]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/armv7m_nvic.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "target/arm/cpu.h"
20 #include "exec/exec-all.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "trace.h"
24
25 /* IRQ number counting:
26 *
27 * the num-irq property counts the number of external IRQ lines
28 *
29 * NVICState::num_irq counts the total number of exceptions
30 * (external IRQs, the 15 internal exceptions including reset,
31 * and one for the unused exception number 0).
32 *
33 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
34 *
35 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
36 *
37 * Iterating through all exceptions should typically be done with
38 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
39 *
40 * The external qemu_irq lines are the NVIC's external IRQ lines,
41 * so line 0 is exception 16.
42 *
43 * In the terminology of the architecture manual, "interrupts" are
44 * a subcategory of exception referring to the external interrupts
45 * (which are exception numbers NVIC_FIRST_IRQ and upward).
46 * For historical reasons QEMU tends to use "interrupt" and
47 * "exception" more or less interchangeably.
48 */
49 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
50 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
51
52 /* Effective running priority of the CPU when no exception is active
53 * (higher than the highest possible priority value)
54 */
55 #define NVIC_NOEXC_PRIO 0x100
56 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
57 #define NVIC_NS_PRIO_LIMIT 0x80
58
59 static const uint8_t nvic_id[] = {
60 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
61 };
62
63 static int nvic_pending_prio(NVICState *s)
64 {
65 /* return the group priority of the current pending interrupt,
66 * or NVIC_NOEXC_PRIO if no interrupt is pending
67 */
68 return s->vectpending_prio;
69 }
70
71 /* Return the value of the ISCR RETTOBASE bit:
72 * 1 if there is exactly one active exception
73 * 0 if there is more than one active exception
74 * UNKNOWN if there are no active exceptions (we choose 1,
75 * which matches the choice Cortex-M3 is documented as making).
76 *
77 * NB: some versions of the documentation talk about this
78 * counting "active exceptions other than the one shown by IPSR";
79 * this is only different in the obscure corner case where guest
80 * code has manually deactivated an exception and is about
81 * to fail an exception-return integrity check. The definition
82 * above is the one from the v8M ARM ARM and is also in line
83 * with the behaviour documented for the Cortex-M3.
84 */
85 static bool nvic_rettobase(NVICState *s)
86 {
87 int irq, nhand = 0;
88 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
89
90 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
91 if (s->vectors[irq].active ||
92 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
93 s->sec_vectors[irq].active)) {
94 nhand++;
95 if (nhand == 2) {
96 return 0;
97 }
98 }
99 }
100
101 return 1;
102 }
103
104 /* Return the value of the ISCR ISRPENDING bit:
105 * 1 if an external interrupt is pending
106 * 0 if no external interrupt is pending
107 */
108 static bool nvic_isrpending(NVICState *s)
109 {
110 int irq;
111
112 /* We can shortcut if the highest priority pending interrupt
113 * happens to be external or if there is nothing pending.
114 */
115 if (s->vectpending > NVIC_FIRST_IRQ) {
116 return true;
117 }
118 if (s->vectpending == 0) {
119 return false;
120 }
121
122 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
123 if (s->vectors[irq].pending) {
124 return true;
125 }
126 }
127 return false;
128 }
129
130 static bool exc_is_banked(int exc)
131 {
132 /* Return true if this is one of the limited set of exceptions which
133 * are banked (and thus have state in sec_vectors[])
134 */
135 return exc == ARMV7M_EXCP_HARD ||
136 exc == ARMV7M_EXCP_MEM ||
137 exc == ARMV7M_EXCP_USAGE ||
138 exc == ARMV7M_EXCP_SVC ||
139 exc == ARMV7M_EXCP_PENDSV ||
140 exc == ARMV7M_EXCP_SYSTICK;
141 }
142
143 /* Return a mask word which clears the subpriority bits from
144 * a priority value for an M-profile exception, leaving only
145 * the group priority.
146 */
147 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
148 {
149 return ~0U << (s->prigroup[secure] + 1);
150 }
151
152 static bool exc_targets_secure(NVICState *s, int exc)
153 {
154 /* Return true if this non-banked exception targets Secure state. */
155 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
156 return false;
157 }
158
159 if (exc >= NVIC_FIRST_IRQ) {
160 return !s->itns[exc];
161 }
162
163 /* Function shouldn't be called for banked exceptions. */
164 assert(!exc_is_banked(exc));
165
166 switch (exc) {
167 case ARMV7M_EXCP_NMI:
168 case ARMV7M_EXCP_BUS:
169 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
170 case ARMV7M_EXCP_SECURE:
171 return true;
172 case ARMV7M_EXCP_DEBUG:
173 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
174 return false;
175 default:
176 /* reset, and reserved (unused) low exception numbers.
