]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/arm_gicv3_kvm.c
qdev: use device_class_set_parent_realize/unrealize/reset()
[mirror_qemu.git] / hw / intc / arm_gicv3_kvm.c
1 /*
2 * ARM Generic Interrupt Controller using KVM in-kernel support
3 *
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 */
21
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/sysemu.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33
34 #ifdef DEBUG_GICV3_KVM
35 #define DPRINTF(fmt, ...) \
36 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39 do { } while (0)
40 #endif
41
42 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43 #define KVM_ARM_GICV3(obj) \
44 OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45 #define KVM_ARM_GICV3_CLASS(klass) \
46 OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47 #define KVM_ARM_GICV3_GET_CLASS(obj) \
48 OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49
50 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
51 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56
57 #define ICC_PMR_EL1 \
58 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1 \
60 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1 \
66 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1 \
68 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75
76 typedef struct KVMARMGICv3Class {
77 ARMGICv3CommonClass parent_class;
78 DeviceRealize parent_realize;
79 void (*parent_reset)(DeviceState *dev);
80 } KVMARMGICv3Class;
81
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84 GICv3State *s = (GICv3State *)opaque;
85
86 kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88
89 #define KVM_VGIC_ATTR(reg, typer) \
90 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93 uint32_t *val, bool write)
94 {
95 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96 KVM_VGIC_ATTR(offset, 0),
97 val, write, &error_abort);
98 }
99
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101 uint32_t *val, bool write)
102 {
103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105 val, write, &error_abort);
106 }
107
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109 uint64_t *val, bool write)
110 {
111 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113 val, write, &error_abort);
114 }
115
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117 uint32_t *val, bool write)
118 {
119 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121 (VGIC_LEVEL_INFO_LINE_LEVEL <<
122 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123 val, write, &error_abort);
124 }
125
126 /* Loop through each distributor IRQ related register; since bits
127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128 * is enabled, we skip those.
129 */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135 uint32_t reg, *field;
136 int irq;
137
138 field = (uint32_t *)bmp;
139 for_each_dist_irq_reg(irq, s->num_irq, 8) {
140 kvm_gicd_access(s, offset, &reg, false);
141 *field = reg;
142 offset += 4;
143 field++;
144 }
145 }
146
147 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148 {
149 uint32_t reg, *field;
150 int irq;
151
152 field = (uint32_t *)bmp;
153 for_each_dist_irq_reg(irq, s->num_irq, 8) {
154 reg = *field;
155 kvm_gicd_access(s, offset, &reg, true);
156 offset += 4;
157 field++;
158 }
159 }
160
161 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
162 uint32_t *bmp)
163 {
164 uint32_t reg;
165 int irq;
166
167 for_each_dist_irq_reg(irq, s->num_irq, 2) {
168 kvm_gicd_access(s, offset, &reg, false);
169 reg = half_unshuffle32(reg >> 1);
170 if (irq % 32 != 0) {
171 reg = (reg << 16);
172 }
173 *gic_bmp_ptr32(bmp, irq) |= reg;
174 offset += 4;
175 }
176 }
177
178 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
179 uint32_t *bmp)
180 {
181 uint32_t reg;
182 int irq;
183
184 for_each_dist_irq_reg(irq, s->num_irq, 2) {
185 reg = *gic_bmp_ptr32(bmp, irq);
186 if (irq % 32 != 0) {
187 reg = (reg & 0xffff0000) >> 16;
188 } else {
189 reg = reg & 0xffff;
190 }
191 reg = half_shuffle32(reg) << 1;
192 kvm_gicd_access(s, offset, &reg, true);
193 offset += 4;
194 }
195 }
196
197 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
198 {
199 uint32_t reg;
200 int irq;
201
202 for_each_dist_irq_reg(irq, s->num_irq, 1) {
203 kvm_gic_line_level_access(s, irq, 0, &reg, false);
204 *gic_bmp_ptr32(bmp, irq) = reg;
205 }
206 }
207
208 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
209 {
210 uint32_t reg;
211 int irq;
212
213 for_each_dist_irq_reg(irq, s->num_irq, 1) {
214 reg = *gic_bmp_ptr32(bmp, irq);
215 kvm_gic_line_level_access(s, irq, 0, &reg, true);
216 }
217 }
218
219 /* Read a bitmap register group from the kernel VGIC. */
220 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
221 {
222 uint32_t reg;
223 int irq;
224
225 for_each_dist_irq_reg(irq, s->num_irq, 1) {
226 kvm_gicd_access(s, offset, &reg, false);
227 *gic_bmp_ptr32(bmp, irq) = reg;
228 offset += 4;
229 }
230 }
231
232 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
233 uint32_t clroffset, uint32_t *bmp)
234 {
235 uint32_t reg;
236 int irq;
237
238 for_each_dist_irq_reg(irq, s->num_irq, 1) {
239 /* If this bitmap is a set/clear register pair, first write to the
240 * clear-reg to clear all bits before using the set-reg to write
241 * the 1 bits.
