]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/armv7m_nvic.c
69670a2d972e999f29ef618e4f9a62548189d644
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "hw/irq.h"
20 #include "target/arm/cpu.h"
21 #include "exec/exec-all.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "trace.h"
25
26 /* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63
64 static int nvic_pending_prio(NVICState *s)
65 {
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
69 return s->vectpending_prio;
70 }
71
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86 static bool nvic_rettobase(NVICState *s)
87 {
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103 }
104
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109 static bool nvic_isrpending(NVICState *s)
110 {
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129 }
130
131 static bool exc_is_banked(int exc)
132 {
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142 }
143
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150 return ~0U << (s->prigroup[secure] + 1);
151 }
152
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184 }
185
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204 }
205
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216 int pend_subprio = 0;
217
218 /* R_CQRV: precedence is by:
219 * - lowest group priority; if both the same then
220 * - lowest subpriority; if both the same then
221 * - lowest exception number; if both the same (ie banked) then
222 * - secure exception takes precedence
223 * Compare pseudocode RawExecutionPriority.
224 * Annoyingly, now we have two prigroup values (for S and NS)
225 * we can't do the loop comparison on raw priority values.
226 */
227 for (i = 1; i < s->num_irq; i++) {
228 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
229 VecInfo *vec;
230 int prio, subprio;
231 bool targets_secure;
232
233 if (bank == M_REG_S) {
234 if (!exc_is_banked(i)) {
235 continue;
236 }
237 vec = &s->sec_vectors[i];
238 targets_secure = true;
239 } else {
240 vec = &s->vectors[i];
241 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
242 }
243
244 prio = exc_group_prio(s, vec->prio, targets_secure);
245 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
246 if (vec->enabled && vec->pending &&
247 ((prio < pend_prio) ||
248 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
249 pend_prio = prio;
250 pend_subprio = subprio;
251 pend_irq = i;
252 pending_is_s_banked = (bank == M_REG_S);
253 }
254 if (vec->active && prio < active_prio) {
255 active_prio = prio;
256 }
257 }
258 }
259
260 s->vectpending_is_s_banked = pending_is_s_banked;
261 s->vectpending = pend_irq;
262 s->vectpending_prio = pend_prio;
263 s->exception_prio = active_prio;
264
265 trace_nvic_recompute_state_secure(s->vectpending,
266 s->vectpending_is_s_banked,
267 s->vectpending_prio,
268 s->exception_prio);
269 }
270
271 /* Recompute vectpending and exception_prio */
272 static void nvic_recompute_state(NVICState *s)
273 {
274 int i;
275 int pend_prio = NVIC_NOEXC_PRIO;
276 int active_prio = NVIC_NOEXC_PRIO;
277 int pend_irq = 0;
278
279 /* In theory we could write one function that handled both
280 * the "security extension present" and "not present"; however
281 * the security related changes significantly complicate the
282 * recomputation just by themselves and mixing both cases together
283 * would be even worse, so we retain a separate non-secure-only
284 * version for CPUs which don't implement the security extension.
285 */
286 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
287 nvic_recompute_state_secure(s);
288 return;
289 }
290
291 for (i = 1; i < s->num_irq; i++) {
292 VecInfo *vec = &s->vectors[i];
293
294 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
295 pend_prio = vec->prio;
296 pend_irq = i;
297 }
298 if (vec->active && vec->prio < active_prio) {
299 active_prio = vec->prio;
300 }
301 }
302
303 if (active_prio > 0) {
304 active_prio &= nvic_gprio_mask(s, false);
305 }
306
307 if (pend_prio > 0) {
308 pend_prio &= nvic_gprio_mask(s, false);
309 }
310
311 s->vectpending = pend_irq;
312 s->vectpending_prio = pend_prio;
313 s->exception_prio = active_prio;
314
315 trace_nvic_recompute_state(s->vectpending,
316 s->vectpending_prio,
317 s->exception_prio);
318 }
319
320 /* Return the current execution priority of the CPU
321 * (equivalent to the pseudocode ExecutionPriority function).
322 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
323 */
324 static inline int nvic_exec_prio(NVICState *s)
325 {
326 CPUARMState *env = &s->cpu->env;
327 int running = NVIC_NOEXC_PRIO;
328
329 if (env->v7m.basepri[M_REG_NS] > 0) {
330 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
331 }
332
333 if (env->v7m.basepri[M_REG_S] > 0) {
334 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
335 if (running > basepri) {
336 running = basepri;
337 }
338 }
339
340 if (env->v7m.primask[M_REG_NS]) {
341 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
342 if (running > NVIC_NS_PRIO_LIMIT) {
343 running = NVIC_NS_PRIO_LIMIT;
344 }
345 } else {
346 running = 0;
347 }
348 }
349
350 if (env->v7m.primask[M_REG_S]) {
351 running = 0;
352 }
353
354 if (env->v7m.faultmask[M_REG_NS]) {
355 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
356 running = -1;
357 } else {
358 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
359 if (running > NVIC_NS_PRIO_LIMIT) {
360 running = NVIC_NS_PRIO_LIMIT;
361 }
362 } else {
363 running = 0;
364 }
365 }
366 }
367
368 if (env->v7m.faultmask[M_REG_S]) {
369 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
370 }
371
372 /* consider priority of active handler */
373 return MIN(running, s->exception_prio);
374 }
375
376 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
377 {
378 /* Return true if the requested execution priority is negative
379 * for the specified security state, ie that security state
380 * has an active NMI or HardFault or has set its FAULTMASK.
381 * Note that this is not the same as whether the execution
382 * priority is actually negative (for instance AIRCR.PRIS may
383 * mean we don't allow FAULTMASK_NS to actually make the execution
384 * priority negative). Compare pseudocode IsReqExcPriNeg().
385 */
386 NVICState *s = opaque;
387
388 if (s->cpu->env.v7m.faultmask[secure]) {
389 return true;
390 }
391
392 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
393 s->vectors[ARMV7M_EXCP_HARD].active) {
394 return true;
395 }
396
397 if (s->vectors[ARMV7M_EXCP_NMI].active &&
398 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
399 return true;
400 }
401
402 return false;
403 }
404
405 bool armv7m_nvic_can_take_pending_exception(void *opaque)
406 {
407 NVICState *s = opaque;
408
409 return nvic_exec_prio(s) > nvic_pending_prio(s);
410 }
411
412 int armv7m_nvic_raw_execution_priority(void *opaque)
413 {
414 NVICState *s = opaque;
415
416 return s->exception_prio;
417 }
418
419 /* caller must call nvic_irq_update() after this.
420 * secure indicates the bank to use for banked exceptions (we assert if
421 * we are passed secure=true for a non-banked exception).
422 */
423 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
424 {
425 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
426 assert(irq < s->num_irq);
427
428 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
429
430 if (secure) {
431 assert(exc_is_banked(irq));
432 s->sec_vectors[irq].prio = prio;
433 } else {
434 s->vectors[irq].prio = prio;
435 }
436
437 trace_nvic_set_prio(irq, secure, prio);
438 }
439
440 /* Return the current raw priority register value.
441 * secure indicates the bank to use for banked exceptions (we assert if
442 * we are passed secure=true for a non-banked exception).
443 */
444 static int get_prio(NVICState *s, unsigned irq, bool secure)
445 {
446 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
447 assert(irq < s->num_irq);
448
449 if (secure) {
450 assert(exc_is_banked(irq));
451 return s->sec_vectors[irq].prio;
452 } else {
453 return s->vectors[irq].prio;
454 }
455 }
456
457 /* Recompute state and assert irq line accordingly.
458 * Must be called after changes to:
459 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
460 * prigroup
461 */
462 static void nvic_irq_update(NVICState *s)
463 {
464 int lvl;
465 int pend_prio;
466
467 nvic_recompute_state(s);
468 pend_prio = nvic_pending_prio(s);
469
470 /* Raise NVIC output if this IRQ would be taken, except that we
471 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
472 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
473 * to those CPU registers don't cause us to recalculate the NVIC
474 * pending info.
475 */
476 lvl = (pend_prio < s->exception_prio);
477 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
478 qemu_set_irq(s->excpout, lvl);
479 }
480
481 /**
482 * armv7m_nvic_clear_pending: mark the specified exception as not pending
483 * @opaque: the NVIC
484 * @irq: the exception number to mark as not pending
485 * @secure: false for non-banked exceptions or for the nonsecure
486 * version of a banked exception, true for the secure version of a banked
487 * exception.
488 *
489 * Marks the specified exception as not pending. Note that we will assert()
490 * if @secure is true and @irq does not specify one of the fixed set
491 * of architecturally banked exceptions.
492 */
493 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
494 {
495 NVICState *s = (NVICState *)opaque;
496 VecInfo *vec;
497
498 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
499
500 if (secure) {
501 assert(exc_is_banked(irq));
502 vec = &s->sec_vectors[irq];
503 } else {
504 vec = &s->vectors[irq];
505 }
506 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
507 if (vec->pending) {
508 vec->pending = 0;
509 nvic_irq_update(s);
510 }
511 }
512
513 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
514 bool derived)
515 {
516 /* Pend an exception, including possibly escalating it to HardFault.