177 * We'll get called by code that loops through all the exception
178 * numbers, but it doesn't matter what we return here as these
179 * non-existent exceptions will never be pended or active.
180 */
181 return true;
182 }
183 }
184
185 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
186 {
187 /* Return the group priority for this exception, given its raw
188 * (group-and-subgroup) priority value and whether it is targeting
189 * secure state or not.
190 */
191 if (rawprio < 0) {
192 return rawprio;
193 }
194 rawprio &= nvic_gprio_mask(s, targets_secure);
195 /* AIRCR.PRIS causes us to squash all NS priorities into the
196 * lower half of the total range
197 */
198 if (!targets_secure &&
199 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
200 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
201 }
202 return rawprio;
203 }
204
205 /* Recompute vectpending and exception_prio for a CPU which implements
206 * the Security extension
207 */
208 static void nvic_recompute_state_secure(NVICState *s)
209 {
210 int i, bank;
211 int pend_prio = NVIC_NOEXC_PRIO;
212 int active_prio = NVIC_NOEXC_PRIO;
213 int pend_irq = 0;
214 bool pending_is_s_banked = false;
215 int pend_subprio = 0;
216
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
225 */
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio, subprio;
230 bool targets_secure;
231
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
235 }
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241 }
242
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
245 if (vec->enabled && vec->pending &&
246 ((prio < pend_prio) ||
247 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
248 pend_prio = prio;
249 pend_subprio = subprio;
250 pend_irq = i;
251 pending_is_s_banked = (bank == M_REG_S);
252 }
253 if (vec->active && prio < active_prio) {
254 active_prio = prio;
255 }
256 }
257 }
258
259 s->vectpending_is_s_banked = pending_is_s_banked;
260 s->vectpending = pend_irq;
261 s->vectpending_prio = pend_prio;
262 s->exception_prio = active_prio;
263
264 trace_nvic_recompute_state_secure(s->vectpending,
265 s->vectpending_is_s_banked,
266 s->vectpending_prio,
267 s->exception_prio);
268 }
269
270 /* Recompute vectpending and exception_prio */
271 static void nvic_recompute_state(NVICState *s)
272 {
273 int i;
274 int pend_prio = NVIC_NOEXC_PRIO;
275 int active_prio = NVIC_NOEXC_PRIO;
276 int pend_irq = 0;
277
278 /* In theory we could write one function that handled both
279 * the "security extension present" and "not present"; however
280 * the security related changes significantly complicate the
281 * recomputation just by themselves and mixing both cases together
282 * would be even worse, so we retain a separate non-secure-only
283 * version for CPUs which don't implement the security extension.
284 */
285 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
286 nvic_recompute_state_secure(s);
287 return;
288 }
289
290 for (i = 1; i < s->num_irq; i++) {
291 VecInfo *vec = &s->vectors[i];
292
293 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
294 pend_prio = vec->prio;
295 pend_irq = i;
296 }
297 if (vec->active && vec->prio < active_prio) {
298 active_prio = vec->prio;
299 }
300 }
301
302 if (active_prio > 0) {
303 active_prio &= nvic_gprio_mask(s, false);
304 }
305
306 if (pend_prio > 0) {
307 pend_prio &= nvic_gprio_mask(s, false);
308 }
309
310 s->vectpending = pend_irq;
311 s->vectpending_prio = pend_prio;
312 s->exception_prio = active_prio;
313
314 trace_nvic_recompute_state(s->vectpending,
315 s->vectpending_prio,
316 s->exception_prio);
317 }
318
319 /* Return the current execution priority of the CPU
320 * (equivalent to the pseudocode ExecutionPriority function).
