]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/armv7m_nvic.c
62ab8b7273aea029657bd1ff6f8c95a85f5118ad
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "migration/vmstate.h"
18 #include "qemu/timer.h"
19 #include "hw/intc/armv7m_nvic.h"
20 #include "hw/irq.h"
21 #include "hw/qdev-properties.h"
22 #include "target/arm/cpu.h"
23 #include "exec/exec-all.h"
24 #include "qemu/log.h"
25 #include "qemu/module.h"
26 #include "trace.h"
27
28 /* IRQ number counting:
29 *
30 * the num-irq property counts the number of external IRQ lines
31 *
32 * NVICState::num_irq counts the total number of exceptions
33 * (external IRQs, the 15 internal exceptions including reset,
34 * and one for the unused exception number 0).
35 *
36 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
37 *
38 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
39 *
40 * Iterating through all exceptions should typically be done with
41 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
42 *
43 * The external qemu_irq lines are the NVIC's external IRQ lines,
44 * so line 0 is exception 16.
45 *
46 * In the terminology of the architecture manual, "interrupts" are
47 * a subcategory of exception referring to the external interrupts
48 * (which are exception numbers NVIC_FIRST_IRQ and upward).
49 * For historical reasons QEMU tends to use "interrupt" and
50 * "exception" more or less interchangeably.
51 */
52 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
53 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
54
55 /* Effective running priority of the CPU when no exception is active
56 * (higher than the highest possible priority value)
57 */
58 #define NVIC_NOEXC_PRIO 0x100
59 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
60 #define NVIC_NS_PRIO_LIMIT 0x80
61
62 static const uint8_t nvic_id[] = {
63 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
64 };
65
66 static int nvic_pending_prio(NVICState *s)
67 {
68 /* return the group priority of the current pending interrupt,
69 * or NVIC_NOEXC_PRIO if no interrupt is pending
70 */
71 return s->vectpending_prio;
72 }
73
74 /* Return the value of the ISCR RETTOBASE bit:
75 * 1 if there is exactly one active exception
76 * 0 if there is more than one active exception
77 * UNKNOWN if there are no active exceptions (we choose 1,
78 * which matches the choice Cortex-M3 is documented as making).
79 *
80 * NB: some versions of the documentation talk about this
81 * counting "active exceptions other than the one shown by IPSR";
82 * this is only different in the obscure corner case where guest
83 * code has manually deactivated an exception and is about
84 * to fail an exception-return integrity check. The definition
85 * above is the one from the v8M ARM ARM and is also in line
86 * with the behaviour documented for the Cortex-M3.
87 */
88 static bool nvic_rettobase(NVICState *s)
89 {
90 int irq, nhand = 0;
91 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
92
93 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
94 if (s->vectors[irq].active ||
95 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
96 s->sec_vectors[irq].active)) {
97 nhand++;
98 if (nhand == 2) {
99 return 0;
100 }
101 }
102 }
103
104 return 1;
105 }
106
107 /* Return the value of the ISCR ISRPENDING bit:
108 * 1 if an external interrupt is pending
109 * 0 if no external interrupt is pending
110 */
111 static bool nvic_isrpending(NVICState *s)
112 {
113 int irq;
114
115 /* We can shortcut if the highest priority pending interrupt
116 * happens to be external or if there is nothing pending.
117 */
118 if (s->vectpending > NVIC_FIRST_IRQ) {
119 return true;
120 }
121 if (s->vectpending == 0) {
122 return false;
123 }
124
125 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
126 if (s->vectors[irq].pending) {
127 return true;
128 }
129 }
130 return false;
131 }
132
133 static bool exc_is_banked(int exc)
134 {
135 /* Return true if this is one of the limited set of exceptions which
136 * are banked (and thus have state in sec_vectors[])
137 */
138 return exc == ARMV7M_EXCP_HARD ||
139 exc == ARMV7M_EXCP_MEM ||
140 exc == ARMV7M_EXCP_USAGE ||
141 exc == ARMV7M_EXCP_SVC ||
142 exc == ARMV7M_EXCP_PENDSV ||
143 exc == ARMV7M_EXCP_SYSTICK;
144 }
145
146 /* Return a mask word which clears the subpriority bits from
147 * a priority value for an M-profile exception, leaving only
148 * the group priority.
149 */
150 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
151 {
152 return ~0U << (s->prigroup[secure] + 1);
153 }
154
155 static bool exc_targets_secure(NVICState *s, int exc)
156 {
157 /* Return true if this non-banked exception targets Secure state. */
158 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
159 return false;
160 }
161
162 if (exc >= NVIC_FIRST_IRQ) {
163 return !s->itns[exc];
164 }
165
166 /* Function shouldn't be called for banked exceptions. */
167 assert(!exc_is_banked(exc));
168
169 switch (exc) {
170 case ARMV7M_EXCP_NMI:
171 case ARMV7M_EXCP_BUS:
172 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
173 case ARMV7M_EXCP_SECURE:
174 return true;
175 case ARMV7M_EXCP_DEBUG:
176 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
177 return false;
178 default:
179 /* reset, and reserved (unused) low exception numbers.
180 * We'll get called by code that loops through all the exception
181 * numbers, but it doesn't matter what we return here as these
182 * non-existent exceptions will never be pended or active.
183 */
184 return true;
185 }
186 }
187
188 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
189 {
190 /* Return the group priority for this exception, given its raw
191 * (group-and-subgroup) priority value and whether it is targeting
192 * secure state or not.
193 */
194 if (rawprio < 0) {
195 return rawprio;
196 }
197 rawprio &= nvic_gprio_mask(s, targets_secure);
198 /* AIRCR.PRIS causes us to squash all NS priorities into the
199 * lower half of the total range
200 */
201 if (!targets_secure &&
202 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
203 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
204 }
205 return rawprio;
206 }
207
208 /* Recompute vectpending and exception_prio for a CPU which implements
209 * the Security extension
210 */
211 static void nvic_recompute_state_secure(NVICState *s)
212 {
213 int i, bank;
214 int pend_prio = NVIC_NOEXC_PRIO;
215 int active_prio = NVIC_NOEXC_PRIO;
216 int pend_irq = 0;
217 bool pending_is_s_banked = false;
218 int pend_subprio = 0;
219
220 /* R_CQRV: precedence is by:
221 * - lowest group priority; if both the same then
222 * - lowest subpriority; if both the same then
223 * - lowest exception number; if both the same (ie banked) then
224 * - secure exception takes precedence
225 * Compare pseudocode RawExecutionPriority.
226 * Annoyingly, now we have two prigroup values (for S and NS)
227 * we can't do the loop comparison on raw priority values.
228 */
229 for (i = 1; i < s->num_irq; i++) {
230 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
231 VecInfo *vec;
232 int prio, subprio;
233 bool targets_secure;
234
235 if (bank == M_REG_S) {
236 if (!exc_is_banked(i)) {
237 continue;
238 }
239 vec = &s->sec_vectors[i];
240 targets_secure = true;
241 } else {
242 vec = &s->vectors[i];
243 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
244 }
245
246 prio = exc_group_prio(s, vec->prio, targets_secure);
247 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
248 if (vec->enabled && vec->pending &&
249 ((prio < pend_prio) ||
250 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
251 pend_prio = prio;
252 pend_subprio = subprio;
253 pend_irq = i;
254 pending_is_s_banked = (bank == M_REG_S);
255 }
256 if (vec->active && prio < active_prio) {
257 active_prio = prio;
258 }
259 }
260 }
261
262 s->vectpending_is_s_banked = pending_is_s_banked;
263 s->vectpending = pend_irq;
264 s->vectpending_prio = pend_prio;
265 s->exception_prio = active_prio;
266
267 trace_nvic_recompute_state_secure(s->vectpending,
268 s->vectpending_is_s_banked,
269 s->vectpending_prio,
270 s->exception_prio);
271 }
272
273 /* Recompute vectpending and exception_prio */
274 static void nvic_recompute_state(NVICState *s)
275 {
276 int i;
277 int pend_prio = NVIC_NOEXC_PRIO;
278 int active_prio = NVIC_NOEXC_PRIO;
279 int pend_irq = 0;
280
281 /* In theory we could write one function that handled both
282 * the "security extension present" and "not present"; however
283 * the security related changes significantly complicate the
284 * recomputation just by themselves and mixing both cases together
285 * would be even worse, so we retain a separate non-secure-only
286 * version for CPUs which don't implement the security extension.
287 */
288 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
289 nvic_recompute_state_secure(s);
290 return;
291 }
292
293 for (i = 1; i < s->num_irq; i++) {
294 VecInfo *vec = &s->vectors[i];
295
296 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
297 pend_prio = vec->prio;
298 pend_irq = i;
299 }
300 if (vec->active && vec->prio < active_prio) {
301 active_prio = vec->prio;
302 }
303 }
304
305 if (active_prio > 0) {
306 active_prio &= nvic_gprio_mask(s, false);
307 }
308
309 if (pend_prio > 0) {
310 pend_prio &= nvic_gprio_mask(s, false);
311 }
312
313 s->vectpending = pend_irq;
314 s->vectpending_prio = pend_prio;
315 s->exception_prio = active_prio;
316
317 trace_nvic_recompute_state(s->vectpending,
318 s->vectpending_prio,
319 s->exception_prio);
320 }
321
322 /* Return the current execution priority of the CPU
323 * (equivalent to the pseudocode ExecutionPriority function).