517 *
518 * This function handles both "normal" pending of interrupts and
519 * exceptions, and also derived exceptions (ones which occur as
520 * a result of trying to take some other exception).
521 *
522 * If derived == true, the caller guarantees that we are part way through
523 * trying to take an exception (but have not yet called
524 * armv7m_nvic_acknowledge_irq() to make it active), and so:
525 * - s->vectpending is the "original exception" we were trying to take
526 * - irq is the "derived exception"
527 * - nvic_exec_prio(s) gives the priority before exception entry
528 * Here we handle the prioritization logic which the pseudocode puts
529 * in the DerivedLateArrival() function.
530 */
531
532 NVICState *s = (NVICState *)opaque;
533 bool banked = exc_is_banked(irq);
534 VecInfo *vec;
535 bool targets_secure;
536
537 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
538 assert(!secure || banked);
539
540 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
541
542 targets_secure = banked ? secure : exc_targets_secure(s, irq);
543
544 trace_nvic_set_pending(irq, secure, targets_secure,
545 derived, vec->enabled, vec->prio);
546
547 if (derived) {
548 /* Derived exceptions are always synchronous. */
549 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
550
551 if (irq == ARMV7M_EXCP_DEBUG &&
552 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
553 /* DebugMonitorFault, but its priority is lower than the
554 * preempted exception priority: just ignore it.
555 */
556 return;
557 }
558
559 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
560 /* If this is a terminal exception (one which means we cannot
561 * take the original exception, like a failure to read its
562 * vector table entry), then we must take the derived exception.
563 * If the derived exception can't take priority over the
564 * original exception, then we go into Lockup.
565 *
566 * For QEMU, we rely on the fact that a derived exception is
567 * terminal if and only if it's reported to us as HardFault,
568 * which saves having to have an extra argument is_terminal
569 * that we'd only use in one place.
570 */
571 cpu_abort(&s->cpu->parent_obj,
572 "Lockup: can't take terminal derived exception "
573 "(original exception priority %d)\n",
574 s->vectpending_prio);
575 }
576 /* We now continue with the same code as for a normal pending
577 * exception, which will cause us to pend the derived exception.
578 * We'll then take either the original or the derived exception
579 * based on which is higher priority by the usual mechanism
580 * for selecting the highest priority pending interrupt.
581 */
582 }
583
584 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
585 /* If a synchronous exception is pending then it may be
586 * escalated to HardFault if:
587 * * it is equal or lower priority to current execution
588 * * it is disabled
589 * (ie we need to take it immediately but we can't do so).
590 * Asynchronous exceptions (and interrupts) simply remain pending.
591 *
592 * For QEMU, we don't have any imprecise (asynchronous) faults,
593 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
594 * synchronous.
595 * Debug exceptions are awkward because only Debug exceptions
596 * resulting from the BKPT instruction should be escalated,
597 * but we don't currently implement any Debug exceptions other
598 * than those that result from BKPT, so we treat all debug exceptions
599 * as needing escalation.
600 *
601 * This all means we can identify whether to escalate based only on
602 * the exception number and don't (yet) need the caller to explicitly
603 * tell us whether this exception is synchronous or not.
604 */
605 int running = nvic_exec_prio(s);
606 bool escalate = false;
607
608 if (exc_group_prio(s, vec->prio, secure) >= running) {
609 trace_nvic_escalate_prio(irq, vec->prio, running);
610 escalate = true;
611 } else if (!vec->enabled) {
612 trace_nvic_escalate_disabled(irq);
613 escalate = true;
614 }
615
616 if (escalate) {
617
618 /* We need to escalate this exception to a synchronous HardFault.
619 * If BFHFNMINS is set then we escalate to the banked HF for
620 * the target security state of the original exception; otherwise
621 * we take a Secure HardFault.
622 */
623 irq = ARMV7M_EXCP_HARD;
624 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
625 (targets_secure ||
626 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
627 vec = &s->sec_vectors[irq];
628 } else {
629 vec = &s->vectors[irq];
630 }
631 if (running <= vec->prio) {
632 /* We want to escalate to HardFault but we can't take the
633 * synchronous HardFault at this point either. This is a
634 * Lockup condition due to a guest bug. We don't model
635 * Lockup, so report via cpu_abort() instead.
636 */
637 cpu_abort(&s->cpu->parent_obj,
638 "Lockup: can't escalate %d to HardFault "
639 "(current priority %d)\n", irq, running);
640 }
641
642 /* HF may be banked but there is only one shared HFSR */
643 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
644 }
645 }
646
647 if (!vec->pending) {
648 vec->pending = 1;
649 nvic_irq_update(s);
650 }
651 }
652
653 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
654 {
655 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
656 }
657
658 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
659 {
660 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
661 }
662
663 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
664 {
665 /*
666 * Pend an exception during lazy FP stacking. This differs
667 * from the usual exception pending because the logic for
668 * whether we should escalate depends on the saved context
669 * in the FPCCR register, not on the current state of the CPU/NVIC.
670 */
671 NVICState *s = (NVICState *)opaque;
672 bool banked = exc_is_banked(irq);
673 VecInfo *vec;
674 bool targets_secure;
675 bool escalate = false;
676 /*
677 * We will only look at bits in fpccr if this is a banked exception
678 * (in which case 'secure' tells us whether it is the S or NS version).
679 * All the bits for the non-banked exceptions are in fpccr_s.
680 */
681 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
682 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
683
684 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
685 assert(!secure || banked);
686
687 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
688
689 targets_secure = banked ? secure : exc_targets_secure(s, irq);
690
691 switch (irq) {
692 case ARMV7M_EXCP_DEBUG:
693 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
694 /* Ignore DebugMonitor exception */
695 return;
696 }
697 break;
698 case ARMV7M_EXCP_MEM:
699 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
700 break;
701 case ARMV7M_EXCP_USAGE:
702 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
703 break;
704 case ARMV7M_EXCP_BUS:
705 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
706 break;
707 case ARMV7M_EXCP_SECURE:
708 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
709 break;
710 default:
711 g_assert_not_reached();
712 }
713
714 if (escalate) {
715 /*
716 * Escalate to HardFault: faults that initially targeted Secure
717 * continue to do so, even if HF normally targets NonSecure.
718 */
719 irq = ARMV7M_EXCP_HARD;
720 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
721 (targets_secure ||
722 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
723 vec = &s->sec_vectors[irq];
724 } else {
725 vec = &s->vectors[irq];
726 }
727 }
728
729 if (!vec->enabled ||
730 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
731 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
732 /*
733 * We want to escalate to HardFault but the context the
734 * FP state belongs to prevents the exception pre-empting.
735 */
736 cpu_abort(&s->cpu->parent_obj,
737 "Lockup: can't escalate to HardFault during "
738 "lazy FP register stacking\n");
739 }
740 }
741
742 if (escalate) {
743 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
744 }
745 if (!vec->pending) {
746 vec->pending = 1;
747 /*
748 * We do not call nvic_irq_update(), because we know our caller
749 * is going to handle causing us to take the exception by
750 * raising EXCP_LAZYFP, so raising the IRQ line would be
751 * pointless extra work. We just need to recompute the
752 * priorities so that armv7m_nvic_can_take_pending_exception()
753 * returns the right answer.
754 */
755 nvic_recompute_state(s);
756 }
757 }
758
759 /* Make pending IRQ active. */
760 void armv7m_nvic_acknowledge_irq(void *opaque)
761 {
762 NVICState *s = (NVICState *)opaque;
763 CPUARMState *env = &s->cpu->env;
764 const int pending = s->vectpending;
765 const int running = nvic_exec_prio(s);
766 VecInfo *vec;
767
768 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
769
770 if (s->vectpending_is_s_banked) {
771 vec = &s->sec_vectors[pending];
772 } else {
773 vec = &s->vectors[pending];
774 }
775
776 assert(vec->enabled);
777 assert(vec->pending);
778
779 assert(s->vectpending_prio < running);
780
781 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
782
783 vec->active = 1;
784 vec->pending = 0;
785
786 write_v7m_exception(env, s->vectpending);
787
788 nvic_irq_update(s);
789 }
790
791 void armv7m_nvic_get_pending_irq_info(void *opaque,
792 int *pirq, bool *ptargets_secure)
793 {
794 NVICState *s = (NVICState *)opaque;
795 const int pending = s->vectpending;
796 bool targets_secure;
797
798 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
799
800 if (s->vectpending_is_s_banked) {
801 targets_secure = true;
802 } else {
803 targets_secure = !exc_is_banked(pending) &&
804 exc_targets_secure(s, pending);
805 }
806
807 trace_nvic_get_pending_irq_info(pending, targets_secure);
808
809 *ptargets_secure = targets_secure;
810 *pirq = pending;
811 }
812
813 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
814 {
815 NVICState *s = (NVICState *)opaque;
816 VecInfo *vec = NULL;
817 int ret;
818
819 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
820
821 /*
822 * For negative priorities, v8M will forcibly deactivate the appropriate
823 * NMI or HardFault regardless of what interrupt we're being asked to
824 * deactivate (compare the DeActivate() pseudocode). This is a guard
825 * against software returning from NMI or HardFault with a corrupted
826 * IPSR and leaving the CPU in a negative-priority state.
827 * v7M does not do this, but simply deactivates the requested interrupt.