321 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
322 */
323 static inline int nvic_exec_prio(NVICState *s)
324 {
325 CPUARMState *env = &s->cpu->env;
326 int running = NVIC_NOEXC_PRIO;
327
328 if (env->v7m.basepri[M_REG_NS] > 0) {
329 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
330 }
331
332 if (env->v7m.basepri[M_REG_S] > 0) {
333 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
334 if (running > basepri) {
335 running = basepri;
336 }
337 }
338
339 if (env->v7m.primask[M_REG_NS]) {
340 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
341 if (running > NVIC_NS_PRIO_LIMIT) {
342 running = NVIC_NS_PRIO_LIMIT;
343 }
344 } else {
345 running = 0;
346 }
347 }
348
349 if (env->v7m.primask[M_REG_S]) {
350 running = 0;
351 }
352
353 if (env->v7m.faultmask[M_REG_NS]) {
354 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
355 running = -1;
356 } else {
357 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
358 if (running > NVIC_NS_PRIO_LIMIT) {
359 running = NVIC_NS_PRIO_LIMIT;
360 }
361 } else {
362 running = 0;
363 }
364 }
365 }
366
367 if (env->v7m.faultmask[M_REG_S]) {
368 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
369 }
370
371 /* consider priority of active handler */
372 return MIN(running, s->exception_prio);
373 }
374
375 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
376 {
377 /* Return true if the requested execution priority is negative
378 * for the specified security state, ie that security state
379 * has an active NMI or HardFault or has set its FAULTMASK.
380 * Note that this is not the same as whether the execution
381 * priority is actually negative (for instance AIRCR.PRIS may
382 * mean we don't allow FAULTMASK_NS to actually make the execution
383 * priority negative). Compare pseudocode IsReqExcPriNeg().
384 */
385 NVICState *s = opaque;
386
387 if (s->cpu->env.v7m.faultmask[secure]) {
388 return true;
389 }
390
391 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
392 s->vectors[ARMV7M_EXCP_HARD].active) {
393 return true;
394 }
395
396 if (s->vectors[ARMV7M_EXCP_NMI].active &&
397 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
398 return true;
399 }
400
401 return false;
402 }
403
404 bool armv7m_nvic_can_take_pending_exception(void *opaque)
405 {
406 NVICState *s = opaque;
407
408 return nvic_exec_prio(s) > nvic_pending_prio(s);
409 }
410
411 int armv7m_nvic_raw_execution_priority(void *opaque)
412 {
413 NVICState *s = opaque;
414
415 return s->exception_prio;
416 }
417
418 /* caller must call nvic_irq_update() after this.
419 * secure indicates the bank to use for banked exceptions (we assert if
420 * we are passed secure=true for a non-banked exception).
421 */
422 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
423 {
424 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
425 assert(irq < s->num_irq);
426
427 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
428
429 if (secure) {
430 assert(exc_is_banked(irq));
431 s->sec_vectors[irq].prio = prio;
432 } else {
433 s->vectors[irq].prio = prio;
434 }
435
436 trace_nvic_set_prio(irq, secure, prio);
437 }
438
439 /* Return the current raw priority register value.
440 * secure indicates the bank to use for banked exceptions (we assert if
441 * we are passed secure=true for a non-banked exception).
442 */
443 static int get_prio(NVICState *s, unsigned irq, bool secure)
444 {
445 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
446 assert(irq < s->num_irq);
447
448 if (secure) {
449 assert(exc_is_banked(irq));
450 return s->sec_vectors[irq].prio;
451 } else {
452 return s->vectors[irq].prio;
453 }
454 }
455
456 /* Recompute state and assert irq line accordingly.
457 * Must be called after changes to:
458 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
459 * prigroup
460 */
461 static void nvic_irq_update(NVICState *s)
462 {
463 int lvl;
464 int pend_prio;
465
466 nvic_recompute_state(s);
467 pend_prio = nvic_pending_prio(s);
468
469 /* Raise NVIC output if this IRQ would be taken, except that we
470 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
471 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
472 * to those CPU registers don't cause us to recalculate the NVIC
473 * pending info.
474 */
475 lvl = (pend_prio < s->exception_prio);
476 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
477 qemu_set_irq(s->excpout, lvl);
478 }
479
480 /**
481 * armv7m_nvic_clear_pending: mark the specified exception as not pending
482 * @opaque: the NVIC
483 * @irq: the exception number to mark as not pending
484 * @secure: false for non-banked exceptions or for the nonsecure
485 * version of a banked exception, true for the secure version of a banked
486 * exception.
487 *
488 * Marks the specified exception as not pending. Note that we will assert()
489 * if @secure is true and @irq does not specify one of the fixed set
490 * of architecturally banked exceptions.