324 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
325 */
326 static inline int nvic_exec_prio(NVICState *s)
327 {
328 CPUARMState *env = &s->cpu->env;
329 int running = NVIC_NOEXC_PRIO;
330
331 if (env->v7m.basepri[M_REG_NS] > 0) {
332 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
333 }
334
335 if (env->v7m.basepri[M_REG_S] > 0) {
336 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
337 if (running > basepri) {
338 running = basepri;
339 }
340 }
341
342 if (env->v7m.primask[M_REG_NS]) {
343 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
344 if (running > NVIC_NS_PRIO_LIMIT) {
345 running = NVIC_NS_PRIO_LIMIT;
346 }
347 } else {
348 running = 0;
349 }
350 }
351
352 if (env->v7m.primask[M_REG_S]) {
353 running = 0;
354 }
355
356 if (env->v7m.faultmask[M_REG_NS]) {
357 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
358 running = -1;
359 } else {
360 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
361 if (running > NVIC_NS_PRIO_LIMIT) {
362 running = NVIC_NS_PRIO_LIMIT;
363 }
364 } else {
365 running = 0;
366 }
367 }
368 }
369
370 if (env->v7m.faultmask[M_REG_S]) {
371 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
372 }
373
374 /* consider priority of active handler */
375 return MIN(running, s->exception_prio);
376 }
377
378 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
379 {
380 /* Return true if the requested execution priority is negative
381 * for the specified security state, ie that security state
382 * has an active NMI or HardFault or has set its FAULTMASK.
383 * Note that this is not the same as whether the execution
384 * priority is actually negative (for instance AIRCR.PRIS may
385 * mean we don't allow FAULTMASK_NS to actually make the execution
386 * priority negative). Compare pseudocode IsReqExcPriNeg().
387 */
388 NVICState *s = opaque;
389
390 if (s->cpu->env.v7m.faultmask[secure]) {
391 return true;
392 }
393
394 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
395 s->vectors[ARMV7M_EXCP_HARD].active) {
396 return true;
397 }
398
399 if (s->vectors[ARMV7M_EXCP_NMI].active &&
400 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
401 return true;
402 }
403
404 return false;
405 }
406
407 bool armv7m_nvic_can_take_pending_exception(void *opaque)
408 {
409 NVICState *s = opaque;
410
411 return nvic_exec_prio(s) > nvic_pending_prio(s);
412 }
413
414 int armv7m_nvic_raw_execution_priority(void *opaque)
415 {
416 NVICState *s = opaque;
417
418 return s->exception_prio;
419 }
420
421 /* caller must call nvic_irq_update() after this.
422 * secure indicates the bank to use for banked exceptions (we assert if
423 * we are passed secure=true for a non-banked exception).
424 */
425 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
426 {
427 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
428 assert(irq < s->num_irq);
429
430 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
431
432 if (secure) {
433 assert(exc_is_banked(irq));
434 s->sec_vectors[irq].prio = prio;
435 } else {
436 s->vectors[irq].prio = prio;
437 }
438
439 trace_nvic_set_prio(irq, secure, prio);
440 }
441
442 /* Return the current raw priority register value.
443 * secure indicates the bank to use for banked exceptions (we assert if
444 * we are passed secure=true for a non-banked exception).
445 */
446 static int get_prio(NVICState *s, unsigned irq, bool secure)
447 {
448 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
449 assert(irq < s->num_irq);
450
451 if (secure) {
452 assert(exc_is_banked(irq));
453 return s->sec_vectors[irq].prio;
454 } else {
455 return s->vectors[irq].prio;
456 }
457 }
458
459 /* Recompute state and assert irq line accordingly.
460 * Must be called after changes to:
461 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
462 * prigroup
463 */
464 static void nvic_irq_update(NVICState *s)
465 {
466 int lvl;
467 int pend_prio;
468
469 nvic_recompute_state(s);
470 pend_prio = nvic_pending_prio(s);
471
472 /* Raise NVIC output if this IRQ would be taken, except that we
473 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
474 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
475 * to those CPU registers don't cause us to recalculate the NVIC
476 * pending info.
477 */
478 lvl = (pend_prio < s->exception_prio);
479 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
480 qemu_set_irq(s->excpout, lvl);
481 }
482
483 /**
484 * armv7m_nvic_clear_pending: mark the specified exception as not pending
485 * @opaque: the NVIC
486 * @irq: the exception number to mark as not pending
487 * @secure: false for non-banked exceptions or for the nonsecure
488 * version of a banked exception, true for the secure version of a banked
489 * exception.
490 *
491 * Marks the specified exception as not pending. Note that we will assert()
492 * if @secure is true and @irq does not specify one of the fixed set
493 * of architecturally banked exceptions.
494 */
495 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
496 {
497 NVICState *s = (NVICState *)opaque;
498 VecInfo *vec;
499
500 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
501
502 if (secure) {
503 assert(exc_is_banked(irq));
504 vec = &s->sec_vectors[irq];
505 } else {
506 vec = &s->vectors[irq];
507 }
508 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
509 if (vec->pending) {
510 vec->pending = 0;
511 nvic_irq_update(s);
512 }
513 }
514
515 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
516 bool derived)
517 {
518 /* Pend an exception, including possibly escalating it to HardFault.
519 *
520 * This function handles both "normal" pending of interrupts and
521 * exceptions, and also derived exceptions (ones which occur as
522 * a result of trying to take some other exception).
523 *
524 * If derived == true, the caller guarantees that we are part way through
525 * trying to take an exception (but have not yet called
526 * armv7m_nvic_acknowledge_irq() to make it active), and so:
527 * - s->vectpending is the "original exception" we were trying to take
528 * - irq is the "derived exception"
529 * - nvic_exec_prio(s) gives the priority before exception entry
530 * Here we handle the prioritization logic which the pseudocode puts
531 * in the DerivedLateArrival() function.
532 */
533
534 NVICState *s = (NVICState *)opaque;
535 bool banked = exc_is_banked(irq);
536 VecInfo *vec;
537 bool targets_secure;
538
539 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
540 assert(!secure || banked);
541
542 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
543
544 targets_secure = banked ? secure : exc_targets_secure(s, irq);
545
546 trace_nvic_set_pending(irq, secure, targets_secure,
547 derived, vec->enabled, vec->prio);
548
549 if (derived) {
550 /* Derived exceptions are always synchronous. */
551 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
552
553 if (irq == ARMV7M_EXCP_DEBUG &&
554 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
555 /* DebugMonitorFault, but its priority is lower than the
556 * preempted exception priority: just ignore it.
557 */
558 return;
559 }
560
561 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
562 /* If this is a terminal exception (one which means we cannot
563 * take the original exception, like a failure to read its
564 * vector table entry), then we must take the derived exception.
565 * If the derived exception can't take priority over the
566 * original exception, then we go into Lockup.
567 *
568 * For QEMU, we rely on the fact that a derived exception is
569 * terminal if and only if it's reported to us as HardFault,
570 * which saves having to have an extra argument is_terminal
571 * that we'd only use in one place.
572 */
573 cpu_abort(&s->cpu->parent_obj,
574 "Lockup: can't take terminal derived exception "
575 "(original exception priority %d)\n",
576 s->vectpending_prio);
577 }
578 /* We now continue with the same code as for a normal pending
579 * exception, which will cause us to pend the derived exception.
580 * We'll then take either the original or the derived exception
581 * based on which is higher priority by the usual mechanism
582 * for selecting the highest priority pending interrupt.
583 */
584 }
585
586 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
587 /* If a synchronous exception is pending then it may be
588 * escalated to HardFault if:
589 * * it is equal or lower priority to current execution
590 * * it is disabled
591 * (ie we need to take it immediately but we can't do so).
592 * Asynchronous exceptions (and interrupts) simply remain pending.
593 *
594 * For QEMU, we don't have any imprecise (asynchronous) faults,
595 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
596 * synchronous.
597 * Debug exceptions are awkward because only Debug exceptions
598 * resulting from the BKPT instruction should be escalated,
599 * but we don't currently implement any Debug exceptions other
600 * than those that result from BKPT, so we treat all debug exceptions
601 * as needing escalation.
602 *
603 * This all means we can identify whether to escalate based only on
604 * the exception number and don't (yet) need the caller to explicitly
605 * tell us whether this exception is synchronous or not.
606 */
607 int running = nvic_exec_prio(s);
608 bool escalate = false;
609
610 if (exc_group_prio(s, vec->prio, secure) >= running) {
611 trace_nvic_escalate_prio(irq, vec->prio, running);
612 escalate = true;
613 } else if (!vec->enabled) {
614 trace_nvic_escalate_disabled(irq);
615 escalate = true;
616 }
617
618 if (escalate) {
619
620 /* We need to escalate this exception to a synchronous HardFault.
621 * If BFHFNMINS is set then we escalate to the banked HF for
622 * the target security state of the original exception; otherwise
623 * we take a Secure HardFault.
624 */
625 irq = ARMV7M_EXCP_HARD;
626 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
627 (targets_secure ||
628 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
629 vec = &s->sec_vectors[irq];
630 } else {
631 vec = &s->vectors[irq];
632 }
633 if (running <= vec->prio) {
634 /* We want to escalate to HardFault but we can't take the
635 * synchronous HardFault at this point either. This is a
636 * Lockup condition due to a guest bug. We don't model
637 * Lockup, so report via cpu_abort() instead.
638 */
639 cpu_abort(&s->cpu->parent_obj,
640 "Lockup: can't escalate %d to HardFault "
641 "(current priority %d)\n", irq, running);
642 }
643
644 /* HF may be banked but there is only one shared HFSR */
645 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
646 }
647 }
648
649 if (!vec->pending) {
650 vec->pending = 1;
651 nvic_irq_update(s);
652 }
653 }
654
655 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
656 {
657 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
658 }
659
660 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
661 {
662 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
663 }
664
665 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
666 {
667 /*
668 * Pend an exception during lazy FP stacking. This differs
669 * from the usual exception pending because the logic for
670 * whether we should escalate depends on the saved context
671 * in the FPCCR register, not on the current state of the CPU/NVIC.
672 */
673 NVICState *s = (NVICState *)opaque;
674 bool banked = exc_is_banked(irq);
675 VecInfo *vec;
676 bool targets_secure;
677 bool escalate = false;
678 /*
679 * We will only look at bits in fpccr if this is a banked exception
680 * (in which case 'secure' tells us whether it is the S or NS version).