828 */
829 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
830 switch (armv7m_nvic_raw_execution_priority(s)) {
831 case -1:
832 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
833 vec = &s->vectors[ARMV7M_EXCP_HARD];
834 } else {
835 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
836 }
837 break;
838 case -2:
839 vec = &s->vectors[ARMV7M_EXCP_NMI];
840 break;
841 case -3:
842 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
843 break;
844 default:
845 break;
846 }
847 }
848
849 if (!vec) {
850 if (secure && exc_is_banked(irq)) {
851 vec = &s->sec_vectors[irq];
852 } else {
853 vec = &s->vectors[irq];
854 }
855 }
856
857 trace_nvic_complete_irq(irq, secure);
858
859 if (!vec->active) {
860 /* Tell the caller this was an illegal exception return */
861 return -1;
862 }
863
864 /*
865 * If this is a configurable exception and it is currently
866 * targeting the opposite security state from the one we're trying
867 * to complete it for, this counts as an illegal exception return.
868 * We still need to deactivate whatever vector the logic above has
869 * selected, though, as it might not be the same as the one for the
870 * requested exception number.
871 */
872 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
873 ret = -1;
874 } else {
875 ret = nvic_rettobase(s);
876 }
877
878 vec->active = 0;
879 if (vec->level) {
880 /* Re-pend the exception if it's still held high; only
881 * happens for extenal IRQs
882 */
883 assert(irq >= NVIC_FIRST_IRQ);
884 vec->pending = 1;
885 }
886
887 nvic_irq_update(s);
888
889 return ret;
890 }
891
892 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
893 {
894 /*
895 * Return whether an exception is "ready", i.e. it is enabled and is
896 * configured at a priority which would allow it to interrupt the
897 * current execution priority.
898 *
899 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
900 * for non-banked exceptions secure is always false; for banked exceptions
901 * it indicates which of the exceptions is required.
902 */
903 NVICState *s = (NVICState *)opaque;
904 bool banked = exc_is_banked(irq);
905 VecInfo *vec;
906 int running = nvic_exec_prio(s);
907
908 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
909 assert(!secure || banked);
910
911 /*
912 * HardFault is an odd special case: we always check against -1,
913 * even if we're secure and HardFault has priority -3; we never
914 * need to check for enabled state.
915 */
916 if (irq == ARMV7M_EXCP_HARD) {
917 return running > -1;
918 }
919
920 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
921
922 return vec->enabled &&
923 exc_group_prio(s, vec->prio, secure) < running;
924 }
925
926 /* callback when external interrupt line is changed */
927 static void set_irq_level(void *opaque, int n, int level)
928 {
929 NVICState *s = opaque;
930 VecInfo *vec;
931
932 n += NVIC_FIRST_IRQ;
933
934 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
935
936 trace_nvic_set_irq_level(n, level);
937
938 /* The pending status of an external interrupt is
939 * latched on rising edge and exception handler return.
940 *
941 * Pulsing the IRQ will always run the handler
942 * once, and the handler will re-run until the
943 * level is low when the handler completes.
944 */
945 vec = &s->vectors[n];
946 if (level != vec->level) {
947 vec->level = level;
948 if (level) {
949 armv7m_nvic_set_pending(s, n, false);
950 }
951 }
952 }
953
954 /* callback when external NMI line is changed */
955 static void nvic_nmi_trigger(void *opaque, int n, int level)
956 {
957 NVICState *s = opaque;
958
959 trace_nvic_set_nmi_level(level);
960
961 /*
962 * The architecture doesn't specify whether NMI should share
963 * the normal-interrupt behaviour of being resampled on
964 * exception handler return. We choose not to, so just
965 * set NMI pending here and don't track the current level.
966 */
967 if (level) {
968 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
969 }
970 }
971
972 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
973 {
974 ARMCPU *cpu = s->cpu;
975 uint32_t val;
976
977 switch (offset) {
978 case 4: /* Interrupt Control Type. */
979 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
980 goto bad_offset;
981 }
982 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
983 case 0xc: /* CPPWR */
984 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
985 goto bad_offset;
986 }
987 /* We make the IMPDEF choice that nothing can ever go into a
988 * non-retentive power state, which allows us to RAZ/WI this.
989 */
990 return 0;
991 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
992 {
993 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
994 int i;
995
996 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
997 goto bad_offset;
998 }
999 if (!attrs.secure) {
1000 return 0;
1001 }
1002 val = 0;
1003 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1004 if (s->itns[startvec + i]) {
1005 val |= (1 << i);
1006 }
1007 }
1008 return val;
1009 }
1010 case 0xd00: /* CPUID Base. */
1011 return cpu->midr;
1012 case 0xd04: /* Interrupt Control State (ICSR) */
1013 /* VECTACTIVE */
1014 val = cpu->env.v7m.exception;
1015 /* VECTPENDING */
1016 val |= (s->vectpending & 0xff) << 12;
1017 /* ISRPENDING - set if any external IRQ is pending */
1018 if (nvic_isrpending(s)) {
1019 val |= (1 << 22);
1020 }
1021 /* RETTOBASE - set if only one handler is active */
1022 if (nvic_rettobase(s)) {
1023 val |= (1 << 11);
1024 }
1025 if (attrs.secure) {
1026 /* PENDSTSET */
1027 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1028 val |= (1 << 26);
1029 }
1030 /* PENDSVSET */
1031 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1032 val |= (1 << 28);
1033 }
1034 } else {
1035 /* PENDSTSET */
1036 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1037 val |= (1 << 26);
1038 }
1039 /* PENDSVSET */
1040 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1041 val |= (1 << 28);
1042 }
1043 }
1044 /* NMIPENDSET */
1045 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1046 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1047 val |= (1 << 31);
1048 }
1049 /* ISRPREEMPT: RES0 when halting debug not implemented */
1050 /* STTNS: RES0 for the Main Extension */
1051 return val;
1052 case 0xd08: /* Vector Table Offset. */
1053 return cpu->env.v7m.vecbase[attrs.secure];
1054 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1055 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1056 if (attrs.secure) {
1057 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1058 val |= cpu->env.v7m.aircr;
1059 } else {
1060 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1061 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1062 * security isn't supported then BFHFNMINS is RAO (and
1063 * the bit in env.v7m.aircr is always set).
1064 */
1065 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1066 }
1067 }
1068 return val;
1069 case 0xd10: /* System Control. */
1070 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1071 goto bad_offset;
1072 }
1073 return cpu->env.v7m.scr[attrs.secure];
1074 case 0xd14: /* Configuration Control. */
1075 /* The BFHFNMIGN bit is the only non-banked bit; we
1076 * keep it in the non-secure copy of the register.
