateDescription vmstate_gicv3_cpu_virt = {
104 .name = "arm_gicv3_cpu/virt",
105 .version_id = 1,
106 .minimum_version_id = 1,
107 .needed = virt_state_needed,
108 .fields = (const VMStateField[]) {
109 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
110 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
111 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
112 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
113 VMSTATE_END_OF_LIST()
114 }
115 };
116
117 static int vmstate_gicv3_cpu_pre_load(void *opaque)
118 {
119 GICv3CPUState *cs = opaque;
120
121 /*
122 * If the sre_el1 subsection is not transferred this
123 * means SRE_EL1 is 0x7 (which might not be the same as
124 * our reset value).
125 */
126 cs->icc_sre_el1 = 0x7;
127 return 0;
128 }
129
130 static bool icc_sre_el1_reg_needed(void *opaque)
131 {
132 GICv3CPUState *cs = opaque;
133
134 return cs->icc_sre_el1 != 7;
135 }
136
137 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
138 .name = "arm_gicv3_cpu/sre_el1",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = icc_sre_el1_reg_needed,
142 .fields = (const VMStateField[]) {
143 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
144 VMSTATE_END_OF_LIST()
145 }
146 };
147
148 static bool gicv4_needed(void *opaque)
149 {
150 GICv3CPUState *cs = opaque;
151
152 return cs->gic->revision > 3;
153 }
154
155 const VMStateDescription vmstate_gicv3_gicv4 = {
156 .name = "arm_gicv3_cpu/gicv4",
157 .version_id = 1,
158 .minimum_version_id = 1,
159 .needed = gicv4_needed,
160 .fields = (const VMStateField[]) {
161 VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState),
162 VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState),
163 VMSTATE_END_OF_LIST()
164 }
165 };
166
167 static bool gicv3_cpu_nmi_needed(void *opaque)
168 {
169 GICv3CPUState *cs = opaque;
170
171 return cs->gic->nmi_support;
172 }
173
174 static const VMStateDescription vmstate_gicv3_cpu_nmi = {
175 .name = "arm_gicv3_cpu/nmi",
176 .version_id = 1,
177 .minimum_version_id = 1,
178 .needed = gicv3_cpu_nmi_needed,
179 .fields = (const VMStateField[]) {
180 VMSTATE_UINT32(gicr_inmir0, GICv3CPUState),
181 VMSTATE_END_OF_LIST()
182 }
183 };
184
185 static const VMStateDescription vmstate_gicv3_cpu = {
186 .name = "arm_gicv3_cpu",
187 .version_id = 1,
188 .minimum_version_id = 1,
189 .pre_load = vmstate_gicv3_cpu_pre_load,
190 .fields = (const VMStateField[]) {
191 VMSTATE_UINT32(level, GICv3CPUState),
192 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
193 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
194 VMSTATE_UINT32(gicr_waker, GICv3CPUState),
195 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
196 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
197 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
198 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
199 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
200 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
201 VMSTATE_UINT32(edge_trigger, GICv3CPUState),
202 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
203 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
204 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
205 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
206 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
207 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
208 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
209 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
210 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
211 VMSTATE_END_OF_LIST()
212 },
213 .subsections = (const VMStateDescription * const []) {
214 &vmstate_gicv3_cpu_virt,
215 &vmstate_gicv3_cpu_sre_el1,
216 &vmstate_gicv3_gicv4,
217 &vmstate_gicv3_cpu_nmi,
218 NULL
219 }
220 };
221
222 static int gicv3_pre_load(void *opaque)
223 {
224 GICv3State *cs = opaque;
225
226 /*
227 * The gicd_no_migration_shift_bug flag is used for migration compatibility
228 * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
229 * Strictly, what we want to know is whether the migration source is using
230 * KVM. Since we don't have any way to determine that, we look at whether the
231 * destination is using KVM; this is close enough because for the older QEMU
232 * versions with this bug KVM -> TCG migration didn't work anyway. If the
233 * source is a newer QEMU without this bug it will transmit the migration
234 * subsection which sets the flag to true; otherwise it will remain set to
235 * the value we select here.