681 * All the bits for the non-banked exceptions are in fpccr_s.
682 */
683 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
684 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
685
686 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
687 assert(!secure || banked);
688
689 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
690
691 targets_secure = banked ? secure : exc_targets_secure(s, irq);
692
693 switch (irq) {
694 case ARMV7M_EXCP_DEBUG:
695 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
696 /* Ignore DebugMonitor exception */
697 return;
698 }
699 break;
700 case ARMV7M_EXCP_MEM:
701 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
702 break;
703 case ARMV7M_EXCP_USAGE:
704 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
705 break;
706 case ARMV7M_EXCP_BUS:
707 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
708 break;
709 case ARMV7M_EXCP_SECURE:
710 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
711 break;
712 default:
713 g_assert_not_reached();
714 }
715
716 if (escalate) {
717 /*
718 * Escalate to HardFault: faults that initially targeted Secure
719 * continue to do so, even if HF normally targets NonSecure.
720 */
721 irq = ARMV7M_EXCP_HARD;
722 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
723 (targets_secure ||
724 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
725 vec = &s->sec_vectors[irq];
726 } else {
727 vec = &s->vectors[irq];
728 }
729 }
730
731 if (!vec->enabled ||
732 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
733 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
734 /*
735 * We want to escalate to HardFault but the context the
736 * FP state belongs to prevents the exception pre-empting.
737 */
738 cpu_abort(&s->cpu->parent_obj,
739 "Lockup: can't escalate to HardFault during "
740 "lazy FP register stacking\n");
741 }
742 }
743
744 if (escalate) {
745 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
746 }
747 if (!vec->pending) {
748 vec->pending = 1;
749 /*
750 * We do not call nvic_irq_update(), because we know our caller
751 * is going to handle causing us to take the exception by
752 * raising EXCP_LAZYFP, so raising the IRQ line would be
753 * pointless extra work. We just need to recompute the
754 * priorities so that armv7m_nvic_can_take_pending_exception()
755 * returns the right answer.
756 */
757 nvic_recompute_state(s);
758 }
759 }
760
761 /* Make pending IRQ active. */
762 void armv7m_nvic_acknowledge_irq(void *opaque)
763 {
764 NVICState *s = (NVICState *)opaque;
765 CPUARMState *env = &s->cpu->env;
766 const int pending = s->vectpending;
767 const int running = nvic_exec_prio(s);
768 VecInfo *vec;
769
770 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
771
772 if (s->vectpending_is_s_banked) {
773 vec = &s->sec_vectors[pending];
774 } else {
775 vec = &s->vectors[pending];
776 }
777
778 assert(vec->enabled);
779 assert(vec->pending);
780
781 assert(s->vectpending_prio < running);
782
783 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
784
785 vec->active = 1;
786 vec->pending = 0;
787
788 write_v7m_exception(env, s->vectpending);
789
790 nvic_irq_update(s);
791 }
792
793 void armv7m_nvic_get_pending_irq_info(void *opaque,
794 int *pirq, bool *ptargets_secure)
795 {
796 NVICState *s = (NVICState *)opaque;
797 const int pending = s->vectpending;
798 bool targets_secure;
799
800 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
801
802 if (s->vectpending_is_s_banked) {
803 targets_secure = true;
804 } else {
805 targets_secure = !exc_is_banked(pending) &&
806 exc_targets_secure(s, pending);
807 }
808
809 trace_nvic_get_pending_irq_info(pending, targets_secure);
810
811 *ptargets_secure = targets_secure;
812 *pirq = pending;
813 }
814
815 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
816 {
817 NVICState *s = (NVICState *)opaque;
818 VecInfo *vec = NULL;
819 int ret;
820
821 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
822
823 /*
824 * For negative priorities, v8M will forcibly deactivate the appropriate
825 * NMI or HardFault regardless of what interrupt we're being asked to
826 * deactivate (compare the DeActivate() pseudocode). This is a guard
827 * against software returning from NMI or HardFault with a corrupted
828 * IPSR and leaving the CPU in a negative-priority state.
829 * v7M does not do this, but simply deactivates the requested interrupt.
830 */
831 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
832 switch (armv7m_nvic_raw_execution_priority(s)) {
833 case -1:
834 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
835 vec = &s->vectors[ARMV7M_EXCP_HARD];
836 } else {
837 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
838 }
839 break;
840 case -2:
841 vec = &s->vectors[ARMV7M_EXCP_NMI];
842 break;
843 case -3:
844 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
845 break;
846 default:
847 break;
848 }
849 }
850
851 if (!vec) {
852 if (secure && exc_is_banked(irq)) {
853 vec = &s->sec_vectors[irq];
854 } else {
855 vec = &s->vectors[irq];
856 }
857 }
858
859 trace_nvic_complete_irq(irq, secure);
860
861 if (!vec->active) {
862 /* Tell the caller this was an illegal exception return */
863 return -1;
864 }
865
866 /*
867 * If this is a configurable exception and it is currently
868 * targeting the opposite security state from the one we're trying
869 * to complete it for, this counts as an illegal exception return.
870 * We still need to deactivate whatever vector the logic above has
871 * selected, though, as it might not be the same as the one for the
872 * requested exception number.
873 */
874 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
875 ret = -1;
876 } else {
877 ret = nvic_rettobase(s);
878 }
879
880 vec->active = 0;
881 if (vec->level) {
882 /* Re-pend the exception if it's still held high; only
883 * happens for extenal IRQs
884 */
885 assert(irq >= NVIC_FIRST_IRQ);
886 vec->pending = 1;
887 }
888
889 nvic_irq_update(s);
890
891 return ret;
892 }
893
894 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
895 {
896 /*
897 * Return whether an exception is "ready", i.e. it is enabled and is
898 * configured at a priority which would allow it to interrupt the
899 * current execution priority.
900 *
901 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
902 * for non-banked exceptions secure is always false; for banked exceptions
903 * it indicates which of the exceptions is required.
904 */
905 NVICState *s = (NVICState *)opaque;
906 bool banked = exc_is_banked(irq);
907 VecInfo *vec;
908 int running = nvic_exec_prio(s);
909
910 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
911 assert(!secure || banked);
912
913 /*
914 * HardFault is an odd special case: we always check against -1,
915 * even if we're secure and HardFault has priority -3; we never
916 * need to check for enabled state.
917 */
918 if (irq == ARMV7M_EXCP_HARD) {
919 return running > -1;
920 }
921
922 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
923
924 return vec->enabled &&
925 exc_group_prio(s, vec->prio, secure) < running;
926 }
927
928 /* callback when external interrupt line is changed */
929 static void set_irq_level(void *opaque, int n, int level)
930 {
931 NVICState *s = opaque;
932 VecInfo *vec;
933
934 n += NVIC_FIRST_IRQ;
935
936 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
937
938 trace_nvic_set_irq_level(n, level);
939
940 /* The pending status of an external interrupt is
941 * latched on rising edge and exception handler return.
942 *
943 * Pulsing the IRQ will always run the handler
944 * once, and the handler will re-run until the
945 * level is low when the handler completes.
946 */
947 vec = &s->vectors[n];
948 if (level != vec->level) {
949 vec->level = level;
950 if (level) {
951 armv7m_nvic_set_pending(s, n, false);
952 }
953 }
954 }
955
956 /* callback when external NMI line is changed */
957 static void nvic_nmi_trigger(void *opaque, int n, int level)
958 {
959 NVICState *s = opaque;
960
961 trace_nvic_set_nmi_level(level);
962
963 /*
964 * The architecture doesn't specify whether NMI should share
965 * the normal-interrupt behaviour of being resampled on
966 * exception handler return. We choose not to, so just
967 * set NMI pending here and don't track the current level.
968 */
969 if (level) {
970 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
971 }
972 }
973
974 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
975 {
976 ARMCPU *cpu = s->cpu;
977 uint32_t val;
978
979 switch (offset) {
980 case 4: /* Interrupt Control Type. */
981 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
982 goto bad_offset;
983 }
984 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
985 case 0xc: /* CPPWR */
986 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
987 goto bad_offset;
988 }
989 /* We make the IMPDEF choice that nothing can ever go into a
990 * non-retentive power state, which allows us to RAZ/WI this.
991 */
992 return 0;
993 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
994 {
995 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
996 int i;
997
998 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
999 goto bad_offset;
1000 }
1001 if (!attrs.secure) {
1002 return 0;
1003 }
1004 val = 0;
1005 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1006 if (s->itns[startvec + i]) {
1007 val |= (1 << i);
1008 }
1009 }
1010 return val;
1011 }
1012 case 0xd00: /* CPUID Base. */
1013 return cpu->midr;
1014 case 0xd04: /* Interrupt Control State (ICSR) */
1015 /* VECTACTIVE */
1016 val = cpu->env.v7m.exception;
1017 /* VECTPENDING */
1018 val |= (s->vectpending & 0xff) << 12;
1019 /* ISRPENDING - set if any external IRQ is pending */
1020 if (nvic_isrpending(s)) {
1021 val |= (1 << 22);
1022 }
1023 /* RETTOBASE - set if only one handler is active */
1024 if (nvic_rettobase(s)) {
1025 val |= (1 << 11);
1026 }
1027 if (attrs.secure) {
1028 /* PENDSTSET */
1029 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1030 val |= (1 << 26);
1031 }
1032 /* PENDSVSET */
1033 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1034 val |= (1 << 28);
1035 }
1036 } else {
1037 /* PENDSTSET */
1038 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1039 val |= (1 << 26);
1040 }
1041 /* PENDSVSET */
1042 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1043 val |= (1 << 28);
1044 }
1045 }
1046 /* NMIPENDSET */
1047 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1048 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1049 val |= (1 << 31);
1050 }
1051 /* ISRPREEMPT: RES0 when halting debug not implemented */
1052 /* STTNS: RES0 for the Main Extension */
1053 return val;
1054 case 0xd08: /* Vector Table Offset. */
1055 return cpu->env.v7m.vecbase[attrs.secure];
1056 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1057 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1058 if (attrs.secure) {
1059 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1060 val |= cpu->env.v7m.aircr;
1061 } else {
1062 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1063 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1064 * security isn't supported then BFHFNMINS is RAO (and
1065 * the bit in env.v7m.aircr is always set).