1077 */
1078 val = cpu->env.v7m.ccr[attrs.secure];
1079 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1080 return val;
1081 case 0xd24: /* System Handler Control and State (SHCSR) */
1082 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1083 goto bad_offset;
1084 }
1085 val = 0;
1086 if (attrs.secure) {
1087 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1088 val |= (1 << 0);
1089 }
1090 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1091 val |= (1 << 2);
1092 }
1093 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1094 val |= (1 << 3);
1095 }
1096 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1097 val |= (1 << 7);
1098 }
1099 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1100 val |= (1 << 10);
1101 }
1102 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1103 val |= (1 << 11);
1104 }
1105 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1106 val |= (1 << 12);
1107 }
1108 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1109 val |= (1 << 13);
1110 }
1111 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1112 val |= (1 << 15);
1113 }
1114 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1115 val |= (1 << 16);
1116 }
1117 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1118 val |= (1 << 18);
1119 }
1120 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1121 val |= (1 << 21);
1122 }
1123 /* SecureFault is not banked but is always RAZ/WI to NS */
1124 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1125 val |= (1 << 4);
1126 }
1127 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1128 val |= (1 << 19);
1129 }
1130 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1131 val |= (1 << 20);
1132 }
1133 } else {
1134 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1135 val |= (1 << 0);
1136 }
1137 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1138 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1139 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1140 val |= (1 << 2);
1141 }
1142 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1143 val |= (1 << 21);
1144 }
1145 }
1146 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1147 val |= (1 << 3);
1148 }
1149 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1150 val |= (1 << 7);
1151 }
1152 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1153 val |= (1 << 10);
1154 }
1155 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1156 val |= (1 << 11);
1157 }
1158 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1159 val |= (1 << 12);
1160 }
1161 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1162 val |= (1 << 13);
1163 }
1164 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1165 val |= (1 << 15);
1166 }
1167 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1168 val |= (1 << 16);
1169 }
1170 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1171 val |= (1 << 18);
1172 }
1173 }
1174 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1175 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1176 val |= (1 << 1);
1177 }
1178 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1179 val |= (1 << 14);
1180 }
1181 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1182 val |= (1 << 17);
1183 }
1184 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1185 s->vectors[ARMV7M_EXCP_NMI].active) {
1186 /* NMIACT is not present in v7M */
1187 val |= (1 << 5);
1188 }
1189 }
1190
1191 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1192 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1193 val |= (1 << 8);
1194 }
1195 return val;
1196 case 0xd2c: /* Hard Fault Status. */
1197 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1198 goto bad_offset;
1199 }
1200 return cpu->env.v7m.hfsr;
1201 case 0xd30: /* Debug Fault Status. */
1202 return cpu->env.v7m.dfsr;
1203 case 0xd34: /* MMFAR MemManage Fault Address */
1204 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1205 goto bad_offset;
1206 }
1207 return cpu->env.v7m.mmfar[attrs.secure];
1208 case 0xd38: /* Bus Fault Address. */
1209 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1210 goto bad_offset;
1211 }
1212 if (!attrs.secure &&
1213 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1214 return 0;
1215 }
1216 return cpu->env.v7m.bfar;
1217 case 0xd3c: /* Aux Fault Status. */
1218 /* TODO: Implement fault status registers. */
1219 qemu_log_mask(LOG_UNIMP,
1220 "Aux Fault status registers unimplemented\n");
1221 return 0;
1222 case 0xd40: /* PFR0. */
1223 return cpu->id_pfr0;
1224 case 0xd44: /* PFR1. */
1225 return cpu->id_pfr1;
1226 case 0xd48: /* DFR0. */
1227 return cpu->id_dfr0;
1228 case 0xd4c: /* AFR0. */
1229 return cpu->id_afr0;
1230 case 0xd50: /* MMFR0. */
1231 return cpu->id_mmfr0;
1232 case 0xd54: /* MMFR1. */
1233 return cpu->id_mmfr1;
1234 case 0xd58: /* MMFR2. */
1235 return cpu->id_mmfr2;
1236 case 0xd5c: /* MMFR3. */
1237 return cpu->id_mmfr3;
1238 case 0xd60: /* ISAR0. */
1239 return cpu->isar.id_isar0;
1240 case 0xd64: /* ISAR1. */
1241 return cpu->isar.id_isar1;
1242 case 0xd68: /* ISAR2. */
1243 return cpu->isar.id_isar2;
1244 case 0xd6c: /* ISAR3. */
1245 return cpu->isar.id_isar3;
1246 case 0xd70: /* ISAR4. */
1247 return cpu->isar.id_isar4;
1248 case 0xd74: /* ISAR5. */
1249 return cpu->isar.id_isar5;
1250 case 0xd78: /* CLIDR */
1251 return cpu->clidr;
1252 case 0xd7c: /* CTR */
1253 return cpu->ctr;
1254 case 0xd80: /* CSSIDR */
1255 {
1256 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1257 return cpu->ccsidr[idx];
1258 }
1259 case 0xd84: /* CSSELR */
1260 return cpu->env.v7m.csselr[attrs.secure];
1261 case 0xd88: /* CPACR */
1262 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1263 return 0;
1264 }
1265 return cpu->env.v7m.cpacr[attrs.secure];
1266 case 0xd8c: /* NSACR */
1267 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1268 return 0;
1269 }
1270 return cpu->env.v7m.nsacr;
1271 /* TODO: Implement debug registers. */
1272 case 0xd90: /* MPU_TYPE */
1273 /* Unified MPU; if the MPU is not present this value is zero */
1274 return cpu->pmsav7_dregion << 8;
1275 break;
1276 case 0xd94: /* MPU_CTRL */
1277 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1278 case 0xd98: /* MPU_RNR */
1279 return cpu->env.pmsav7.rnr[attrs.secure];
1280 case 0xd9c: /* MPU_RBAR */
1281 case 0xda4: /* MPU_RBAR_A1 */
1282 case 0xdac: /* MPU_RBAR_A2 */
1283 case 0xdb4: /* MPU_RBAR_A3 */
1284 {
1285 int region = cpu->env.pmsav7.rnr[attrs.secure];
1286
1287 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1288 /* PMSAv8M handling of the aliases is different from v7M:
1289 * aliases A1, A2, A3 override the low two bits of the region
1290 * number in MPU_RNR, and there is no 'region' field in the
1291 * RBAR register.
1292 */
1293 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1294 if (aliasno) {
1295 region = deposit32(region, 0, 2, aliasno);
1296 }
1297 if (region >= cpu->pmsav7_dregion) {
1298 return 0;
1299 }
1300 return cpu->env.pmsav8.rbar[attrs.secure][region];
1301 }
1302
1303 if (region >= cpu->pmsav7_dregion) {
1304 return 0;
1305 }
1306 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1307 }
1308 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1309 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1310 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1311 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1312 {
1313 int region = cpu->env.pmsav7.rnr[attrs.secure];
1314
1315 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1316 /* PMSAv8M handling of the aliases is different from v7M:
1317 * aliases A1, A2, A3 override the low two bits of the region
1318 * number in MPU_RNR.
1319 */
1320 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1321 if (aliasno) {
1322 region = deposit32(region, 0, 2, aliasno);
1323 }
1324 if (region >= cpu->pmsav7_dregion) {
1325 return 0;
1326 }
1327 return cpu->env.pmsav8.rlar[attrs.secure][region];
1328 }
1329
1330 if (region >= cpu->pmsav7_dregion) {
1331 return 0;
1332 }
1333 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1334 (cpu->env.pmsav7.drsr[region] & 0xffff);
1335 }
1336 case 0xdc0: /* MPU_MAIR0 */
1337 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1338 goto bad_offset;
1339 }
1340 return cpu->env.pmsav8.mair0[attrs.secure];
1341 case 0xdc4: /* MPU_MAIR1 */
1342 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1343 goto bad_offset;
1344 }
1345 return cpu->env.pmsav8.mair1[attrs.secure];
1346 case 0xdd0: /* SAU_CTRL */
1347 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1348 goto bad_offset;
1349 }
1350 if (!attrs.secure) {
1351 return 0;
1352 }
1353 return cpu->env.sau.ctrl;
1354 case 0xdd4: /* SAU_TYPE */
1355 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1356 goto bad_offset;
1357 }
1358 if (!attrs.secure) {
1359 return 0;
1360 }
1361 return cpu->sau_sregion;
1362 case 0xdd8: /* SAU_RNR */
1363 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1364 goto bad_offset;
1365 }
1366 if (!attrs.secure) {
1367 return 0;
1368 }
1369 return cpu->env.sau.rnr;
1370 case 0xddc: /* SAU_RBAR */
1371 {
1372 int region = cpu->env.sau.rnr;
1373
1374 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1375 goto bad_offset;
1376 }
1377 if (!attrs.secure) {
1378 return 0;
1379 }
1380 if (region >= cpu->sau_sregion) {
1381 return 0;
1382 }
1383 return cpu->env.sau.rbar[region];
1384 }
1385 case 0xde0: /* SAU_RLAR */
1386 {
1387 int region = cpu->env.sau.rnr;
1388
1389 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1390 goto bad_offset;
1391 }
1392 if (!attrs.secure) {
1393 return 0;
1394 }
1395 if (region >= cpu->sau_sregion) {
1396 return 0;
1397 }
1398 return cpu->env.sau.rlar[region];
1399 }
1400 case 0xde4: /* SFSR */
1401 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1402 goto bad_offset;
1403 }
1404 if (!attrs.secure) {
1405 return 0;
1406 }
1407 return cpu->env.v7m.sfsr;
1408 case 0xde8: /* SFAR */
1409 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1410 goto bad_offset;
1411 }
1412 if (!attrs.secure) {
1413 return 0;
1414 }
1415 return cpu->env.v7m.sfar;
1416 case 0xf34: /* FPCCR */
1417 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1418 return 0;
1419 }
1420 if (attrs.secure) {
1421 return cpu->env.v7m.fpccr[M_REG_S];
1422 } else {
1423 /*
1424 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1425 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1426 * other non-banked bits RAZ.