242 */
243 if (clroffset != 0) {
244 reg = 0;
245 kvm_gicd_access(s, clroffset, &reg, true);
246 }
247 reg = *gic_bmp_ptr32(bmp, irq);
248 kvm_gicd_access(s, offset, &reg, true);
249 offset += 4;
250 }
251 }
252
253 static void kvm_arm_gicv3_check(GICv3State *s)
254 {
255 uint32_t reg;
256 uint32_t num_irq;
257
258 /* Sanity checking s->num_irq */
259 kvm_gicd_access(s, GICD_TYPER, &reg, false);
260 num_irq = ((reg & 0x1f) + 1) * 32;
261
262 if (num_irq < s->num_irq) {
263 error_report("Model requests %u IRQs, but kernel supports max %u",
264 s->num_irq, num_irq);
265 abort();
266 }
267 }
268
269 static void kvm_arm_gicv3_put(GICv3State *s)
270 {
271 uint32_t regl, regh, reg;
272 uint64_t reg64, redist_typer;
273 int ncpu, i;
274
275 kvm_arm_gicv3_check(s);
276
277 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
278 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
279 redist_typer = ((uint64_t)regh << 32) | regl;
280
281 reg = s->gicd_ctlr;
282 kvm_gicd_access(s, GICD_CTLR, &reg, true);
283
284 if (redist_typer & GICR_TYPER_PLPIS) {
285 /* Set base addresses before LPIs are enabled by GICR_CTLR write */
286 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
287 GICv3CPUState *c = &s->cpu[ncpu];
288
289 reg64 = c->gicr_propbaser;
290 regl = (uint32_t)reg64;
291 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
292 regh = (uint32_t)(reg64 >> 32);
293 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
294
295 reg64 = c->gicr_pendbaser;
296 if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
297 /* Setting PTZ is advised if LPIs are disabled, to reduce
298 * GIC initialization time.
299 */
300 reg64 |= GICR_PENDBASER_PTZ;
301 }
302 regl = (uint32_t)reg64;
303 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
304 regh = (uint32_t)(reg64 >> 32);
305 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
306 }
307 }
308
309 /* Redistributor state (one per CPU) */
310
311 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
312 GICv3CPUState *c = &s->cpu[ncpu];
313
314 reg = c->gicr_ctlr;
315 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
316
317 reg = c->gicr_statusr[GICV3_NS];
318 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
319
320 reg = c->gicr_waker;
321 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
322
323 reg = c->gicr_igroupr0;
324 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
325
326 reg = ~0;
327 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
328 reg = c->gicr_ienabler0;
329 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
330
331 /* Restore config before pending so we treat level/edge correctly */
332 reg = half_shuffle32(c->edge_trigger >> 16) << 1;
333 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
334
335 reg = c->level;
336 kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
337
338 reg = ~0;
339 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
340 reg = c->gicr_ipendr0;
341 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
342
343 reg = ~0;
344 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
345 reg = c->gicr_iactiver0;
346 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
347
348 for (i = 0; i < GIC_INTERNAL; i += 4) {
349 reg = c->gicr_ipriorityr[i] |
350 (c->gicr_ipriorityr[i + 1] << 8) |
351 (c->gicr_ipriorityr[i + 2] << 16) |
352 (c->gicr_ipriorityr[i + 3] << 24);
353 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
354 }
355 }
356
357 /* Distributor state (shared between all CPUs */
358 reg = s->gicd_statusr[GICV3_NS];
359 kvm_gicd_access(s, GICD_STATUSR, &reg, true);
360
361 /* s->enable bitmap -> GICD_ISENABLERn */
362 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
363
364 /* s->group bitmap -> GICD_IGROUPRn */
365 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
366
367 /* Restore targets before pending to ensure the pending state is set on
368 * the appropriate CPU interfaces in the kernel
369 */
370
371 /* s->gicd_irouter[irq] -> GICD_IROUTERn
372 * We can't use kvm_dist_put() here because the registers are 64-bit
373 */
374 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
375 uint32_t offset;
376
377 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
378 reg = (uint32_t)s->gicd_irouter[i];
379 kvm_gicd_access(s, offset, &reg, true);
380
381 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
382 reg = (uint32_t)(s->gicd_irouter[i] >> 32);
383 kvm_gicd_access(s, offset, &reg, true);
384 }
385
386 /* s->trigger bitmap -> GICD_ICFGRn
387 * (restore configuration registers before pending IRQs so we treat