1066 */
1067 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1068 }
1069 }
1070 return val;
1071 case 0xd10: /* System Control. */
1072 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1073 goto bad_offset;
1074 }
1075 return cpu->env.v7m.scr[attrs.secure];
1076 case 0xd14: /* Configuration Control. */
1077 /* The BFHFNMIGN bit is the only non-banked bit; we
1078 * keep it in the non-secure copy of the register.
1079 */
1080 val = cpu->env.v7m.ccr[attrs.secure];
1081 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1082 return val;
1083 case 0xd24: /* System Handler Control and State (SHCSR) */
1084 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1085 goto bad_offset;
1086 }
1087 val = 0;
1088 if (attrs.secure) {
1089 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1090 val |= (1 << 0);
1091 }
1092 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1093 val |= (1 << 2);
1094 }
1095 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1096 val |= (1 << 3);
1097 }
1098 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1099 val |= (1 << 7);
1100 }
1101 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1102 val |= (1 << 10);
1103 }
1104 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1105 val |= (1 << 11);
1106 }
1107 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1108 val |= (1 << 12);
1109 }
1110 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1111 val |= (1 << 13);
1112 }
1113 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1114 val |= (1 << 15);
1115 }
1116 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1117 val |= (1 << 16);
1118 }
1119 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1120 val |= (1 << 18);
1121 }
1122 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1123 val |= (1 << 21);
1124 }
1125 /* SecureFault is not banked but is always RAZ/WI to NS */
1126 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1127 val |= (1 << 4);
1128 }
1129 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1130 val |= (1 << 19);
1131 }
1132 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1133 val |= (1 << 20);
1134 }
1135 } else {
1136 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1137 val |= (1 << 0);
1138 }
1139 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1140 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1141 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1142 val |= (1 << 2);
1143 }
1144 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1145 val |= (1 << 21);
1146 }
1147 }
1148 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1149 val |= (1 << 3);
1150 }
1151 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1152 val |= (1 << 7);
1153 }
1154 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1155 val |= (1 << 10);
1156 }
1157 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1158 val |= (1 << 11);
1159 }
1160 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1161 val |= (1 << 12);
1162 }
1163 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1164 val |= (1 << 13);
1165 }
1166 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1167 val |= (1 << 15);
1168 }
1169 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1170 val |= (1 << 16);
1171 }
1172 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1173 val |= (1 << 18);
1174 }
1175 }
1176 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1177 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1178 val |= (1 << 1);
1179 }
1180 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1181 val |= (1 << 14);
1182 }
1183 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1184 val |= (1 << 17);
1185 }
1186 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1187 s->vectors[ARMV7M_EXCP_NMI].active) {
1188 /* NMIACT is not present in v7M */
1189 val |= (1 << 5);
1190 }
1191 }
1192
1193 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1194 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1195 val |= (1 << 8);
1196 }
1197 return val;
1198 case 0xd2c: /* Hard Fault Status. */
1199 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1200 goto bad_offset;
1201 }
1202 return cpu->env.v7m.hfsr;
1203 case 0xd30: /* Debug Fault Status. */
1204 return cpu->env.v7m.dfsr;
1205 case 0xd34: /* MMFAR MemManage Fault Address */
1206 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1207 goto bad_offset;
1208 }
1209 return cpu->env.v7m.mmfar[attrs.secure];
1210 case 0xd38: /* Bus Fault Address. */
1211 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1212 goto bad_offset;
1213 }
1214 if (!attrs.secure &&
1215 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1216 return 0;
1217 }
1218 return cpu->env.v7m.bfar;
1219 case 0xd3c: /* Aux Fault Status. */
1220 /* TODO: Implement fault status registers. */
1221 qemu_log_mask(LOG_UNIMP,
1222 "Aux Fault status registers unimplemented\n");
1223 return 0;
1224 case 0xd40: /* PFR0. */
1225 return cpu->id_pfr0;
1226 case 0xd44: /* PFR1. */
1227 return cpu->id_pfr1;
1228 case 0xd48: /* DFR0. */
1229 return cpu->id_dfr0;
1230 case 0xd4c: /* AFR0. */
1231 return cpu->id_afr0;
1232 case 0xd50: /* MMFR0. */
1233 return cpu->id_mmfr0;
1234 case 0xd54: /* MMFR1. */
1235 return cpu->id_mmfr1;
1236 case 0xd58: /* MMFR2. */
1237 return cpu->id_mmfr2;
1238 case 0xd5c: /* MMFR3. */
1239 return cpu->id_mmfr3;
1240 case 0xd60: /* ISAR0. */
1241 return cpu->isar.id_isar0;
1242 case 0xd64: /* ISAR1. */
1243 return cpu->isar.id_isar1;
1244 case 0xd68: /* ISAR2. */
1245 return cpu->isar.id_isar2;
1246 case 0xd6c: /* ISAR3. */
1247 return cpu->isar.id_isar3;
1248 case 0xd70: /* ISAR4. */
1249 return cpu->isar.id_isar4;
1250 case 0xd74: /* ISAR5. */
1251 return cpu->isar.id_isar5;
1252 case 0xd78: /* CLIDR */
1253 return cpu->clidr;
1254 case 0xd7c: /* CTR */
1255 return cpu->ctr;
1256 case 0xd80: /* CSSIDR */
1257 {
1258 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1259 return cpu->ccsidr[idx];
1260 }
1261 case 0xd84: /* CSSELR */
1262 return cpu->env.v7m.csselr[attrs.secure];
1263 case 0xd88: /* CPACR */
1264 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1265 return 0;
1266 }
1267 return cpu->env.v7m.cpacr[attrs.secure];
1268 case 0xd8c: /* NSACR */
1269 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1270 return 0;
1271 }
1272 return cpu->env.v7m.nsacr;
1273 /* TODO: Implement debug registers. */
1274 case 0xd90: /* MPU_TYPE */
1275 /* Unified MPU; if the MPU is not present this value is zero */
1276 return cpu->pmsav7_dregion << 8;
1277 break;
1278 case 0xd94: /* MPU_CTRL */
1279 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1280 case 0xd98: /* MPU_RNR */
1281 return cpu->env.pmsav7.rnr[attrs.secure];
1282 case 0xd9c: /* MPU_RBAR */
1283 case 0xda4: /* MPU_RBAR_A1 */
1284 case 0xdac: /* MPU_RBAR_A2 */
1285 case 0xdb4: /* MPU_RBAR_A3 */
1286 {
1287 int region = cpu->env.pmsav7.rnr[attrs.secure];
1288
1289 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1290 /* PMSAv8M handling of the aliases is different from v7M:
1291 * aliases A1, A2, A3 override the low two bits of the region
1292 * number in MPU_RNR, and there is no 'region' field in the
1293 * RBAR register.
1294 */
1295 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1296 if (aliasno) {
1297 region = deposit32(region, 0, 2, aliasno);
1298 }
1299 if (region >= cpu->pmsav7_dregion) {
1300 return 0;
1301 }
1302 return cpu->env.pmsav8.rbar[attrs.secure][region];
1303 }
1304
1305 if (region >= cpu->pmsav7_dregion) {
1306 return 0;
1307 }
1308 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1309 }
1310 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1311 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1312 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1313 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1314 {
1315 int region = cpu->env.pmsav7.rnr[attrs.secure];
1316
1317 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1318 /* PMSAv8M handling of the aliases is different from v7M:
1319 * aliases A1, A2, A3 override the low two bits of the region
1320 * number in MPU_RNR.
1321 */
1322 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1323 if (aliasno) {
1324 region = deposit32(region, 0, 2, aliasno);
1325 }
1326 if (region >= cpu->pmsav7_dregion) {
1327 return 0;
1328 }
1329 return cpu->env.pmsav8.rlar[attrs.secure][region];
1330 }
1331
1332 if (region >= cpu->pmsav7_dregion) {
1333 return 0;
1334 }
1335 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1336 (cpu->env.pmsav7.drsr[region] & 0xffff);
1337 }
1338 case 0xdc0: /* MPU_MAIR0 */
1339 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1340 goto bad_offset;
1341 }
1342 return cpu->env.pmsav8.mair0[attrs.secure];
1343 case 0xdc4: /* MPU_MAIR1 */
1344 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1345 goto bad_offset;
1346 }
1347 return cpu->env.pmsav8.mair1[attrs.secure];
1348 case 0xdd0: /* SAU_CTRL */
1349 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1350 goto bad_offset;
1351 }
1352 if (!attrs.secure) {
1353 return 0;
1354 }
1355 return cpu->env.sau.ctrl;
1356 case 0xdd4: /* SAU_TYPE */
1357 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1358 goto bad_offset;
1359 }
1360 if (!attrs.secure) {
1361 return 0;
1362 }
1363 return cpu->sau_sregion;
1364 case 0xdd8: /* SAU_RNR */
1365 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1366 goto bad_offset;
1367 }
1368 if (!attrs.secure) {
1369 return 0;
1370 }
1371 return cpu->env.sau.rnr;
1372 case 0xddc: /* SAU_RBAR */
1373 {
1374 int region = cpu->env.sau.rnr;
1375
1376 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1377 goto bad_offset;
1378 }
1379 if (!attrs.secure) {
1380 return 0;
1381 }
1382 if (region >= cpu->sau_sregion) {
1383 return 0;
1384 }
1385 return cpu->env.sau.rbar[region];
1386 }
1387 case 0xde0: /* SAU_RLAR */
1388 {
1389 int region = cpu->env.sau.rnr;
1390
1391 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1392 goto bad_offset;
1393 }
1394 if (!attrs.secure) {
1395 return 0;
1396 }
1397 if (region >= cpu->sau_sregion) {
1398 return 0;
1399 }
1400 return cpu->env.sau.rlar[region];
1401 }
1402 case 0xde4: /* SFSR */
1403 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1404 goto bad_offset;
1405 }
1406 if (!attrs.secure) {
1407 return 0;
1408 }
1409 return cpu->env.v7m.sfsr;
1410 case 0xde8: /* SFAR */
1411 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1412 goto bad_offset;
1413 }
1414 if (!attrs.secure) {
1415 return 0;
1416 }
1417 return cpu->env.v7m.sfar;
1418 case 0xf34: /* FPCCR */
1419 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1420 return 0;
1421 }
1422 if (attrs.secure) {
1423 return cpu->env.v7m.fpccr[M_REG_S];
1424 } else {
1425 /*
1426 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1427 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1428 * other non-banked bits RAZ.