1427 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1428 */
1429 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1430 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1431 R_V7M_FPCCR_CLRONRET_MASK |
1432 R_V7M_FPCCR_MONRDY_MASK;
1433
1434 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1435 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1436 }
1437
1438 value &= mask;
1439
1440 value |= cpu->env.v7m.fpccr[M_REG_NS];
1441 return value;
1442 }
1443 case 0xf38: /* FPCAR */
1444 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1445 return 0;
1446 }
1447 return cpu->env.v7m.fpcar[attrs.secure];
1448 case 0xf3c: /* FPDSCR */
1449 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1450 return 0;
1451 }
1452 return cpu->env.v7m.fpdscr[attrs.secure];
1453 case 0xf40: /* MVFR0 */
1454 return cpu->isar.mvfr0;
1455 case 0xf44: /* MVFR1 */
1456 return cpu->isar.mvfr1;
1457 case 0xf48: /* MVFR2 */
1458 return cpu->isar.mvfr2;
1459 default:
1460 bad_offset:
1461 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1462 return 0;
1463 }
1464 }
1465
1466 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1467 MemTxAttrs attrs)
1468 {
1469 ARMCPU *cpu = s->cpu;
1470
1471 switch (offset) {
1472 case 0xc: /* CPPWR */
1473 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1474 goto bad_offset;
1475 }
1476 /* Make the IMPDEF choice to RAZ/WI this. */
1477 break;
1478 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1479 {
1480 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1481 int i;
1482
1483 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1484 goto bad_offset;
1485 }
1486 if (!attrs.secure) {
1487 break;
1488 }
1489 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1490 s->itns[startvec + i] = (value >> i) & 1;
1491 }
1492 nvic_irq_update(s);
1493 break;
1494 }
1495 case 0xd04: /* Interrupt Control State (ICSR) */
1496 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1497 if (value & (1 << 31)) {
1498 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1499 } else if (value & (1 << 30) &&
1500 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1501 /* PENDNMICLR didn't exist in v7M */
1502 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1503 }
1504 }
1505 if (value & (1 << 28)) {
1506 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1507 } else if (value & (1 << 27)) {
1508 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1509 }
1510 if (value & (1 << 26)) {
1511 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1512 } else if (value & (1 << 25)) {
1513 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1514 }
1515 break;
1516 case 0xd08: /* Vector Table Offset. */
1517 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1518 break;
1519 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1520 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1521 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1522 if (attrs.secure ||
1523 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1524 qemu_irq_pulse(s->sysresetreq);
1525 }
1526 }
1527 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1528 qemu_log_mask(LOG_GUEST_ERROR,
1529 "Setting VECTCLRACTIVE when not in DEBUG mode "
1530 "is UNPREDICTABLE\n");
1531 }
1532 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1533 /* NB: this bit is RES0 in v8M */
1534 qemu_log_mask(LOG_GUEST_ERROR,
1535 "Setting VECTRESET when not in DEBUG mode "
1536 "is UNPREDICTABLE\n");
1537 }
1538 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1539 s->prigroup[attrs.secure] =
1540 extract32(value,
1541 R_V7M_AIRCR_PRIGROUP_SHIFT,
1542 R_V7M_AIRCR_PRIGROUP_LENGTH);
1543 }
1544 if (attrs.secure) {
1545 /* These bits are only writable by secure */
1546 cpu->env.v7m.aircr = value &
1547 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1548 R_V7M_AIRCR_BFHFNMINS_MASK |
1549 R_V7M_AIRCR_PRIS_MASK);
1550 /* BFHFNMINS changes the priority of Secure HardFault, and
1551 * allows a pending Non-secure HardFault to preempt (which
1552 * we implement by marking it enabled).
1553 */
1554 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1555 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1556 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1557 } else {
1558 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1559 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1560 }
1561 }
1562 nvic_irq_update(s);
1563 }
1564 break;
1565 case 0xd10: /* System Control. */
1566 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1567 goto bad_offset;
1568 }
1569 /* We don't implement deep-sleep so these bits are RAZ/WI.
1570 * The other bits in the register are banked.
1571 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1572 * is architecturally permitted.
1573 */
1574 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1575 cpu->env.v7m.scr[attrs.secure] = value;
1576 break;
1577 case 0xd14: /* Configuration Control. */
1578 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1579 goto bad_offset;
1580 }
1581
1582 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1583 value &= (R_V7M_CCR_STKALIGN_MASK |
1584 R_V7M_CCR_BFHFNMIGN_MASK |
1585 R_V7M_CCR_DIV_0_TRP_MASK |
1586 R_V7M_CCR_UNALIGN_TRP_MASK |
1587 R_V7M_CCR_USERSETMPEND_MASK |
1588 R_V7M_CCR_NONBASETHRDENA_MASK);
1589
1590 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1591 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1592 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1593 | R_V7M_CCR_STKALIGN_MASK;
1594 }
1595 if (attrs.secure) {
1596 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1597 cpu->env.v7m.ccr[M_REG_NS] =
1598 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1599 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1600 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1601 }
1602
1603 cpu->env.v7m.ccr[attrs.secure] = value;
1604 break;
1605 case 0xd24: /* System Handler Control and State (SHCSR) */
1606 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1607 goto bad_offset;
1608 }
1609 if (attrs.secure) {
1610 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1611 /* Secure HardFault active bit cannot be written */
1612 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1613 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1614 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1615 (value & (1 << 10)) != 0;
1616 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1617 (value & (1 << 11)) != 0;
1618 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1619 (value & (1 << 12)) != 0;
1620 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1621 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1622 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1623 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1624 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1625 (value & (1 << 18)) != 0;
1626 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1627 /* SecureFault not banked, but RAZ/WI to NS */
1628 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1629 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1630 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1631 } else {
1632 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1633 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1634 /* HARDFAULTPENDED is not present in v7M */
1635 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1636 }
1637 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1638 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1639 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1640 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1641 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1642 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1643 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1644 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1645 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1646 }
1647 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1648 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1649 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1650 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1651 }
1652 /* NMIACT can only be written if the write is of a zero, with
1653 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1654 */
1655 if (!attrs.secure && cpu->env.v7m.secure &&
1656 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1657 (value & (1 << 5)) == 0) {
1658 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1659 }
1660 /* HARDFAULTACT can only be written if the write is of a zero
1661 * to the non-secure HardFault state by the CPU in secure state.
1662 * The only case where we can be targeting the non-secure HF state
1663 * when in secure state is if this is a write via the NS alias
1664 * and BFHFNMINS is 1.
1665 */
1666 if (!attrs.secure && cpu->env.v7m.secure &&
1667 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1668 (value & (1 << 2)) == 0) {
1669 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1670 }
1671
1672 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1673 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1674 nvic_irq_update(s);
1675 break;
1676 case 0xd2c: /* Hard Fault Status. */
1677 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1678 goto bad_offset;
1679 }
1680 cpu->env.v7m.hfsr &= ~value; /* W1C */
1681 break;
1682 case 0xd30: /* Debug Fault Status. */
1683 cpu->env.v7m.dfsr &= ~value; /* W1C */
1684 break;
1685 case 0xd34: /* Mem Manage Address. */
1686 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1687 goto bad_offset;
1688 }
1689 cpu->env.v7m.mmfar[attrs.secure] = value;
1690 return;
1691 case 0xd38: /* Bus Fault Address. */
1692 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1693 goto bad_offset;
1694 }
1695 if (!attrs.secure &&
1696 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1697 return;
1698 }
1699 cpu->env.v7m.bfar = value;
1700 return;
1701 case 0xd3c: /* Aux Fault Status. */
1702 qemu_log_mask(LOG_UNIMP,
1703 "NVIC: Aux fault status registers unimplemented\n");
1704 break;
1705 case 0xd84: /* CSSELR */
1706 if (!arm_v7m_csselr_razwi(cpu)) {
1707 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1708 }
1709 break;
1710 case 0xd88: /* CPACR */
1711 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1712 /* We implement only the Floating Point extension's CP10/CP11 */
1713 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1714 }
1715 break;
1716 case 0xd8c: /* NSACR */
1717 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1718 /* We implement only the Floating Point extension's CP10/CP11 */
1719 cpu->env.v7m.nsacr = value & (3 << 10);
1720 }
1721 break;
1722 case 0xd90: /* MPU_TYPE */
1723 return; /* RO */
1724 case 0xd94: /* MPU_CTRL */
1725 if ((value &
1726 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1727 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1728 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1729 "UNPREDICTABLE\n");
1730 }
1731 cpu->env.v7m.mpu_ctrl[attrs.secure]
1732 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1733 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1734 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1735 tlb_flush(CPU(cpu));
1736 break;
1737 case 0xd98: /* MPU_RNR */
1738 if (value >= cpu->pmsav7_dregion) {
1739 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1740 PRIu32 "/%" PRIu32 "\n",
1741 value, cpu->pmsav7_dregion);
1742 } else {
1743 cpu->env.pmsav7.rnr[attrs.secure] = value;
1744 }
1745 break;
1746 case 0xd9c: /* MPU_RBAR */
1747 case 0xda4: /* MPU_RBAR_A1 */
1748 case 0xdac: /* MPU_RBAR_A2 */
1749 case 0xdb4: /* MPU_RBAR_A3 */
1750 {
1751 int region;
1752
1753 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1754 /* PMSAv8M handling of the aliases is different from v7M:
1755 * aliases A1, A2, A3 override the low two bits of the region
1756 * number in MPU_RNR, and there is no 'region' field in the
1757 * RBAR register.
1758 */
1759 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1760
1761 region = cpu->env.pmsav7.rnr[attrs.secure];
1762 if (aliasno) {
1763 region = deposit32(region, 0, 2, aliasno);
1764 }
1765 if (region >= cpu->pmsav7_dregion) {
1766 return;
1767 }
1768 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1769 tlb_flush(CPU(cpu));
1770 return;
1771 }
1772
1773 if (value & (1 << 4)) {
1774 /* VALID bit means use the region number specified in this
1775 * value and also update MPU_RNR.REGION with that value.
1776 */
1777 region = extract32(value, 0, 4);
1778 if (region >= cpu->pmsav7_dregion) {
1779 qemu_log_mask(LOG_GUEST_ERROR,
1780 "MPU region out of range %u/%" PRIu32 "\n",
1781 region, cpu->pmsav7_dregion);
1782 return;
1783 }
1784 cpu->env.pmsav7.rnr[attrs.secure] = region;
1785 } else {
1786 region = cpu->env.pmsav7.rnr[attrs.secure];
1787 }
1788
1789 if (region >= cpu->pmsav7_dregion) {
1790 return;
1791 }
1792
1793 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1794 tlb_flush(CPU(cpu));
1795 break;
1796 }
1797 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1798 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1799 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1800 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1801 {
1802 int region = cpu->env.pmsav7.rnr[attrs.secure];
1803
1804 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1805 /* PMSAv8M handling of the aliases is different from v7M:
1806 * aliases A1, A2, A3 override the low two bits of the region
1807 * number in MPU_RNR.