388 * level/edge correctly)
389 */
390 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
391
392 /* s->level bitmap -> line_level */
393 kvm_gic_put_line_level_bmp(s, s->level);
394
395 /* s->pending bitmap -> GICD_ISPENDRn */
396 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
397
398 /* s->active bitmap -> GICD_ISACTIVERn */
399 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
400
401 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
402 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
403
404 /* CPU Interface state (one per CPU) */
405
406 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
407 GICv3CPUState *c = &s->cpu[ncpu];
408 int num_pri_bits;
409
410 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
411 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
412 &c->icc_ctlr_el1[GICV3_NS], true);
413 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
414 &c->icc_igrpen[GICV3_G0], true);
415 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
416 &c->icc_igrpen[GICV3_G1NS], true);
417 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
418 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
419 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
420
421 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
422 ICC_CTLR_EL1_PRIBITS_MASK) >>
423 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
424
425 switch (num_pri_bits) {
426 case 7:
427 reg64 = c->icc_apr[GICV3_G0][3];
428 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
429 reg64 = c->icc_apr[GICV3_G0][2];
430 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
431 case 6:
432 reg64 = c->icc_apr[GICV3_G0][1];
433 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
434 default:
435 reg64 = c->icc_apr[GICV3_G0][0];
436 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
437 }
438
439 switch (num_pri_bits) {
440 case 7:
441 reg64 = c->icc_apr[GICV3_G1NS][3];
442 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
443 reg64 = c->icc_apr[GICV3_G1NS][2];
444 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
445 case 6:
446 reg64 = c->icc_apr[GICV3_G1NS][1];
447 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
448 default:
449 reg64 = c->icc_apr[GICV3_G1NS][0];
450 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
451 }
452 }
453 }
454
455 static void kvm_arm_gicv3_get(GICv3State *s)
456 {
457 uint32_t regl, regh, reg;
458 uint64_t reg64, redist_typer;
459 int ncpu, i;
460
461 kvm_arm_gicv3_check(s);
462
463 kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
464 kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
465 redist_typer = ((uint64_t)regh << 32) | regl;
466
467 kvm_gicd_access(s, GICD_CTLR, &reg, false);
468 s->gicd_ctlr = reg;
469
470 /* Redistributor state (one per CPU) */
471
472 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
473 GICv3CPUState *c = &s->cpu[ncpu];
474
475 kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
476 c->gicr_ctlr = reg;
477
478 kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
479 c->gicr_statusr[GICV3_NS] = reg;
480
481 kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
482 c->gicr_waker = reg;
483
484 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
485 c->gicr_igroupr0 = reg;
486 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
487 c->gicr_ienabler0 = reg;
488 kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
489 c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
490 kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
491 c->level = reg;
492 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
493 c->gicr_ipendr0 = reg;
494 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
495 c->gicr_iactiver0 = reg;
496
497 for (i = 0; i < GIC_INTERNAL; i += 4) {
498 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
499 c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
500 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
501 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
502 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
503 }
504 }
505
506 if (redist_typer & GICR_TYPER_PLPIS) {
507 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
508 GICv3CPUState *c = &s->cpu[ncpu];
509
510 kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
511 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
512 c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
513
514 kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
515 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
516 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