491 */
492 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
493 {
494 NVICState *s = (NVICState *)opaque;
495 VecInfo *vec;
496
497 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
498
499 if (secure) {
500 assert(exc_is_banked(irq));
501 vec = &s->sec_vectors[irq];
502 } else {
503 vec = &s->vectors[irq];
504 }
505 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
506 if (vec->pending) {
507 vec->pending = 0;
508 nvic_irq_update(s);
509 }
510 }
511
512 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
513 bool derived)
514 {
515 /* Pend an exception, including possibly escalating it to HardFault.
516 *
517 * This function handles both "normal" pending of interrupts and
518 * exceptions, and also derived exceptions (ones which occur as
519 * a result of trying to take some other exception).
520 *
521 * If derived == true, the caller guarantees that we are part way through
522 * trying to take an exception (but have not yet called
523 * armv7m_nvic_acknowledge_irq() to make it active), and so:
524 * - s->vectpending is the "original exception" we were trying to take
525 * - irq is the "derived exception"
526 * - nvic_exec_prio(s) gives the priority before exception entry
527 * Here we handle the prioritization logic which the pseudocode puts
528 * in the DerivedLateArrival() function.
529 */
530
531 NVICState *s = (NVICState *)opaque;
532 bool banked = exc_is_banked(irq);
533 VecInfo *vec;
534 bool targets_secure;
535
536 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
537 assert(!secure || banked);
538
539 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
540
541 targets_secure = banked ? secure : exc_targets_secure(s, irq);
542
543 trace_nvic_set_pending(irq, secure, targets_secure,
544 derived, vec->enabled, vec->prio);
545
546 if (derived) {
547 /* Derived exceptions are always synchronous. */
548 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
549
550 if (irq == ARMV7M_EXCP_DEBUG &&
551 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
552 /* DebugMonitorFault, but its priority is lower than the
553 * preempted exception priority: just ignore it.
554 */
555 return;
556 }
557
558 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
559 /* If this is a terminal exception (one which means we cannot
560 * take the original exception, like a failure to read its
561 * vector table entry), then we must take the derived exception.
562 * If the derived exception can't take priority over the
563 * original exception, then we go into Lockup.
564 *
565 * For QEMU, we rely on the fact that a derived exception is
566 * terminal if and only if it's reported to us as HardFault,
567 * which saves having to have an extra argument is_terminal
568 * that we'd only use in one place.
569 */
570 cpu_abort(&s->cpu->parent_obj,
571 "Lockup: can't take terminal derived exception "
572 "(original exception priority %d)\n",
573 s->vectpending_prio);
574 }
575 /* We now continue with the same code as for a normal pending
576 * exception, which will cause us to pend the derived exception.
577 * We'll then take either the original or the derived exception
578 * based on which is higher priority by the usual mechanism
579 * for selecting the highest priority pending interrupt.
580 */
581 }
582
583 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
584 /* If a synchronous exception is pending then it may be
585 * escalated to HardFault if:
586 * * it is equal or lower priority to current execution
587 * * it is disabled
588 * (ie we need to take it immediately but we can't do so).
589 * Asynchronous exceptions (and interrupts) simply remain pending.
590 *
591 * For QEMU, we don't have any imprecise (asynchronous) faults,
592 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
593 * synchronous.
594 * Debug exceptions are awkward because only Debug exceptions
595 * resulting from the BKPT instruction should be escalated,
596 * but we don't currently implement any Debug exceptions other
597 * than those that result from BKPT, so we treat all debug exceptions
598 * as needing escalation.
599 *
600 * This all means we can identify whether to escalate based only on
601 * the exception number and don't (yet) need the caller to explicitly
602 * tell us whether this exception is synchronous or not.
603 */
604 int running = nvic_exec_prio(s);
605 bool escalate = false;
606
607 if (exc_group_prio(s, vec->prio, secure) >= running) {
608 trace_nvic_escalate_prio(irq, vec->prio, running);
609 escalate = true;
610 } else if (!vec->enabled) {
611 trace_nvic_escalate_disabled(irq);
612 escalate = true;
613 }
614
615 if (escalate) {
616
617 /* We need to escalate this exception to a synchronous HardFault.
618 * If BFHFNMINS is set then we escalate to the banked HF for
619 * the target security state of the original exception; otherwise
620 * we take a Secure HardFault.