1808 */
1809 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1810
1811 region = cpu->env.pmsav7.rnr[attrs.secure];
1812 if (aliasno) {
1813 region = deposit32(region, 0, 2, aliasno);
1814 }
1815 if (region >= cpu->pmsav7_dregion) {
1816 return;
1817 }
1818 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1819 tlb_flush(CPU(cpu));
1820 return;
1821 }
1822
1823 if (region >= cpu->pmsav7_dregion) {
1824 return;
1825 }
1826
1827 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1828 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1829 tlb_flush(CPU(cpu));
1830 break;
1831 }
1832 case 0xdc0: /* MPU_MAIR0 */
1833 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1834 goto bad_offset;
1835 }
1836 if (cpu->pmsav7_dregion) {
1837 /* Register is RES0 if no MPU regions are implemented */
1838 cpu->env.pmsav8.mair0[attrs.secure] = value;
1839 }
1840 /* We don't need to do anything else because memory attributes
1841 * only affect cacheability, and we don't implement caching.
1842 */
1843 break;
1844 case 0xdc4: /* MPU_MAIR1 */
1845 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1846 goto bad_offset;
1847 }
1848 if (cpu->pmsav7_dregion) {
1849 /* Register is RES0 if no MPU regions are implemented */
1850 cpu->env.pmsav8.mair1[attrs.secure] = value;
1851 }
1852 /* We don't need to do anything else because memory attributes
1853 * only affect cacheability, and we don't implement caching.
1854 */
1855 break;
1856 case 0xdd0: /* SAU_CTRL */
1857 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1858 goto bad_offset;
1859 }
1860 if (!attrs.secure) {
1861 return;
1862 }
1863 cpu->env.sau.ctrl = value & 3;
1864 break;
1865 case 0xdd4: /* SAU_TYPE */
1866 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1867 goto bad_offset;
1868 }
1869 break;
1870 case 0xdd8: /* SAU_RNR */
1871 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1872 goto bad_offset;
1873 }
1874 if (!attrs.secure) {
1875 return;
1876 }
1877 if (value >= cpu->sau_sregion) {
1878 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1879 PRIu32 "/%" PRIu32 "\n",
1880 value, cpu->sau_sregion);
1881 } else {
1882 cpu->env.sau.rnr = value;
1883 }
1884 break;
1885 case 0xddc: /* SAU_RBAR */
1886 {
1887 int region = cpu->env.sau.rnr;
1888
1889 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1890 goto bad_offset;
1891 }
1892 if (!attrs.secure) {
1893 return;
1894 }
1895 if (region >= cpu->sau_sregion) {
1896 return;
1897 }
1898 cpu->env.sau.rbar[region] = value & ~0x1f;
1899 tlb_flush(CPU(cpu));
1900 break;
1901 }
1902 case 0xde0: /* SAU_RLAR */
1903 {
1904 int region = cpu->env.sau.rnr;
1905
1906 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1907 goto bad_offset;
1908 }
1909 if (!attrs.secure) {
1910 return;
1911 }
1912 if (region >= cpu->sau_sregion) {
1913 return;
1914 }
1915 cpu->env.sau.rlar[region] = value & ~0x1c;
1916 tlb_flush(CPU(cpu));
1917 break;
1918 }
1919 case 0xde4: /* SFSR */
1920 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1921 goto bad_offset;
1922 }
1923 if (!attrs.secure) {
1924 return;
1925 }
1926 cpu->env.v7m.sfsr &= ~value; /* W1C */
1927 break;
1928 case 0xde8: /* SFAR */
1929 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1930 goto bad_offset;
1931 }
1932 if (!attrs.secure) {
1933 return;
1934 }
1935 cpu->env.v7m.sfsr = value;
1936 break;
1937 case 0xf00: /* Software Triggered Interrupt Register */
1938 {
1939 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1940
1941 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1942 goto bad_offset;
1943 }
1944
1945 if (excnum < s->num_irq) {
1946 armv7m_nvic_set_pending(s, excnum, false);
1947 }
1948 break;
1949 }
1950 case 0xf34: /* FPCCR */
1951 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1952 /* Not all bits here are banked. */
1953 uint32_t fpccr_s;
1954
1955 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1956 /* Don't allow setting of bits not present in v7M */
1957 value &= (R_V7M_FPCCR_LSPACT_MASK |
1958 R_V7M_FPCCR_USER_MASK |
1959 R_V7M_FPCCR_THREAD_MASK |
1960 R_V7M_FPCCR_HFRDY_MASK |
1961 R_V7M_FPCCR_MMRDY_MASK |
1962 R_V7M_FPCCR_BFRDY_MASK |
1963 R_V7M_FPCCR_MONRDY_MASK |
1964 R_V7M_FPCCR_LSPEN_MASK |
1965 R_V7M_FPCCR_ASPEN_MASK);
1966 }
1967 value &= ~R_V7M_FPCCR_RES0_MASK;
1968
1969 if (!attrs.secure) {
1970 /* Some non-banked bits are configurably writable by NS */
1971 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1972 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1973 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1974 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1975 }
1976 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1977 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1978 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1979 }
1980 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1981 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1982 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1983 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1984 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1985 }
1986 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1987 {
1988 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1989 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1990 }
1991
1992 /*
1993 * All other non-banked bits are RAZ/WI from NS; write
1994 * just the banked bits to fpccr[M_REG_NS].
1995 */
1996 value &= R_V7M_FPCCR_BANKED_MASK;
1997 cpu->env.v7m.fpccr[M_REG_NS] = value;
1998 } else {
1999 fpccr_s = value;
2000 }
2001 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2002 }
2003 break;
2004 case 0xf38: /* FPCAR */
2005 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2006 value &= ~7;
2007 cpu->env.v7m.fpcar[attrs.secure] = value;
2008 }
2009 break;
2010 case 0xf3c: /* FPDSCR */
2011 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2012 value &= 0x07c00000;
2013 cpu->env.v7m.fpdscr[attrs.secure] = value;
2014 }
2015 break;
2016 case 0xf50: /* ICIALLU */
2017 case 0xf58: /* ICIMVAU */
2018 case 0xf5c: /* DCIMVAC */
2019 case 0xf60: /* DCISW */
2020 case 0xf64: /* DCCMVAU */
2021 case 0xf68: /* DCCMVAC */
2022 case 0xf6c: /* DCCSW */
2023 case 0xf70: /* DCCIMVAC */
2024 case 0xf74: /* DCCISW */
2025 case 0xf78: /* BPIALL */
2026 /* Cache and branch predictor maintenance: for QEMU these always NOP */
2027 break;
2028 default:
2029 bad_offset:
2030 qemu_log_mask(LOG_GUEST_ERROR,
2031 "NVIC: Bad write offset 0x%x\n", offset);
2032 }
2033 }
2034
2035 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2036 {
2037 /* Return true if unprivileged access to this register is permitted. */
2038 switch (offset) {
2039 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2040 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2041 * controls access even though the CPU is in Secure state (I_QDKX).
2042 */
2043 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2044 default:
2045 /* All other user accesses cause a BusFault unconditionally */
2046 return false;
2047 }
2048 }
2049
2050 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2051 {
2052 /* Behaviour for the SHPR register field for this exception:
2053 * return M_REG_NS to use the nonsecure vector (including for
2054 * non-banked exceptions), M_REG_S for the secure version of
2055 * a banked exception, and -1 if this field should RAZ/WI.