1429 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1430 */
1431 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1432 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1433 R_V7M_FPCCR_CLRONRET_MASK |
1434 R_V7M_FPCCR_MONRDY_MASK;
1435
1436 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1437 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1438 }
1439
1440 value &= mask;
1441
1442 value |= cpu->env.v7m.fpccr[M_REG_NS];
1443 return value;
1444 }
1445 case 0xf38: /* FPCAR */
1446 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1447 return 0;
1448 }
1449 return cpu->env.v7m.fpcar[attrs.secure];
1450 case 0xf3c: /* FPDSCR */
1451 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1452 return 0;
1453 }
1454 return cpu->env.v7m.fpdscr[attrs.secure];
1455 case 0xf40: /* MVFR0 */
1456 return cpu->isar.mvfr0;
1457 case 0xf44: /* MVFR1 */
1458 return cpu->isar.mvfr1;
1459 case 0xf48: /* MVFR2 */
1460 return cpu->isar.mvfr2;
1461 default:
1462 bad_offset:
1463 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1464 return 0;
1465 }
1466 }
1467
1468 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1469 MemTxAttrs attrs)
1470 {
1471 ARMCPU *cpu = s->cpu;
1472
1473 switch (offset) {
1474 case 0xc: /* CPPWR */
1475 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1476 goto bad_offset;
1477 }
1478 /* Make the IMPDEF choice to RAZ/WI this. */
1479 break;
1480 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1481 {
1482 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1483 int i;
1484
1485 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1486 goto bad_offset;
1487 }
1488 if (!attrs.secure) {
1489 break;
1490 }
1491 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1492 s->itns[startvec + i] = (value >> i) & 1;
1493 }
1494 nvic_irq_update(s);
1495 break;
1496 }
1497 case 0xd04: /* Interrupt Control State (ICSR) */
1498 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1499 if (value & (1 << 31)) {
1500 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1501 } else if (value & (1 << 30) &&
1502 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1503 /* PENDNMICLR didn't exist in v7M */
1504 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1505 }
1506 }
1507 if (value & (1 << 28)) {
1508 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1509 } else if (value & (1 << 27)) {
1510 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1511 }
1512 if (value & (1 << 26)) {
1513 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1514 } else if (value & (1 << 25)) {
1515 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1516 }
1517 break;
1518 case 0xd08: /* Vector Table Offset. */
1519 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1520 break;
1521 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1522 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1523 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1524 if (attrs.secure ||
1525 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1526 qemu_irq_pulse(s->sysresetreq);
1527 }
1528 }
1529 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1530 qemu_log_mask(LOG_GUEST_ERROR,
1531 "Setting VECTCLRACTIVE when not in DEBUG mode "
1532 "is UNPREDICTABLE\n");
1533 }
1534 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1535 /* NB: this bit is RES0 in v8M */
1536 qemu_log_mask(LOG_GUEST_ERROR,
1537 "Setting VECTRESET when not in DEBUG mode "
1538 "is UNPREDICTABLE\n");
1539 }
1540 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1541 s->prigroup[attrs.secure] =
1542 extract32(value,
1543 R_V7M_AIRCR_PRIGROUP_SHIFT,
1544 R_V7M_AIRCR_PRIGROUP_LENGTH);
1545 }
1546 if (attrs.secure) {
1547 /* These bits are only writable by secure */
1548 cpu->env.v7m.aircr = value &
1549 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1550 R_V7M_AIRCR_BFHFNMINS_MASK |
1551 R_V7M_AIRCR_PRIS_MASK);
1552 /* BFHFNMINS changes the priority of Secure HardFault, and
1553 * allows a pending Non-secure HardFault to preempt (which
1554 * we implement by marking it enabled).
1555 */
1556 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1557 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1558 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1559 } else {
1560 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1561 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1562 }
1563 }
1564 nvic_irq_update(s);
1565 }
1566 break;
1567 case 0xd10: /* System Control. */
1568 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1569 goto bad_offset;
1570 }
1571 /* We don't implement deep-sleep so these bits are RAZ/WI.
1572 * The other bits in the register are banked.
1573 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1574 * is architecturally permitted.
1575 */
1576 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1577 cpu->env.v7m.scr[attrs.secure] = value;
1578 break;
1579 case 0xd14: /* Configuration Control. */
1580 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1581 goto bad_offset;
1582 }
1583
1584 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1585 value &= (R_V7M_CCR_STKALIGN_MASK |
1586 R_V7M_CCR_BFHFNMIGN_MASK |
1587 R_V7M_CCR_DIV_0_TRP_MASK |
1588 R_V7M_CCR_UNALIGN_TRP_MASK |
1589 R_V7M_CCR_USERSETMPEND_MASK |
1590 R_V7M_CCR_NONBASETHRDENA_MASK);
1591
1592 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1593 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1594 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1595 | R_V7M_CCR_STKALIGN_MASK;
1596 }
1597 if (attrs.secure) {
1598 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1599 cpu->env.v7m.ccr[M_REG_NS] =
1600 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1601 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1602 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1603 }
1604
1605 cpu->env.v7m.ccr[attrs.secure] = value;
1606 break;
1607 case 0xd24: /* System Handler Control and State (SHCSR) */
1608 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1609 goto bad_offset;
1610 }
1611 if (attrs.secure) {
1612 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1613 /* Secure HardFault active bit cannot be written */
1614 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1615 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1616 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1617 (value & (1 << 10)) != 0;
1618 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1619 (value & (1 << 11)) != 0;
1620 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1621 (value & (1 << 12)) != 0;
1622 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1623 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1624 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1625 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1626 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1627 (value & (1 << 18)) != 0;
1628 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1629 /* SecureFault not banked, but RAZ/WI to NS */
1630 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1631 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1632 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1633 } else {
1634 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1635 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1636 /* HARDFAULTPENDED is not present in v7M */
1637 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1638 }
1639 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1640 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1641 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1642 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1643 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1644 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1645 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1646 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1647 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1648 }
1649 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1650 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1651 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1652 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1653 }
1654 /* NMIACT can only be written if the write is of a zero, with
1655 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1656 */
1657 if (!attrs.secure && cpu->env.v7m.secure &&
1658 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1659 (value & (1 << 5)) == 0) {
1660 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1661 }
1662 /* HARDFAULTACT can only be written if the write is of a zero
1663 * to the non-secure HardFault state by the CPU in secure state.
1664 * The only case where we can be targeting the non-secure HF state
1665 * when in secure state is if this is a write via the NS alias
1666 * and BFHFNMINS is 1.
1667 */
1668 if (!attrs.secure && cpu->env.v7m.secure &&
1669 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1670 (value & (1 << 2)) == 0) {
1671 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1672 }
1673
1674 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1675 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1676 nvic_irq_update(s);
1677 break;
1678 case 0xd2c: /* Hard Fault Status. */
1679 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1680 goto bad_offset;
1681 }
1682 cpu->env.v7m.hfsr &= ~value; /* W1C */
1683 break;
1684 case 0xd30: /* Debug Fault Status. */
1685 cpu->env.v7m.dfsr &= ~value; /* W1C */
1686 break;
1687 case 0xd34: /* Mem Manage Address. */
1688 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1689 goto bad_offset;
1690 }
1691 cpu->env.v7m.mmfar[attrs.secure] = value;
1692 return;
1693 case 0xd38: /* Bus Fault Address. */
1694 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1695 goto bad_offset;
1696 }
1697 if (!attrs.secure &&
1698 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1699 return;
1700 }
1701 cpu->env.v7m.bfar = value;
1702 return;
1703 case 0xd3c: /* Aux Fault Status. */
1704 qemu_log_mask(LOG_UNIMP,
1705 "NVIC: Aux fault status registers unimplemented\n");
1706 break;
1707 case 0xd84: /* CSSELR */
1708 if (!arm_v7m_csselr_razwi(cpu)) {
1709 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1710 }
1711 break;
1712 case 0xd88: /* CPACR */
1713 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1714 /* We implement only the Floating Point extension's CP10/CP11 */
1715 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1716 }
1717 break;
1718 case 0xd8c: /* NSACR */
1719 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1720 /* We implement only the Floating Point extension's CP10/CP11 */
1721 cpu->env.v7m.nsacr = value & (3 << 10);
1722 }
1723 break;
1724 case 0xd90: /* MPU_TYPE */
1725 return; /* RO */
1726 case 0xd94: /* MPU_CTRL */
1727 if ((value &
1728 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1729 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1730 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1731 "UNPREDICTABLE\n");
1732 }
1733 cpu->env.v7m.mpu_ctrl[attrs.secure]
1734 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1735 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1736 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1737 tlb_flush(CPU(cpu));
1738 break;
1739 case 0xd98: /* MPU_RNR */
1740 if (value >= cpu->pmsav7_dregion) {
1741 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1742 PRIu32 "/%" PRIu32 "\n",
1743 value, cpu->pmsav7_dregion);
1744 } else {
1745 cpu->env.pmsav7.rnr[attrs.secure] = value;
1746 }
1747 break;
1748 case 0xd9c: /* MPU_RBAR */
1749 case 0xda4: /* MPU_RBAR_A1 */
1750 case 0xdac: /* MPU_RBAR_A2 */
1751 case 0xdb4: /* MPU_RBAR_A3 */
1752 {
1753 int region;
1754
1755 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1756 /* PMSAv8M handling of the aliases is different from v7M:
1757 * aliases A1, A2, A3 override the low two bits of the region
1758 * number in MPU_RNR, and there is no 'region' field in the
1759 * RBAR register.