236 */
237 if (kvm_enabled()) {
238 cs->gicd_no_migration_shift_bug = false;
239 }
240
241 return 0;
242 }
243
244 static bool needed_always(void *opaque)
245 {
246 return true;
247 }
248
249 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
250 .name = "arm_gicv3/gicd_no_migration_shift_bug",
251 .version_id = 1,
252 .minimum_version_id = 1,
253 .needed = needed_always,
254 .fields = (const VMStateField[]) {
255 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
256 VMSTATE_END_OF_LIST()
257 }
258 };
259
260 static bool gicv3_nmi_needed(void *opaque)
261 {
262 GICv3State *cs = opaque;
263
264 return cs->nmi_support;
265 }
266
267 const VMStateDescription vmstate_gicv3_gicd_nmi = {
268 .name = "arm_gicv3/gicd_nmi",
269 .version_id = 1,
270 .minimum_version_id = 1,
271 .needed = gicv3_nmi_needed,
272 .fields = (const VMStateField[]) {
273 VMSTATE_UINT32_ARRAY(nmi, GICv3State, GICV3_BMP_SIZE),
274 VMSTATE_END_OF_LIST()
275 }
276 };
277
278 static const VMStateDescription vmstate_gicv3 = {
279 .name = "arm_gicv3",
280 .version_id = 1,
281 .minimum_version_id = 1,
282 .pre_load = gicv3_pre_load,
283 .pre_save = gicv3_pre_save,
284 .post_load = gicv3_post_load,
285 .priority = MIG_PRI_GICV3,
286 .fields = (const VMStateField[]) {
287 VMSTATE_UINT32(gicd_ctlr, GICv3State),
288 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
289 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
290 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
291 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
292 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
293 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
294 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
295 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
296 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
297 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
298 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
299 DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
300 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
301 vmstate_gicv3_cpu, GICv3CPUState),
302 VMSTATE_END_OF_LIST()
303 },
304 .subsections = (const VMStateDescription * const []) {
305 &vmstate_gicv3_gicd_no_migration_shift_bug,
306 &vmstate_gicv3_gicd_nmi,
307 NULL
308 }
309 };
310
311 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
312 const MemoryRegionOps *ops)
313 {
314 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
315 int i;
316 int cpuidx;
317
318 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
319 * GPIO array layout is thus:
320 * [0..N-1] spi
321 * [N..N+31] PPIs for CPU 0
322 * [N+32..N+63] PPIs for CPU 1
323 * ...
324 */
325 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
326 qdev_init_gpio_in(DEVICE(s), handler, i);
327
328 for (i = 0; i < s->num_cpu; i++) {
329 sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
330 }
331 for (i = 0; i < s->num_cpu; i++) {
332 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
333 }
334 for (i = 0; i < s->num_cpu; i++) {
335 sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
336 }
337 for (i = 0; i < s->num_cpu; i++) {
338 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
339 }
340 for (i = 0; i < s->num_cpu; i++) {
341 sysbus_init_irq(sbd, &s->cpu[i].parent_nmi);
342 }
343 for (i = 0; i < s->num_cpu; i++) {
344 sysbus_init_irq(sbd, &s->cpu[i].parent_vnmi);
345 }
346
347 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
348 "gicv3_dist", 0x10000);
349 sysbus_init_mmio(sbd, &s->iomem_dist);
350
351 s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions);
352 cpuidx = 0;
353 for (i = 0; i < s->nb_redist_regions; i++) {
354 char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
355 GICv3RedistRegion *region = &s->redist_regions[i];
356
357 region->gic = s;
358 region->cpuidx = cpuidx;
359 cpuidx += s->redist_region_count[i];
360
361 memory_region_init_io(&region->iomem, OBJECT(s),
362 ops ? &ops[1] : NULL, region, name,
363 s->redist_region_count[i] * gicv3_redist_size(s));
364 sysbus_init_mmio(sbd, &region->iomem);
365 g_free(name);
366 }
367 }
368
369 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
370 {
371 GICv3State *s = ARM_GICV3_COMMON(dev);
372 int i, rdist_capacity, cpuidx;
373
374 /*
375 * This GIC device supports only revisions 3 and 4. The GICv1/v2
376 * is a separate device.
377 * Note that subclasses of this device may impose further restrictions
378 * on the GIC revision: notably, the in-kernel KVM GIC doesn't
379 * support GICv4.
380 */
381 if (s->revision != 3 && s->revision != 4) {
382 error_setg(errp, "unsupported GIC revision %d", s->revision);
383 return;
384 }
385
386 if (s->num_irq > GICV3_MAXIRQ) {
387 error_setg(errp,
388 "requested %u interrupt lines exceeds GIC maximum %d",
389 s->num_irq, GICV3_MAXIRQ);
390 return;
391 }
392 if (s->num_irq < GIC_INTERNAL) {
393 error_setg(errp,
394 "requested %u interrupt lines is below GIC minimum %d",
395 s->num_irq, GIC_INTERNAL);
396 return;
397 }
398 if (s->num_cpu == 0) {
399 error_setg(errp, "num-cpu must be at least 1");
400 return;
401 }
402
403 /* ITLinesNumber is represented as (N / 32) - 1, so this is an
404 * implementation imposed restriction, not an architectural one,
405 * so we don't have to deal with bitfields where only some of the
406 * bits in a 32-bit word should be valid.