2056 */
2057 switch (exc) {
2058 case ARMV7M_EXCP_MEM:
2059 case ARMV7M_EXCP_USAGE:
2060 case ARMV7M_EXCP_SVC:
2061 case ARMV7M_EXCP_PENDSV:
2062 case ARMV7M_EXCP_SYSTICK:
2063 /* Banked exceptions */
2064 return attrs.secure;
2065 case ARMV7M_EXCP_BUS:
2066 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2067 if (!attrs.secure &&
2068 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2069 return -1;
2070 }
2071 return M_REG_NS;
2072 case ARMV7M_EXCP_SECURE:
2073 /* Not banked, RAZ/WI from nonsecure */
2074 if (!attrs.secure) {
2075 return -1;
2076 }
2077 return M_REG_NS;
2078 case ARMV7M_EXCP_DEBUG:
2079 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2080 return M_REG_NS;
2081 case 8 ... 10:
2082 case 13:
2083 /* RES0 */
2084 return -1;
2085 default:
2086 /* Not reachable due to decode of SHPR register addresses */
2087 g_assert_not_reached();
2088 }
2089 }
2090
2091 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2092 uint64_t *data, unsigned size,
2093 MemTxAttrs attrs)
2094 {
2095 NVICState *s = (NVICState *)opaque;
2096 uint32_t offset = addr;
2097 unsigned i, startvec, end;
2098 uint32_t val;
2099
2100 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2101 /* Generate BusFault for unprivileged accesses */
2102 return MEMTX_ERROR;
2103 }
2104
2105 switch (offset) {
2106 /* reads of set and clear both return the status */
2107 case 0x100 ... 0x13f: /* NVIC Set enable */
2108 offset += 0x80;
2109 /* fall through */
2110 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2111 val = 0;
2112 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2113
2114 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2115 if (s->vectors[startvec + i].enabled &&
2116 (attrs.secure || s->itns[startvec + i])) {
2117 val |= (1 << i);
2118 }
2119 }
2120 break;
2121 case 0x200 ... 0x23f: /* NVIC Set pend */
2122 offset += 0x80;
2123 /* fall through */
2124 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2125 val = 0;
2126 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2127 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2128 if (s->vectors[startvec + i].pending &&
2129 (attrs.secure || s->itns[startvec + i])) {
2130 val |= (1 << i);
2131 }
2132 }
2133 break;
2134 case 0x300 ... 0x33f: /* NVIC Active */
2135 val = 0;
2136
2137 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2138 break;
2139 }
2140
2141 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2142
2143 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2144 if (s->vectors[startvec + i].active &&
2145 (attrs.secure || s->itns[startvec + i])) {
2146 val |= (1 << i);
2147 }
2148 }
2149 break;
2150 case 0x400 ... 0x5ef: /* NVIC Priority */
2151 val = 0;
2152 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2153
2154 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2155 if (attrs.secure || s->itns[startvec + i]) {
2156 val |= s->vectors[startvec + i].prio << (8 * i);
2157 }
2158 }
2159 break;
2160 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2161 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2162 val = 0;
2163 break;
2164 }
2165 /* fall through */
2166 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2167 val = 0;
2168 for (i = 0; i < size; i++) {
2169 unsigned hdlidx = (offset - 0xd14) + i;
2170 int sbank = shpr_bank(s, hdlidx, attrs);
2171
2172 if (sbank < 0) {
2173 continue;
2174 }
2175 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2176 }
2177 break;
2178 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2179 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2180 val = 0;
2181 break;
2182 };
2183 /*
2184 * The BFSR bits [15:8] are shared between security states
2185 * and we store them in the NS copy. They are RAZ/WI for
2186 * NS code if AIRCR.BFHFNMINS is 0.
2187 */
2188 val = s->cpu->env.v7m.cfsr[attrs.secure];
2189 if (!attrs.secure &&
2190 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2191 val &= ~R_V7M_CFSR_BFSR_MASK;
2192 } else {
2193 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2194 }
2195 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2196 break;
2197 case 0xfe0 ... 0xfff: /* ID. */
2198 if (offset & 3) {
2199 val = 0;
2200 } else {
2201 val = nvic_id[(offset - 0xfe0) >> 2];
2202 }
2203 break;
2204 default:
2205 if (size == 4) {
2206 val = nvic_readl(s, offset, attrs);
2207 } else {
2208 qemu_log_mask(LOG_GUEST_ERROR,
2209 "NVIC: Bad read of size %d at offset 0x%x\n",
2210 size, offset);
2211 val = 0;
2212 }
2213 }
2214
2215 trace_nvic_sysreg_read(addr, val, size);
2216 *data = val;
2217 return MEMTX_OK;
2218 }
2219
2220 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2221 uint64_t value, unsigned size,
2222 MemTxAttrs attrs)
2223 {
2224 NVICState *s = (NVICState *)opaque;
2225 uint32_t offset = addr;
2226 unsigned i, startvec, end;
2227 unsigned setval = 0;
2228
2229 trace_nvic_sysreg_write(addr, value, size);
2230
2231 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2232 /* Generate BusFault for unprivileged accesses */
2233 return MEMTX_ERROR;
2234 }
2235
2236 switch (offset) {
2237 case 0x100 ... 0x13f: /* NVIC Set enable */
2238 offset += 0x80;
2239 setval = 1;
2240 /* fall through */
2241 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2242 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2243
2244 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2245 if (value & (1 << i) &&
2246 (attrs.secure || s->itns[startvec + i])) {
2247 s->vectors[startvec + i].enabled = setval;
2248 }
2249 }
2250 nvic_irq_update(s);
2251 return MEMTX_OK;
2252 case 0x200 ... 0x23f: /* NVIC Set pend */
2253 /* the special logic in armv7m_nvic_set_pending()
2254 * is not needed since IRQs are never escalated
2255 */
2256 offset += 0x80;
2257 setval = 1;
2258 /* fall through */
2259 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2260 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2261
2262 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2263 if (value & (1 << i) &&
2264 (attrs.secure || s->itns[startvec + i])) {
2265 s->vectors[startvec + i].pending = setval;
2266 }
2267 }
2268 nvic_irq_update(s);
2269 return MEMTX_OK;
2270 case 0x300 ... 0x33f: /* NVIC Active */
2271 return MEMTX_OK; /* R/O */
2272 case 0x400 ... 0x5ef: /* NVIC Priority */
2273 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2274
2275 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2276 if (attrs.secure || s->itns[startvec + i]) {
2277 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2278 }
2279 }
2280 nvic_irq_update(s);
2281 return MEMTX_OK;
2282 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2283 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2284 return MEMTX_OK;
2285 }
2286 /* fall through */
2287 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2288 for (i = 0; i < size; i++) {
2289 unsigned hdlidx = (offset - 0xd14) + i;
2290 int newprio = extract32(value, i * 8, 8);
2291 int sbank = shpr_bank(s, hdlidx, attrs);
2292
2293 if (sbank < 0) {
2294 continue;
2295 }
2296 set_prio(s, hdlidx, sbank, newprio);
2297 }
2298 nvic_irq_update(s);
2299 return MEMTX_OK;
2300 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2301 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2302 return MEMTX_OK;
2303 }
2304 /* All bits are W1C, so construct 32 bit value with 0s in
2305 * the parts not written by the access size
2306 */
2307 value <<= ((offset - 0xd28) * 8);
2308
2309 if (!attrs.secure &&
2310 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2311 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2312 value &= ~R_V7M_CFSR_BFSR_MASK;
2313 }
2314
2315 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2316 if (attrs.secure) {
2317 /* The BFSR bits [15:8] are shared between security states
2318 * and we store them in the NS copy.
2319 */
2320 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2321 }
2322 return MEMTX_OK;
2323 }
2324 if (size == 4) {
2325 nvic_writel(s, offset, value, attrs);
2326 return MEMTX_OK;
2327 }
2328 qemu_log_mask(LOG_GUEST_ERROR,
2329 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2330 /* This is UNPREDICTABLE; treat as RAZ/WI */
2331 return MEMTX_OK;
2332 }
2333
2334 static const MemoryRegionOps nvic_sysreg_ops = {
2335 .read_with_attrs = nvic_sysreg_read,
2336 .write_with_attrs = nvic_sysreg_write,
2337 .endianness = DEVICE_NATIVE_ENDIAN,
2338 };
2339
2340 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2341 uint64_t value, unsigned size,
2342 MemTxAttrs attrs)
2343 {
2344 MemoryRegion *mr = opaque;
2345
2346 if (attrs.secure) {
2347 /* S accesses to the alias act like NS accesses to the real region */
2348 attrs.secure = 0;
2349 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2350 } else {
2351 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2352 if (attrs.user) {
2353 return MEMTX_ERROR;
2354 }
2355 return MEMTX_OK;
2356 }
2357 }
2358
2359 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2360 uint64_t *data, unsigned size,
2361 MemTxAttrs attrs)
2362 {
2363 MemoryRegion *mr = opaque;
2364
2365 if (attrs.secure) {
2366 /* S accesses to the alias act like NS accesses to the real region */
2367 attrs.secure = 0;
2368 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2369 } else {
2370 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2371 if (attrs.user) {
2372 return MEMTX_ERROR;
2373 }
2374 *data = 0;
2375 return MEMTX_OK;
2376 }
2377 }
2378
2379 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2380 .read_with_attrs = nvic_sysreg_ns_read,
2381 .write_with_attrs = nvic_sysreg_ns_write,
2382 .endianness = DEVICE_NATIVE_ENDIAN,
2383 };
2384
2385 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2386 uint64_t value, unsigned size,
2387 MemTxAttrs attrs)
2388 {
2389 NVICState *s = opaque;
2390 MemoryRegion *mr;
2391
2392 /* Direct the access to the correct systick */
2393 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2394 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2395 }
2396
2397 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2398 uint64_t *data, unsigned size,
2399 MemTxAttrs attrs)
2400 {
2401 NVICState *s = opaque;
2402 MemoryRegion *mr;
2403
2404 /* Direct the access to the correct systick */
2405 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2406 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2407 }
2408
2409 static const MemoryRegionOps nvic_systick_ops = {
2410 .read_with_attrs = nvic_systick_read,
2411 .write_with_attrs = nvic_systick_write,
2412 .endianness = DEVICE_NATIVE_ENDIAN,
2413 };
2414
2415 static int nvic_post_load(void *opaque, int version_id)
2416 {
2417 NVICState *s = opaque;
2418 unsigned i;
2419 int resetprio;
2420
2421 /* Check for out of range priority settings */
2422 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2423
2424 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2425 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2426 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2427 return 1;
2428 }
2429 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2430 if (s->vectors[i].prio & ~0xff) {
2431 return 1;
2432 }
2433 }
2434
2435 nvic_recompute_state(s);
2436
2437 return 0;
2438 }
2439
2440 static const VMStateDescription vmstate_VecInfo = {
2441 .name = "armv7m_nvic_info",
2442 .version_id = 1,
2443 .minimum_version_id = 1,
2444 .fields = (VMStateField[]) {
2445 VMSTATE_INT16(prio, VecInfo),
2446 VMSTATE_UINT8(enabled, VecInfo),
2447 VMSTATE_UINT8(pending, VecInfo),
2448 VMSTATE_UINT8(active, VecInfo),
2449 VMSTATE_UINT8(level, VecInfo),
2450 VMSTATE_END_OF_LIST()
2451 }
2452 };
2453
2454 static bool nvic_security_needed(void *opaque)
2455 {
2456 NVICState *s = opaque;
2457
2458 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2459 }
2460
2461 static int nvic_security_post_load(void *opaque, int version_id)
2462 {
2463 NVICState *s = opaque;
2464 int i;
2465
2466 /* Check for out of range priority settings */
2467 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2468 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2469 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2470 * if the CPU state has been migrated yet; a mismatch won't
2471 * cause the emulation to blow up, though.