517 }
518 }
519
520 /* Distributor state (shared between all CPUs */
521
522 kvm_gicd_access(s, GICD_STATUSR, &reg, false);
523 s->gicd_statusr[GICV3_NS] = reg;
524
525 /* GICD_IGROUPRn -> s->group bitmap */
526 kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
527
528 /* GICD_ISENABLERn -> s->enabled bitmap */
529 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
530
531 /* Line level of irq */
532 kvm_gic_get_line_level_bmp(s, s->level);
533 /* GICD_ISPENDRn -> s->pending bitmap */
534 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
535
536 /* GICD_ISACTIVERn -> s->active bitmap */
537 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
538
539 /* GICD_ICFGRn -> s->trigger bitmap */
540 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
541
542 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
543 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
544
545 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
546 for (i = GIC_INTERNAL; i < s->num_irq; i++) {
547 uint32_t offset;
548
549 offset = GICD_IROUTER + (sizeof(uint32_t) * i);
550 kvm_gicd_access(s, offset, &regl, false);
551 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
552 kvm_gicd_access(s, offset, &regh, false);
553 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
554 }
555
556 /*****************************************************************
557 * CPU Interface(s) State
558 */
559
560 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
561 GICv3CPUState *c = &s->cpu[ncpu];
562 int num_pri_bits;
563
564 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
565 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
566 &c->icc_ctlr_el1[GICV3_NS], false);
567 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
568 &c->icc_igrpen[GICV3_G0], false);
569 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
570 &c->icc_igrpen[GICV3_G1NS], false);
571 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
572 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
573 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
574 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
575 ICC_CTLR_EL1_PRIBITS_MASK) >>
576 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
577
578 switch (num_pri_bits) {
579 case 7:
580 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
581 c->icc_apr[GICV3_G0][3] = reg64;
582 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
583 c->icc_apr[GICV3_G0][2] = reg64;
584 case 6:
585 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
586 c->icc_apr[GICV3_G0][1] = reg64;
587 default:
588 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
589 c->icc_apr[GICV3_G0][0] = reg64;
590 }
591
592 switch (num_pri_bits) {
593 case 7:
594 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
595 c->icc_apr[GICV3_G1NS][3] = reg64;
596 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
597 c->icc_apr[GICV3_G1NS][2] = reg64;
598 case 6:
599 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
600 c->icc_apr[GICV3_G1NS][1] = reg64;
601 default:
602 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
603 c->icc_apr[GICV3_G1NS][0] = reg64;
604 }
605 }
606 }
607
608 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
609 {
610 ARMCPU *cpu;
611 GICv3State *s;
612 GICv3CPUState *c;
613
614 c = (GICv3CPUState *)env->gicv3state;
615 s = c->gic;
616 cpu = ARM_CPU(c->cpu);
617
618 c->icc_pmr_el1 = 0;
619 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
620 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
621 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
622
623 c->icc_sre_el1 = 0x7;
624 memset(c->icc_apr, 0, sizeof(c->icc_apr));
625 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
626
627 if (s->migration_blocker) {
628 return;
629 }
630
631 /* Initialize to actual HW supported configuration */
632 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
633 KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
634 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
635
636 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
637 }
638
639 static void kvm_arm_gicv3_reset(DeviceState *dev)
640 {
641 GICv3State *s = ARM_GICV3_COMMON(dev);
642 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
643
644 DPRINTF("Reset\n");
645
646 kgc->parent_reset(dev);
647
648 if (s->migration_blocker) {
649 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
650 return;
651 }
652
653 kvm_arm_gicv3_put(s);
654 }
655
656 /*
657 * CPU interface registers of GIC needs to be reset on CPU reset.