407 */
408 if (s->num_irq % 32) {
409 error_setg(errp,
410 "%d interrupt lines unsupported: not divisible by 32",
411 s->num_irq);
412 return;
413 }
414
415 if (s->lpi_enable && !s->dma) {
416 error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set");
417 return;
418 }
419
420 rdist_capacity = 0;
421 for (i = 0; i < s->nb_redist_regions; i++) {
422 rdist_capacity += s->redist_region_count[i];
423 }
424 if (rdist_capacity != s->num_cpu) {
425 error_setg(errp, "Capacity of the redist regions(%d) "
426 "does not match the number of vcpus(%d)",
427 rdist_capacity, s->num_cpu);
428 return;
429 }
430
431 if (s->lpi_enable) {
432 address_space_init(&s->dma_as, s->dma,
433 "gicv3-its-sysmem");
434 }
435
436 s->cpu = g_new0(GICv3CPUState, s->num_cpu);
437
438 for (i = 0; i < s->num_cpu; i++) {
439 CPUState *cpu = qemu_get_cpu(i);
440 uint64_t cpu_affid;
441
442 s->cpu[i].cpu = cpu;
443 s->cpu[i].gic = s;
444 /* Store GICv3CPUState in CPUARMState gicv3state pointer */
445 gicv3_set_gicv3state(cpu, &s->cpu[i]);
446
447 /* Pre-construct the GICR_TYPER:
448 * For our implementation:
449 * Top 32 bits are the affinity value of the associated CPU
450 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
451 * Processor_Number == CPU index starting from 0
452 * DPGS == 0 (GICR_CTLR.DPG* not supported)
453 * Last == 1 if this is the last redistributor in a series of
454 * contiguous redistributor pages
455 * DirectLPI == 0 (direct injection of LPIs not supported)
456 * VLPIS == 1 if vLPIs supported (GICv4 and up)
457 * PLPIS == 1 if LPIs supported
458 */
459 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
460
461 /* The CPU mp-affinity property is in MPIDR register format; squash
462 * the affinity bytes into 32 bits as the GICR_TYPER has them.
463 */
464 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
465 (cpu_affid & 0xFFFFFF);
466 s->cpu[i].gicr_typer = (cpu_affid << 32) |
467 (1 << 24) |
468 (i << 8);
469
470 if (s->lpi_enable) {
471 s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS;
472 if (s->revision > 3) {
473 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS;
474 }
475 }
476 }
477
478 /*
479 * Now go through and set GICR_TYPER.Last for the final
480 * redistributor in each region.
481 */
482 cpuidx = 0;
483 for (i = 0; i < s->nb_redist_regions; i++) {
484 cpuidx += s->redist_region_count[i];
485 s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST;
486 }
487
488 s->itslist = g_ptr_array_new();
489 }
490
491 static void arm_gicv3_finalize(Object *obj)
492 {
493 GICv3State *s = ARM_GICV3_COMMON(obj);
494
495 g_free(s->redist_region_count);
496 }
497
498 static void arm_gicv3_common_reset_hold(Object *obj, ResetType type)
499 {
500 GICv3State *s = ARM_GICV3_COMMON(obj);
501 int i;
502
503 for (i = 0; i < s->num_cpu; i++) {
504 GICv3CPUState *cs = &s->cpu[i];
505
506 cs->level = 0;
507 cs->gicr_ctlr = 0;
508 if (s->lpi_enable) {
509 /* Our implementation supports clearing GICR_CTLR.EnableLPIs */
510 cs->gicr_ctlr |= GICR_CTLR_CES;
511 }
512 cs->gicr_statusr[GICV3_S] = 0;
513 cs->gicr_statusr[GICV3_NS] = 0;
514 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
515 cs->gicr_propbaser = 0;
516 cs->gicr_pendbaser = 0;
517 cs->gicr_vpropbaser = 0;
518 cs->gicr_vpendbaser = 0;
519 /* If we're resetting a TZ-aware GIC as if secure firmware
520 * had set it up ready to start a kernel in non-secure, we
521 * need to set interrupts to group 1 so the kernel can use them.
522 * Otherwise they reset to group 0 like the hardware.