2472 */
2473 return 1;
2474 }
2475 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2476 if (s->sec_vectors[i].prio & ~0xff) {
2477 return 1;
2478 }
2479 }
2480 return 0;
2481 }
2482
2483 static const VMStateDescription vmstate_nvic_security = {
2484 .name = "armv7m_nvic/m-security",
2485 .version_id = 1,
2486 .minimum_version_id = 1,
2487 .needed = nvic_security_needed,
2488 .post_load = &nvic_security_post_load,
2489 .fields = (VMStateField[]) {
2490 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2491 vmstate_VecInfo, VecInfo),
2492 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2493 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2494 VMSTATE_END_OF_LIST()
2495 }
2496 };
2497
2498 static const VMStateDescription vmstate_nvic = {
2499 .name = "armv7m_nvic",
2500 .version_id = 4,
2501 .minimum_version_id = 4,
2502 .post_load = &nvic_post_load,
2503 .fields = (VMStateField[]) {
2504 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2505 vmstate_VecInfo, VecInfo),
2506 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2507 VMSTATE_END_OF_LIST()
2508 },
2509 .subsections = (const VMStateDescription*[]) {
2510 &vmstate_nvic_security,
2511 NULL
2512 }
2513 };
2514
2515 static Property props_nvic[] = {
2516 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2517 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2518 DEFINE_PROP_END_OF_LIST()
2519 };
2520
2521 static void armv7m_nvic_reset(DeviceState *dev)
2522 {
2523 int resetprio;
2524 NVICState *s = NVIC(dev);
2525
2526 memset(s->vectors, 0, sizeof(s->vectors));
2527 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2528 s->prigroup[M_REG_NS] = 0;
2529 s->prigroup[M_REG_S] = 0;
2530
2531 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2532 /* MEM, BUS, and USAGE are enabled through
2533 * the System Handler Control register
2534 */
2535 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2536 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2537 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2538
2539 /* DebugMonitor is enabled via DEMCR.MON_EN */
2540 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2541
2542 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2543 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2544 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2545 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2546
2547 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2548 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2549 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2550 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2551 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2552
2553 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2554 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2555 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2556 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2557 } else {
2558 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2559 }
2560
2561 /* Strictly speaking the reset handler should be enabled.
2562 * However, we don't simulate soft resets through the NVIC,
2563 * and the reset vector should never be pended.
2564 * So we leave it disabled to catch logic errors.
2565 */
2566
2567 s->exception_prio = NVIC_NOEXC_PRIO;
2568 s->vectpending = 0;
2569 s->vectpending_is_s_banked = false;
2570 s->vectpending_prio = NVIC_NOEXC_PRIO;
2571
2572 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2573 memset(s->itns, 0, sizeof(s->itns));
2574 } else {
2575 /* This state is constant and not guest accessible in a non-security
2576 * NVIC; we set the bits to true to avoid having to do a feature
2577 * bit check in the NVIC enable/pend/etc register accessors.
2578 */
2579 int i;
2580
2581 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2582 s->itns[i] = true;
2583 }
2584 }
2585 }
2586
2587 static void nvic_systick_trigger(void *opaque, int n, int level)
2588 {
2589 NVICState *s = opaque;
2590
2591 if (level) {
2592 /* SysTick just asked us to pend its exception.
2593 * (This is different from an external interrupt line's
2594 * behaviour.)
2595 * n == 0 : NonSecure systick
2596 * n == 1 : Secure systick
2597 */
2598 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2599 }
2600 }
2601
2602 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2603 {
2604 NVICState *s = NVIC(dev);
2605 Error *err = NULL;
2606 int regionlen;
2607
2608 /* The armv7m container object will have set our CPU pointer */
2609 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2610 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2611 return;
2612 }
2613
2614 if (s->num_irq > NVIC_MAX_IRQ) {
2615 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2616 return;
2617 }
2618
2619 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2620
2621 /* include space for internal exception vectors */
2622 s->num_irq += NVIC_FIRST_IRQ;
2623
2624 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2625
2626 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2627 "realized", &err);
2628 if (err != NULL) {
2629 error_propagate(errp, err);
2630 return;
2631 }
2632 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2633 qdev_get_gpio_in_named(dev, "systick-trigger",
2634 M_REG_NS));
2635
2636 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2637 /* We couldn't init the secure systick device in instance_init
2638 * as we didn't know then if the CPU had the security extensions;
2639 * so we have to do it here.
2640 */
2641 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2642 &s->systick[M_REG_S],
2643 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
2644
2645 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2646 "realized", &err);
2647 if (err != NULL) {
2648 error_propagate(errp, err);
2649 return;
2650 }
2651 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2652 qdev_get_gpio_in_named(dev, "systick-trigger",
2653 M_REG_S));
2654 }
2655
2656 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2657 * and looks like this:
2658 * 0x004 - ICTR
2659 * 0x010 - 0xff - systick
2660 * 0x100..0x7ec - NVIC
2661 * 0x7f0..0xcff - Reserved
2662 * 0xd00..0xd3c - SCS registers
2663 * 0xd40..0xeff - Reserved or Not implemented
2664 * 0xf00 - STIR
2665 *
2666 * Some registers within this space are banked between security states.
2667 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2668 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2669 * to the main SCS range, and non-secure accesses (including when
2670 * the security extension is not implemented) are RAZ/WI.
2671 * Note that both the main SCS range and the alias range are defined
2672 * to be exempt from memory attribution (R_BLJT) and so the memory
2673 * transaction attribute always matches the current CPU security
2674 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2675 * wrappers we change attrs.secure to indicate the NS access; so
2676 * generally code determining which banked register to use should
2677 * use attrs.secure; code determining actual behaviour of the system
2678 * should use env->v7m.secure.
2679 */
2680 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2681 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2682 /* The system register region goes at the bottom of the priority
2683 * stack as it covers the whole page.
2684 */
2685 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2686 "nvic_sysregs", 0x1000);
2687 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2688
2689 memory_region_init_io(&s->systickmem, OBJECT(s),
2690 &nvic_systick_ops, s,
2691 "nvic_systick", 0xe0);
2692
2693 memory_region_add_subregion_overlap(&s->container, 0x10,
2694 &s->systickmem, 1);
2695
2696 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2697 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2698 &nvic_sysreg_ns_ops, &s->sysregmem,
2699 "nvic_sysregs_ns", 0x1000);
2700 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2701 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2702 &nvic_sysreg_ns_ops, &s->systickmem,
2703 "nvic_systick_ns", 0xe0);
2704 memory_region_add_subregion_overlap(&s->container, 0x20010,
2705 &s->systick_ns_mem, 1);
2706 }
2707
2708 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2709 }
2710
2711 static void armv7m_nvic_instance_init(Object *obj)
2712 {
2713 /* We have a different default value for the num-irq property
2714 * than our superclass. This function runs after qdev init
2715 * has set the defaults from the Property array and before
2716 * any user-specified property setting, so just modify the
2717 * value in the GICState struct.
2718 */
2719 DeviceState *dev = DEVICE(obj);
2720 NVICState *nvic = NVIC(obj);
2721 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2722
2723 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2724 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2725 /* We can't initialize the secure systick here, as we don't know
2726 * yet if we need it.
2727 */
2728
2729 sysbus_init_irq(sbd, &nvic->excpout);
2730 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2731 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2732 M_REG_NUM_BANKS);
2733 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2734 }
2735
2736 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2737 {
2738 DeviceClass *dc = DEVICE_CLASS(klass);
2739
2740 dc->vmsd = &vmstate_nvic;
2741 dc->props = props_nvic;
2742 dc->reset = armv7m_nvic_reset;
2743 dc->realize = armv7m_nvic_realize;
2744 }
2745
2746 static const TypeInfo armv7m_nvic_info = {
2747 .name = TYPE_NVIC,
2748 .parent = TYPE_SYS_BUS_DEVICE,
2749 .instance_init = armv7m_nvic_instance_init,
2750 .instance_size = sizeof(NVICState),
2751 .class_init = armv7m_nvic_class_init,
2752 .class_size = sizeof(SysBusDeviceClass),
2753 };
2754
2755 static void armv7m_nvic_register_types(void)
2756 {
2757 type_register_static(&armv7m_nvic_info);
2758 }
2759
2760 type_init(armv7m_nvic_register_types)