621 */
622 irq = ARMV7M_EXCP_HARD;
623 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
624 (targets_secure ||
625 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
626 vec = &s->sec_vectors[irq];
627 } else {
628 vec = &s->vectors[irq];
629 }
630 if (running <= vec->prio) {
631 /* We want to escalate to HardFault but we can't take the
632 * synchronous HardFault at this point either. This is a
633 * Lockup condition due to a guest bug. We don't model
634 * Lockup, so report via cpu_abort() instead.
635 */
636 cpu_abort(&s->cpu->parent_obj,
637 "Lockup: can't escalate %d to HardFault "
638 "(current priority %d)\n", irq, running);
639 }
640
641 /* HF may be banked but there is only one shared HFSR */
642 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
643 }
644 }
645
646 if (!vec->pending) {
647 vec->pending = 1;
648 nvic_irq_update(s);
649 }
650 }
651
652 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
653 {
654 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
655 }
656
657 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
658 {
659 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
660 }
661
662 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
663 {
664 /*
665 * Pend an exception during lazy FP stacking. This differs
666 * from the usual exception pending because the logic for
667 * whether we should escalate depends on the saved context
668 * in the FPCCR register, not on the current state of the CPU/NVIC.
669 */
670 NVICState *s = (NVICState *)opaque;
671 bool banked = exc_is_banked(irq);
672 VecInfo *vec;
673 bool targets_secure;
674 bool escalate = false;
675 /*
676 * We will only look at bits in fpccr if this is a banked exception
677 * (in which case 'secure' tells us whether it is the S or NS version).
678 * All the bits for the non-banked exceptions are in fpccr_s.
679 */
680 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
681 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
682
683 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
684 assert(!secure || banked);
685
686 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
687
688 targets_secure = banked ? secure : exc_targets_secure(s, irq);
689
690 switch (irq) {
691 case ARMV7M_EXCP_DEBUG:
692 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
693 /* Ignore DebugMonitor exception */
694 return;
695 }
696 break;
697 case ARMV7M_EXCP_MEM:
698 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
699 break;
700 case ARMV7M_EXCP_USAGE:
701 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
702 break;
703 case ARMV7M_EXCP_BUS:
704 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
705 break;
706 case ARMV7M_EXCP_SECURE:
707 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
708 break;
709 default:
710 g_assert_not_reached();
711 }
712
713 if (escalate) {
714 /*
715 * Escalate to HardFault: faults that initially targeted Secure
716 * continue to do so, even if HF normally targets NonSecure.
717 */
718 irq = ARMV7M_EXCP_HARD;
719 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
720 (targets_secure ||
721 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
722 vec = &s->sec_vectors[irq];
723 } else {
724 vec = &s->vectors[irq];
725 }
726 }
727
728 if (!vec->enabled ||
729 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
730 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
731 /*
732 * We want to escalate to HardFault but the context the
733 * FP state belongs to prevents the exception pre-empting.
734 */
735 cpu_abort(&s->cpu->parent_obj,
736 "Lockup: can't escalate to HardFault during "
737 "lazy FP register stacking\n");
738 }
739 }
740
741 if (escalate) {
742 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
743 }
744 if (!vec->pending) {
745 vec->pending = 1;
746 /*
747 * We do not call nvic_irq_update(), because we know our caller
748 * is going to handle causing us to take the exception by
749 * raising EXCP_LAZYFP, so raising the IRQ line would be
750 * pointless extra work. We just need to recompute the
751 * priorities so that armv7m_nvic_can_take_pending_exception()
752 * returns the right answer.