523 */
524 if (s->irq_reset_nonsecure) {
525 cs->gicr_igroupr0 = 0xffffffff;
526 } else {
527 cs->gicr_igroupr0 = 0;
528 }
529
530 cs->gicr_ienabler0 = 0;
531 cs->gicr_ipendr0 = 0;
532 cs->gicr_iactiver0 = 0;
533 cs->edge_trigger = 0xffff;
534 cs->gicr_igrpmodr0 = 0;
535 cs->gicr_nsacr = 0;
536 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
537
538 cs->hppi.prio = 0xff;
539 cs->hppi.nmi = false;
540 cs->hpplpi.prio = 0xff;
541 cs->hpplpi.nmi = false;
542 cs->hppvlpi.prio = 0xff;
543 cs->hppvlpi.nmi = false;
544
545 /* State in the CPU interface must *not* be reset here, because it
546 * is part of the CPU's reset domain, not the GIC device's.
547 */
548 }
549
550 /* For our implementation affinity routing is always enabled */
551 if (s->security_extn) {
552 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
553 } else {
554 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
555 }
556
557 s->gicd_statusr[GICV3_S] = 0;
558 s->gicd_statusr[GICV3_NS] = 0;
559
560 memset(s->group, 0, sizeof(s->group));
561 memset(s->grpmod, 0, sizeof(s->grpmod));
562 memset(s->enabled, 0, sizeof(s->enabled));
563 memset(s->pending, 0, sizeof(s->pending));
564 memset(s->active, 0, sizeof(s->active));
565 memset(s->level, 0, sizeof(s->level));
566 memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
567 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
568 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
569 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
570 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
571 * write these to get sane behaviour and we need not populate the
572 * pointer cache here; however having the cache be different for
573 * "happened to be 0 from reset" and "guest wrote 0" would be
574 * too confusing.
575 */
576 gicv3_cache_all_target_cpustates(s);
577
578 if (s->irq_reset_nonsecure) {
579 /* If we're resetting a TZ-aware GIC as if secure firmware
580 * had set it up ready to start a kernel in non-secure, we
581 * need to set interrupts to group 1 so the kernel can use them.
582 * Otherwise they reset to group 0 like the hardware.
583 */
584 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
585 gicv3_gicd_group_set(s, i);
586 }
587 }
588 s->gicd_no_migration_shift_bug = true;
589 }
590
591 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
592 bool secure_boot)
593 {
594 GICv3State *s = ARM_GICV3_COMMON(obj);
595
596 if (s->security_extn && !secure_boot) {
597 /* We're directly booting a kernel into NonSecure. If this GIC
598 * implements the security extensions then we must configure it
599 * to have all the interrupts be NonSecure (this is a job that
600 * is done by the Secure boot firmware in real hardware, and in
601 * this mode QEMU is acting as a minimalist firmware-and-bootloader
602 * equivalent).
603 */
604 s->irq_reset_nonsecure = true;
605 }
606 }
607
608 static Property arm_gicv3_common_properties[] = {
609 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
610 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
611 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
612 DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0),
613 DEFINE_PROP_BOOL("has-nmi", GICv3State, nmi_support, 0),
614 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
615 /*
616 * Compatibility property: force 8 bits of physical priority, even
617 * if the CPU being emulated should have fewer.
618 */
619 DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0),
620 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
621 redist_region_count, qdev_prop_uint32, uint32_t),
622 DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION,
623 MemoryRegion *),
624 DEFINE_PROP_END_OF_LIST(),
625 };
626
627 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
628 {
629 DeviceClass *dc = DEVICE_CLASS(klass);
630 ResettableClass *rc = RESETTABLE_CLASS(klass);
631 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
632
633 rc->phases.hold = arm_gicv3_common_reset_hold;
634 dc->realize = arm_gicv3_common_realize;
635 device_class_set_props(dc, arm_gicv3_common_properties);
636 dc->vmsd = &vmstate_gicv3;
637 albifc->arm_linux_init = arm_gic_common_linux_init;
638 }
639
640 static const TypeInfo arm_gicv3_common_type = {
641 .name = TYPE_ARM_GICV3_COMMON,
642 .parent = TYPE_SYS_BUS_DEVICE,
643 .instance_size = sizeof(GICv3State),
644 .class_size = sizeof(ARMGICv3CommonClass),
645 .class_init = arm_gicv3_common_class_init,
646 .instance_finalize = arm_gicv3_finalize,
647 .abstract = true,
648 .interfaces = (InterfaceInfo []) {
649 { TYPE_ARM_LINUX_BOOT_IF },
650 { },
651 },
652 };
653
654 static void register_types(void)
655 {
656 type_register_static(&arm_gicv3_common_type);
657 }
658
659 type_init(register_types)
660
661 const char *gicv3_class_name(void)
662 {
663 if (kvm_irqchip_in_kernel()) {
664 return "kvm-arm-gicv3";
665 } else {
666 if (kvm_enabled()) {
667 error_report("Userspace GICv3 is not supported with KVM");
668 exit(1);
669 }
670 return "arm-gicv3";
671 }
672 }