1760 */
1761 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1762
1763 region = cpu->env.pmsav7.rnr[attrs.secure];
1764 if (aliasno) {
1765 region = deposit32(region, 0, 2, aliasno);
1766 }
1767 if (region >= cpu->pmsav7_dregion) {
1768 return;
1769 }
1770 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1771 tlb_flush(CPU(cpu));
1772 return;
1773 }
1774
1775 if (value & (1 << 4)) {
1776 /* VALID bit means use the region number specified in this
1777 * value and also update MPU_RNR.REGION with that value.
1778 */
1779 region = extract32(value, 0, 4);
1780 if (region >= cpu->pmsav7_dregion) {
1781 qemu_log_mask(LOG_GUEST_ERROR,
1782 "MPU region out of range %u/%" PRIu32 "\n",
1783 region, cpu->pmsav7_dregion);
1784 return;
1785 }
1786 cpu->env.pmsav7.rnr[attrs.secure] = region;
1787 } else {
1788 region = cpu->env.pmsav7.rnr[attrs.secure];
1789 }
1790
1791 if (region >= cpu->pmsav7_dregion) {
1792 return;
1793 }
1794
1795 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1796 tlb_flush(CPU(cpu));
1797 break;
1798 }
1799 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1800 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1801 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1802 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1803 {
1804 int region = cpu->env.pmsav7.rnr[attrs.secure];
1805
1806 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1807 /* PMSAv8M handling of the aliases is different from v7M:
1808 * aliases A1, A2, A3 override the low two bits of the region
1809 * number in MPU_RNR.
1810 */
1811 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1812
1813 region = cpu->env.pmsav7.rnr[attrs.secure];
1814 if (aliasno) {
1815 region = deposit32(region, 0, 2, aliasno);
1816 }
1817 if (region >= cpu->pmsav7_dregion) {
1818 return;
1819 }
1820 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1821 tlb_flush(CPU(cpu));
1822 return;
1823 }
1824
1825 if (region >= cpu->pmsav7_dregion) {
1826 return;
1827 }
1828
1829 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1830 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1831 tlb_flush(CPU(cpu));
1832 break;
1833 }
1834 case 0xdc0: /* MPU_MAIR0 */
1835 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1836 goto bad_offset;
1837 }
1838 if (cpu->pmsav7_dregion) {
1839 /* Register is RES0 if no MPU regions are implemented */
1840 cpu->env.pmsav8.mair0[attrs.secure] = value;
1841 }
1842 /* We don't need to do anything else because memory attributes
1843 * only affect cacheability, and we don't implement caching.
1844 */
1845 break;
1846 case 0xdc4: /* MPU_MAIR1 */
1847 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1848 goto bad_offset;
1849 }
1850 if (cpu->pmsav7_dregion) {
1851 /* Register is RES0 if no MPU regions are implemented */
1852 cpu->env.pmsav8.mair1[attrs.secure] = value;
1853 }
1854 /* We don't need to do anything else because memory attributes
1855 * only affect cacheability, and we don't implement caching.
1856 */
1857 break;
1858 case 0xdd0: /* SAU_CTRL */
1859 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1860 goto bad_offset;
1861 }
1862 if (!attrs.secure) {
1863 return;
1864 }
1865 cpu->env.sau.ctrl = value & 3;
1866 break;
1867 case 0xdd4: /* SAU_TYPE */
1868 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1869 goto bad_offset;
1870 }
1871 break;
1872 case 0xdd8: /* SAU_RNR */
1873 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1874 goto bad_offset;
1875 }
1876 if (!attrs.secure) {
1877 return;
1878 }
1879 if (value >= cpu->sau_sregion) {
1880 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1881 PRIu32 "/%" PRIu32 "\n",
1882 value, cpu->sau_sregion);
1883 } else {
1884 cpu->env.sau.rnr = value;
1885 }
1886 break;
1887 case 0xddc: /* SAU_RBAR */
1888 {
1889 int region = cpu->env.sau.rnr;
1890
1891 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1892 goto bad_offset;
1893 }
1894 if (!attrs.secure) {
1895 return;
1896 }
1897 if (region >= cpu->sau_sregion) {
1898 return;
1899 }
1900 cpu->env.sau.rbar[region] = value & ~0x1f;
1901 tlb_flush(CPU(cpu));
1902 break;
1903 }
1904 case 0xde0: /* SAU_RLAR */
1905 {
1906 int region = cpu->env.sau.rnr;
1907
1908 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1909 goto bad_offset;
1910 }
1911 if (!attrs.secure) {
1912 return;
1913 }
1914 if (region >= cpu->sau_sregion) {
1915 return;
1916 }
1917 cpu->env.sau.rlar[region] = value & ~0x1c;
1918 tlb_flush(CPU(cpu));
1919 break;
1920 }
1921 case 0xde4: /* SFSR */
1922 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1923 goto bad_offset;
1924 }
1925 if (!attrs.secure) {
1926 return;
1927 }
1928 cpu->env.v7m.sfsr &= ~value; /* W1C */
1929 break;
1930 case 0xde8: /* SFAR */
1931 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1932 goto bad_offset;
1933 }
1934 if (!attrs.secure) {
1935 return;
1936 }
1937 cpu->env.v7m.sfsr = value;
1938 break;
1939 case 0xf00: /* Software Triggered Interrupt Register */
1940 {
1941 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1942
1943 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1944 goto bad_offset;
1945 }
1946
1947 if (excnum < s->num_irq) {
1948 armv7m_nvic_set_pending(s, excnum, false);
1949 }
1950 break;
1951 }
1952 case 0xf34: /* FPCCR */
1953 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1954 /* Not all bits here are banked. */
1955 uint32_t fpccr_s;
1956
1957 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1958 /* Don't allow setting of bits not present in v7M */
1959 value &= (R_V7M_FPCCR_LSPACT_MASK |
1960 R_V7M_FPCCR_USER_MASK |
1961 R_V7M_FPCCR_THREAD_MASK |
1962 R_V7M_FPCCR_HFRDY_MASK |
1963 R_V7M_FPCCR_MMRDY_MASK |
1964 R_V7M_FPCCR_BFRDY_MASK |
1965 R_V7M_FPCCR_MONRDY_MASK |
1966 R_V7M_FPCCR_LSPEN_MASK |
1967 R_V7M_FPCCR_ASPEN_MASK);
1968 }
1969 value &= ~R_V7M_FPCCR_RES0_MASK;
1970
1971 if (!attrs.secure) {
1972 /* Some non-banked bits are configurably writable by NS */
1973 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1974 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1975 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1976 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1977 }
1978 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1979 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1980 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1981 }
1982 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1983 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1984 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1985 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1986 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1987 }
1988 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1989 {
1990 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1991 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1992 }
1993
1994 /*
1995 * All other non-banked bits are RAZ/WI from NS; write
1996 * just the banked bits to fpccr[M_REG_NS].
1997 */
1998 value &= R_V7M_FPCCR_BANKED_MASK;
1999 cpu->env.v7m.fpccr[M_REG_NS] = value;
2000 } else {
2001 fpccr_s = value;
2002 }
2003 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2004 }
2005 break;
2006 case 0xf38: /* FPCAR */
2007 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2008 value &= ~7;
2009 cpu->env.v7m.fpcar[attrs.secure] = value;
2010 }
2011 break;
2012 case 0xf3c: /* FPDSCR */
2013 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2014 value &= 0x07c00000;
2015 cpu->env.v7m.fpdscr[attrs.secure] = value;
2016 }
2017 break;
2018 case 0xf50: /* ICIALLU */
2019 case 0xf58: /* ICIMVAU */
2020 case 0xf5c: /* DCIMVAC */
2021 case 0xf60: /* DCISW */
2022 case 0xf64: /* DCCMVAU */
2023 case 0xf68: /* DCCMVAC */
2024 case 0xf6c: /* DCCSW */
2025 case 0xf70: /* DCCIMVAC */
2026 case 0xf74: /* DCCISW */
2027 case 0xf78: /* BPIALL */
2028 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2029 break;
2030 default:
2031 bad_offset:
2032 qemu_log_mask(LOG_GUEST_ERROR,
2033 "NVIC: Bad write offset 0x%x\n", offset);
2034 }
2035 }
2036
2037 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2038 {
2039 /* Return true if unprivileged access to this register is permitted. */
2040 switch (offset) {
2041 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2042 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2043 * controls access even though the CPU is in Secure state (I_QDKX).
2044 */
2045 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2046 default:
2047 /* All other user accesses cause a BusFault unconditionally */
2048 return false;
2049 }
2050 }
2051
2052 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2053 {
2054 /* Behaviour for the SHPR register field for this exception:
2055 * return M_REG_NS to use the nonsecure vector (including for
2056 * non-banked exceptions), M_REG_S for the secure version of
2057 * a banked exception, and -1 if this field should RAZ/WI.