658 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
659 * below ARMCPRegInfo. As we reset the whole cpu interface under single
660 * register reset, we define only one register of CPU interface instead
661 * of defining all the registers.
662 */
663 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
664 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
665 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
666 /*
667 * If ARM_CP_NOP is used, resetfn is not called,
668 * So ARM_CP_NO_RAW is appropriate type.
669 */
670 .type = ARM_CP_NO_RAW,
671 .access = PL1_RW,
672 .readfn = arm_cp_read_zero,
673 .writefn = arm_cp_write_ignore,
674 /*
675 * We hang the whole cpu interface reset routine off here
676 * rather than parcelling it out into one little function
677 * per register
678 */
679 .resetfn = arm_gicv3_icc_reset,
680 },
681 REGINFO_SENTINEL
682 };
683
684 /**
685 * vm_change_state_handler - VM change state callback aiming at flushing
686 * RDIST pending tables into guest RAM
687 *
688 * The tables get flushed to guest RAM whenever the VM gets stopped.
689 */
690 static void vm_change_state_handler(void *opaque, int running,
691 RunState state)
692 {
693 GICv3State *s = (GICv3State *)opaque;
694 Error *err = NULL;
695 int ret;
696
697 if (running) {
698 return;
699 }
700
701 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
702 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
703 NULL, true, &err);
704 if (err) {
705 error_report_err(err);
706 }
707 if (ret < 0 && ret != -EFAULT) {
708 abort();
709 }
710 }
711
712
713 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
714 {
715 GICv3State *s = KVM_ARM_GICV3(dev);
716 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
717 Error *local_err = NULL;
718 int i;
719
720 DPRINTF("kvm_arm_gicv3_realize\n");
721
722 kgc->parent_realize(dev, &local_err);
723 if (local_err) {
724 error_propagate(errp, local_err);
725 return;
726 }
727
728 if (s->security_extn) {
729 error_setg(errp, "the in-kernel VGICv3 does not implement the "
730 "security extensions");
731 return;
732 }
733
734 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
735
736 for (i = 0; i < s->num_cpu; i++) {
737 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
738
739 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
740 }
741
742 /* Try to create the device via the device control API */
743 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
744 if (s->dev_fd < 0) {
745 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
746 return;
747 }
748
749 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
750 0, &s->num_irq, true, &error_abort);
751
752 /* Tell the kernel to complete VGIC initialization now */
753 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
754 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
755
756 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
757 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
758 kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
759 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
760
761 if (kvm_has_gsi_routing()) {
762 /* set up irq routing */
763 kvm_init_irq_routing(kvm_state);
764 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
765 kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
766 }
767
768 kvm_gsi_routing_allowed = true;
769
770 kvm_irqchip_commit_routes(kvm_state);
771 }
772
773 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
774 GICD_CTLR)) {
775 error_setg(&s->migration_blocker, "This operating system kernel does "
776 "not support vGICv3 migration");
777 migrate_add_blocker(s->migration_blocker, &local_err);
778 if (local_err) {
779 error_propagate(errp, local_err);
780 error_free(s->migration_blocker);
781 return;
782 }
783 }
784 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
785 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
786 qemu_add_vm_change_state_handler(vm_change_state_handler, s);
787 }
788 }
789
790 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
791 {
792 DeviceClass *dc = DEVICE_CLASS(klass);
793 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
794 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
795
796 agcc->pre_save = kvm_arm_gicv3_get;
797 agcc->post_load = kvm_arm_gicv3_put;
798 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
799 &kgc->parent_realize);
800 device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
801 }
802
803 static const TypeInfo kvm_arm_gicv3_info = {
804 .name = TYPE_KVM_ARM_GICV3,
805 .parent = TYPE_ARM_GICV3_COMMON,
806 .instance_size = sizeof(GICv3State),
807 .class_init = kvm_arm_gicv3_class_init,
808 .class_size = sizeof(KVMARMGICv3Class),
809 };
810
811 static void kvm_arm_gicv3_register_types(void)
812 {
813 type_register_static(&kvm_arm_gicv3_info);
814 }
815
816 type_init(kvm_arm_gicv3_register_types)