2058 */
2059 switch (exc) {
2060 case ARMV7M_EXCP_MEM:
2061 case ARMV7M_EXCP_USAGE:
2062 case ARMV7M_EXCP_SVC:
2063 case ARMV7M_EXCP_PENDSV:
2064 case ARMV7M_EXCP_SYSTICK:
2065 /* Banked exceptions */
2066 return attrs.secure;
2067 case ARMV7M_EXCP_BUS:
2068 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2069 if (!attrs.secure &&
2070 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2071 return -1;
2072 }
2073 return M_REG_NS;
2074 case ARMV7M_EXCP_SECURE:
2075 /* Not banked, RAZ/WI from nonsecure */
2076 if (!attrs.secure) {
2077 return -1;
2078 }
2079 return M_REG_NS;
2080 case ARMV7M_EXCP_DEBUG:
2081 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2082 return M_REG_NS;
2083 case 8 ... 10:
2084 case 13:
2085 /* RES0 */
2086 return -1;
2087 default:
2088 /* Not reachable due to decode of SHPR register addresses */
2089 g_assert_not_reached();
2090 }
2091 }
2092
2093 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2094 uint64_t *data, unsigned size,
2095 MemTxAttrs attrs)
2096 {
2097 NVICState *s = (NVICState *)opaque;
2098 uint32_t offset = addr;
2099 unsigned i, startvec, end;
2100 uint32_t val;
2101
2102 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2103 /* Generate BusFault for unprivileged accesses */
2104 return MEMTX_ERROR;
2105 }
2106
2107 switch (offset) {
2108 /* reads of set and clear both return the status */
2109 case 0x100 ... 0x13f: /* NVIC Set enable */
2110 offset += 0x80;
2111 /* fall through */
2112 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2113 val = 0;
2114 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2115
2116 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2117 if (s->vectors[startvec + i].enabled &&
2118 (attrs.secure || s->itns[startvec + i])) {
2119 val |= (1 << i);
2120 }
2121 }
2122 break;
2123 case 0x200 ... 0x23f: /* NVIC Set pend */
2124 offset += 0x80;
2125 /* fall through */
2126 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2127 val = 0;
2128 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2129 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2130 if (s->vectors[startvec + i].pending &&
2131 (attrs.secure || s->itns[startvec + i])) {
2132 val |= (1 << i);
2133 }
2134 }
2135 break;
2136 case 0x300 ... 0x33f: /* NVIC Active */
2137 val = 0;
2138
2139 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2140 break;
2141 }
2142
2143 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2144
2145 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2146 if (s->vectors[startvec + i].active &&
2147 (attrs.secure || s->itns[startvec + i])) {
2148 val |= (1 << i);
2149 }
2150 }
2151 break;
2152 case 0x400 ... 0x5ef: /* NVIC Priority */
2153 val = 0;
2154 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2155
2156 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2157 if (attrs.secure || s->itns[startvec + i]) {
2158 val |= s->vectors[startvec + i].prio << (8 * i);
2159 }
2160 }
2161 break;
2162 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2163 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2164 val = 0;
2165 break;
2166 }
2167 /* fall through */
2168 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2169 val = 0;
2170 for (i = 0; i < size; i++) {
2171 unsigned hdlidx = (offset - 0xd14) + i;
2172 int sbank = shpr_bank(s, hdlidx, attrs);
2173
2174 if (sbank < 0) {
2175 continue;
2176 }
2177 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2178 }
2179 break;
2180 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2181 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2182 val = 0;
2183 break;
2184 };
2185 /*
2186 * The BFSR bits [15:8] are shared between security states
2187 * and we store them in the NS copy. They are RAZ/WI for
2188 * NS code if AIRCR.BFHFNMINS is 0.
2189 */
2190 val = s->cpu->env.v7m.cfsr[attrs.secure];
2191 if (!attrs.secure &&
2192 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2193 val &= ~R_V7M_CFSR_BFSR_MASK;
2194 } else {
2195 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2196 }
2197 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2198 break;
2199 case 0xfe0 ... 0xfff: /* ID. */
2200 if (offset & 3) {
2201 val = 0;
2202 } else {
2203 val = nvic_id[(offset - 0xfe0) >> 2];
2204 }
2205 break;
2206 default:
2207 if (size == 4) {
2208 val = nvic_readl(s, offset, attrs);
2209 } else {
2210 qemu_log_mask(LOG_GUEST_ERROR,
2211 "NVIC: Bad read of size %d at offset 0x%x\n",
2212 size, offset);
2213 val = 0;
2214 }
2215 }
2216
2217 trace_nvic_sysreg_read(addr, val, size);
2218 *data = val;
2219 return MEMTX_OK;
2220 }
2221
2222 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2223 uint64_t value, unsigned size,
2224 MemTxAttrs attrs)
2225 {
2226 NVICState *s = (NVICState *)opaque;
2227 uint32_t offset = addr;
2228 unsigned i, startvec, end;
2229 unsigned setval = 0;
2230
2231 trace_nvic_sysreg_write(addr, value, size);
2232
2233 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2234 /* Generate BusFault for unprivileged accesses */
2235 return MEMTX_ERROR;
2236 }
2237
2238 switch (offset) {
2239 case 0x100 ... 0x13f: /* NVIC Set enable */
2240 offset += 0x80;
2241 setval = 1;
2242 /* fall through */
2243 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2244 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2245
2246 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2247 if (value & (1 << i) &&
2248 (attrs.secure || s->itns[startvec + i])) {
2249 s->vectors[startvec + i].enabled = setval;
2250 }
2251 }
2252 nvic_irq_update(s);
2253 return MEMTX_OK;
2254 case 0x200 ... 0x23f: /* NVIC Set pend */
2255 /* the special logic in armv7m_nvic_set_pending()
2256 * is not needed since IRQs are never escalated
2257 */
2258 offset += 0x80;
2259 setval = 1;
2260 /* fall through */
2261 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2262 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2263
2264 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2265 if (value & (1 << i) &&
2266 (attrs.secure || s->itns[startvec + i])) {
2267 s->vectors[startvec + i].pending = setval;
2268 }
2269 }
2270 nvic_irq_update(s);
2271 return MEMTX_OK;
2272 case 0x300 ... 0x33f: /* NVIC Active */
2273 return MEMTX_OK; /* R/O */
2274 case 0x400 ... 0x5ef: /* NVIC Priority */
2275 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2276
2277 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2278 if (attrs.secure || s->itns[startvec + i]) {
2279 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2280 }
2281 }
2282 nvic_irq_update(s);
2283 return MEMTX_OK;
2284 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2285 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2286 return MEMTX_OK;
2287 }
2288 /* fall through */
2289 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2290 for (i = 0; i < size; i++) {
2291 unsigned hdlidx = (offset - 0xd14) + i;
2292 int newprio = extract32(value, i * 8, 8);
2293 int sbank = shpr_bank(s, hdlidx, attrs);
2294
2295 if (sbank < 0) {
2296 continue;
2297 }
2298 set_prio(s, hdlidx, sbank, newprio);
2299 }
2300 nvic_irq_update(s);
2301 return MEMTX_OK;
2302 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2303 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2304 return MEMTX_OK;
2305 }
2306 /* All bits are W1C, so construct 32 bit value with 0s in
2307 * the parts not written by the access size
2308 */
2309 value <<= ((offset - 0xd28) * 8);
2310
2311 if (!attrs.secure &&
2312 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2313 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2314 value &= ~R_V7M_CFSR_BFSR_MASK;
2315 }
2316
2317 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2318 if (attrs.secure) {
2319 /* The BFSR bits [15:8] are shared between security states
2320 * and we store them in the NS copy.
2321 */
2322 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2323 }
2324 return MEMTX_OK;
2325 }
2326 if (size == 4) {
2327 nvic_writel(s, offset, value, attrs);
2328 return MEMTX_OK;
2329 }
2330 qemu_log_mask(LOG_GUEST_ERROR,
2331 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2332 /* This is UNPREDICTABLE; treat as RAZ/WI */
2333 return MEMTX_OK;
2334 }
2335
2336 static const MemoryRegionOps nvic_sysreg_ops = {
2337 .read_with_attrs = nvic_sysreg_read,
2338 .write_with_attrs = nvic_sysreg_write,
2339 .endianness = DEVICE_NATIVE_ENDIAN,
2340 };
2341
2342 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2343 uint64_t value, unsigned size,
2344 MemTxAttrs attrs)
2345 {
2346 MemoryRegion *mr = opaque;
2347
2348 if (attrs.secure) {
2349 /* S accesses to the alias act like NS accesses to the real region */
2350 attrs.secure = 0;
2351 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2352 } else {
2353 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2354 if (attrs.user) {
2355 return MEMTX_ERROR;
2356 }
2357 return MEMTX_OK;
2358 }
2359 }
2360
2361 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2362 uint64_t *data, unsigned size,
2363 MemTxAttrs attrs)
2364 {
2365 MemoryRegion *mr = opaque;
2366
2367 if (attrs.secure) {
2368 /* S accesses to the alias act like NS accesses to the real region */
2369 attrs.secure = 0;
2370 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2371 } else {
2372 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2373 if (attrs.user) {
2374 return MEMTX_ERROR;
2375 }
2376 *data = 0;
2377 return MEMTX_OK;
2378 }
2379 }
2380
2381 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2382 .read_with_attrs = nvic_sysreg_ns_read,
2383 .write_with_attrs = nvic_sysreg_ns_write,
2384 .endianness = DEVICE_NATIVE_ENDIAN,
2385 };
2386
2387 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2388 uint64_t value, unsigned size,
2389 MemTxAttrs attrs)
2390 {
2391 NVICState *s = opaque;
2392 MemoryRegion *mr;
2393
2394 /* Direct the access to the correct systick */
2395 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2396 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2397 }
2398
2399 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2400 uint64_t *data, unsigned size,
2401 MemTxAttrs attrs)
2402 {
2403 NVICState *s = opaque;
2404 MemoryRegion *mr;
2405
2406 /* Direct the access to the correct systick */
2407 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2408 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2409 }
2410
2411 static const MemoryRegionOps nvic_systick_ops = {
2412 .read_with_attrs = nvic_systick_read,
2413 .write_with_attrs = nvic_systick_write,
2414 .endianness = DEVICE_NATIVE_ENDIAN,
2415 };
2416
2417 static int nvic_post_load(void *opaque, int version_id)
2418 {
2419 NVICState *s = opaque;
2420 unsigned i;
2421 int resetprio;
2422
2423 /* Check for out of range priority settings */
2424 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2425
2426 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2427 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2428 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2429 return 1;
2430 }
2431 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2432 if (s->vectors[i].prio & ~0xff) {
2433 return 1;
2434 }
2435 }
2436
2437 nvic_recompute_state(s);
2438
2439 return 0;
2440 }
2441
2442 static const VMStateDescription vmstate_VecInfo = {
2443 .name = "armv7m_nvic_info",
2444 .version_id = 1,
2445 .minimum_version_id = 1,
2446 .fields = (VMStateField[]) {
2447 VMSTATE_INT16(prio, VecInfo),
2448 VMSTATE_UINT8(enabled, VecInfo),
2449 VMSTATE_UINT8(pending, VecInfo),
2450 VMSTATE_UINT8(active, VecInfo),
2451 VMSTATE_UINT8(level, VecInfo),
2452 VMSTATE_END_OF_LIST()
2453 }
2454 };
2455
2456 static bool nvic_security_needed(void *opaque)
2457 {
2458 NVICState *s = opaque;
2459
2460 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2461 }
2462
2463 static int nvic_security_post_load(void *opaque, int version_id)
2464 {
2465 NVICState *s = opaque;
2466 int i;
2467
2468 /* Check for out of range priority settings */
2469 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2470 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2471 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2472 * if the CPU state has been migrated yet; a mismatch won't
2473 * cause the emulation to blow up, though.
2474 */
2475 return 1;
2476 }
2477 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2478 if (s->sec_vectors[i].prio & ~0xff) {
2479 return 1;
2480 }
2481 }
2482 return 0;
2483 }
2484
2485 static const VMStateDescription vmstate_nvic_security = {
2486 .name = "armv7m_nvic/m-security",
2487 .version_id = 1,
2488 .minimum_version_id = 1,
2489 .needed = nvic_security_needed,
2490 .post_load = &nvic_security_post_load,
2491 .fields = (VMStateField[]) {
2492 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2493 vmstate_VecInfo, VecInfo),
2494 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2495 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2496 VMSTATE_END_OF_LIST()
2497 }
2498 };
2499
2500 static const VMStateDescription vmstate_nvic = {
2501 .name = "armv7m_nvic",
2502 .version_id = 4,
2503 .minimum_version_id = 4,
2504 .post_load = &nvic_post_load,
2505 .fields = (VMStateField[]) {
2506 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2507 vmstate_VecInfo, VecInfo),
2508 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2509 VMSTATE_END_OF_LIST()
2510 },
2511 .subsections = (const VMStateDescription*[]) {
2512 &vmstate_nvic_security,
2513 NULL
2514 }
2515 };
2516
2517 static Property props_nvic[] = {
2518 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2519 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2520 DEFINE_PROP_END_OF_LIST()
2521 };
2522
2523 static void armv7m_nvic_reset(DeviceState *dev)
2524 {
2525 int resetprio;
2526 NVICState *s = NVIC(dev);
2527
2528 memset(s->vectors, 0, sizeof(s->vectors));
2529 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2530 s->prigroup[M_REG_NS] = 0;
2531 s->prigroup[M_REG_S] = 0;
2532
2533 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2534 /* MEM, BUS, and USAGE are enabled through
2535 * the System Handler Control register
2536 */
2537 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2538 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2539 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2540
2541 /* DebugMonitor is enabled via DEMCR.MON_EN */
2542 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2543
2544 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2545 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2546 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2547 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2548
2549 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2550 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2551 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2552 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2553 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2554
2555 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2556 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2557 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2558 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2559 } else {
2560 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2561 }
2562
2563 /* Strictly speaking the reset handler should be enabled.
2564 * However, we don't simulate soft resets through the NVIC,
2565 * and the reset vector should never be pended.
2566 * So we leave it disabled to catch logic errors.
2567 */
2568
2569 s->exception_prio = NVIC_NOEXC_PRIO;
2570 s->vectpending = 0;
2571 s->vectpending_is_s_banked = false;
2572 s->vectpending_prio = NVIC_NOEXC_PRIO;
2573
2574 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2575 memset(s->itns, 0, sizeof(s->itns));
2576 } else {
2577 /* This state is constant and not guest accessible in a non-security
2578 * NVIC; we set the bits to true to avoid having to do a feature
2579 * bit check in the NVIC enable/pend/etc register accessors.
2580 */
2581 int i;
2582
2583 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2584 s->itns[i] = true;
2585 }
2586 }
2587 }
2588
2589 static void nvic_systick_trigger(void *opaque, int n, int level)
2590 {
2591 NVICState *s = opaque;
2592
2593 if (level) {
2594 /* SysTick just asked us to pend its exception.
2595 * (This is different from an external interrupt line's
2596 * behaviour.)
2597 * n == 0 : NonSecure systick
2598 * n == 1 : Secure systick
2599 */
2600 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2601 }
2602 }
2603
2604 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2605 {
2606 NVICState *s = NVIC(dev);
2607 Error *err = NULL;
2608 int regionlen;
2609
2610 /* The armv7m container object will have set our CPU pointer */
2611 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2612 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2613 return;
2614 }
2615
2616 if (s->num_irq > NVIC_MAX_IRQ) {
2617 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2618 return;
2619 }
2620
2621 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2622
2623 /* include space for internal exception vectors */
2624 s->num_irq += NVIC_FIRST_IRQ;
2625
2626 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2627
2628 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2629 "realized", &err);
2630 if (err != NULL) {
2631 error_propagate(errp, err);
2632 return;
2633 }
2634 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2635 qdev_get_gpio_in_named(dev, "systick-trigger",
2636 M_REG_NS));
2637
2638 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2639 /* We couldn't init the secure systick device in instance_init
2640 * as we didn't know then if the CPU had the security extensions;
2641 * so we have to do it here.
2642 */
2643 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2644 &s->systick[M_REG_S],
2645 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
2646
2647 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2648 "realized", &err);
2649 if (err != NULL) {
2650 error_propagate(errp, err);
2651 return;
2652 }
2653 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2654 qdev_get_gpio_in_named(dev, "systick-trigger",
2655 M_REG_S));
2656 }
2657
2658 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2659 * and looks like this:
2660 * 0x004 - ICTR
2661 * 0x010 - 0xff - systick
2662 * 0x100..0x7ec - NVIC
2663 * 0x7f0..0xcff - Reserved
2664 * 0xd00..0xd3c - SCS registers
2665 * 0xd40..0xeff - Reserved or Not implemented
2666 * 0xf00 - STIR
2667 *
2668 * Some registers within this space are banked between security states.
2669 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2670 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2671 * to the main SCS range, and non-secure accesses (including when
2672 * the security extension is not implemented) are RAZ/WI.
2673 * Note that both the main SCS range and the alias range are defined
2674 * to be exempt from memory attribution (R_BLJT) and so the memory
2675 * transaction attribute always matches the current CPU security
2676 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2677 * wrappers we change attrs.secure to indicate the NS access; so
2678 * generally code determining which banked register to use should
2679 * use attrs.secure; code determining actual behaviour of the system
2680 * should use env->v7m.secure.
2681 */
2682 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2683 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2684 /* The system register region goes at the bottom of the priority
2685 * stack as it covers the whole page.
2686 */
2687 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2688 "nvic_sysregs", 0x1000);
2689 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2690
2691 memory_region_init_io(&s->systickmem, OBJECT(s),
2692 &nvic_systick_ops, s,
2693 "nvic_systick", 0xe0);
2694
2695 memory_region_add_subregion_overlap(&s->container, 0x10,
2696 &s->systickmem, 1);
2697
2698 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2699 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2700 &nvic_sysreg_ns_ops, &s->sysregmem,
2701 "nvic_sysregs_ns", 0x1000);
2702 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2703 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2704 &nvic_sysreg_ns_ops, &s->systickmem,
2705 "nvic_systick_ns", 0xe0);
2706 memory_region_add_subregion_overlap(&s->container, 0x20010,
2707 &s->systick_ns_mem, 1);
2708 }
2709
2710 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2711 }
2712
2713 static void armv7m_nvic_instance_init(Object *obj)
2714 {
2715 /* We have a different default value for the num-irq property
2716 * than our superclass. This function runs after qdev init
2717 * has set the defaults from the Property array and before
2718 * any user-specified property setting, so just modify the
2719 * value in the GICState struct.
2720 */
2721 DeviceState *dev = DEVICE(obj);
2722 NVICState *nvic = NVIC(obj);
2723 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2724
2725 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2726 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2727 /* We can't initialize the secure systick here, as we don't know
2728 * yet if we need it.
2729 */
2730
2731 sysbus_init_irq(sbd, &nvic->excpout);
2732 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2733 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2734 M_REG_NUM_BANKS);
2735 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2736 }
2737
2738 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2739 {
2740 DeviceClass *dc = DEVICE_CLASS(klass);
2741
2742 dc->vmsd = &vmstate_nvic;
2743 dc->props = props_nvic;
2744 dc->reset = armv7m_nvic_reset;
2745 dc->realize = armv7m_nvic_realize;
2746 }
2747
2748 static const TypeInfo armv7m_nvic_info = {
2749 .name = TYPE_NVIC,
2750 .parent = TYPE_SYS_BUS_DEVICE,
2751 .instance_init = armv7m_nvic_instance_init,
2752 .instance_size = sizeof(NVICState),
2753 .class_init = armv7m_nvic_class_init,
2754 .class_size = sizeof(SysBusDeviceClass),
2755 };
2756
2757 static void armv7m_nvic_register_types(void)
2758 {
2759 type_register_static(&armv7m_nvic_info);
2760 }
2761
2762 type_init(armv7m_nvic_register_types)