753 */
754 nvic_recompute_state(s);
755 }
756 }
757
758 /* Make pending IRQ active. */
759 void armv7m_nvic_acknowledge_irq(void *opaque)
760 {
761 NVICState *s = (NVICState *)opaque;
762 CPUARMState *env = &s->cpu->env;
763 const int pending = s->vectpending;
764 const int running = nvic_exec_prio(s);
765 VecInfo *vec;
766
767 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
768
769 if (s->vectpending_is_s_banked) {
770 vec = &s->sec_vectors[pending];
771 } else {
772 vec = &s->vectors[pending];
773 }
774
775 assert(vec->enabled);
776 assert(vec->pending);
777
778 assert(s->vectpending_prio < running);
779
780 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
781
782 vec->active = 1;
783 vec->pending = 0;
784
785 write_v7m_exception(env, s->vectpending);
786
787 nvic_irq_update(s);
788 }
789
790 void armv7m_nvic_get_pending_irq_info(void *opaque,
791 int *pirq, bool *ptargets_secure)
792 {
793 NVICState *s = (NVICState *)opaque;
794 const int pending = s->vectpending;
795 bool targets_secure;
796
797 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
798
799 if (s->vectpending_is_s_banked) {
800 targets_secure = true;
801 } else {
802 targets_secure = !exc_is_banked(pending) &&
803 exc_targets_secure(s, pending);
804 }
805
806 trace_nvic_get_pending_irq_info(pending, targets_secure);
807
808 *ptargets_secure = targets_secure;
809 *pirq = pending;
810 }
811
812 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
813 {
814 NVICState *s = (NVICState *)opaque;
815 VecInfo *vec;
816 int ret;
817
818 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
819
820 if (secure && exc_is_banked(irq)) {
821 vec = &s->sec_vectors[irq];
822 } else {
823 vec = &s->vectors[irq];
824 }
825
826 trace_nvic_complete_irq(irq, secure);
827
828 if (!vec->active) {
829 /* Tell the caller this was an illegal exception return */
830 return -1;
831 }
832
833 ret = nvic_rettobase(s);
834
835 vec->active = 0;
836 if (vec->level) {
837 /* Re-pend the exception if it's still held high; only
838 * happens for extenal IRQs
839 */
840 assert(irq >= NVIC_FIRST_IRQ);
841 vec->pending = 1;
842 }
843
844 nvic_irq_update(s);
845
846 return ret;
847 }
848
849 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
850 {
851 /*
852 * Return whether an exception is "ready", i.e. it is enabled and is
853 * configured at a priority which would allow it to interrupt the
854 * current execution priority.
855 *
856 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
857 * for non-banked exceptions secure is always false; for banked exceptions
858 * it indicates which of the exceptions is required.
859 */
860 NVICState *s = (NVICState *)opaque;
861 bool banked = exc_is_banked(irq);
862 VecInfo *vec;
863 int running = nvic_exec_prio(s);
864
865 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
866 assert(!secure || banked);
867
868 /*
869 * HardFault is an odd special case: we always check against -1,
870 * even if we're secure and HardFault has priority -3; we never
871 * need to check for enabled state.
872 */
873 if (irq == ARMV7M_EXCP_HARD) {
874 return running > -1;
875 }
876
877 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
878
879 return vec->enabled &&
880 exc_group_prio(s, vec->prio, secure) < running;
881 }
882
883 /* callback when external interrupt line is changed */
884 static void set_irq_level(void *opaque, int n, int level)
885 {
886 NVICState *s = opaque;
887 VecInfo *vec;
888
889 n += NVIC_FIRST_IRQ;
890
891 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
892
893 trace_nvic_set_irq_level(n, level);
894
895 /* The pending status of an external interrupt is
896 * latched on rising edge and exception handler return.
897 *
898 * Pulsing the IRQ will always run the handler
899 * once, and the handler will re-run until the
900 * level is low when the handler completes.
901 */
902 vec = &s->vectors[n];
903 if (level != vec->level) {
904 vec->level = level;
905 if (level) {
906 armv7m_nvic_set_pending(s, n, false);
907 }
908 }
909 }
910
911 /* callback when external NMI line is changed */
912 static void nvic_nmi_trigger(void *opaque, int n, int level)
913 {
914 NVICState *s = opaque;
915
916 trace_nvic_set_nmi_level(level);
917
918 /*
919 * The architecture doesn't specify whether NMI should share
920 * the normal-interrupt behaviour of being resampled on
921 * exception handler return. We choose not to, so just
922 * set NMI pending here and don't track the current level.
923 */
924 if (level) {
925 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
926 }
927 }
928
929 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
930 {
931 ARMCPU *cpu = s->cpu;
932 uint32_t val;
933
934 switch (offset) {
935 case 4: /* Interrupt Control Type. */
936 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
937 goto bad_offset;
938 }
939 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
940 case 0xc: /* CPPWR */
941 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
942 goto bad_offset;
943 }
944 /* We make the IMPDEF choice that nothing can ever go into a
945 * non-retentive power state, which allows us to RAZ/WI this.
946 */
947 return 0;
948 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
949 {
950 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
951 int i;
952
953 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
954 goto bad_offset;
955 }
956 if (!attrs.secure) {
957 return 0;
958 }
959 val = 0;
960 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
961 if (s->itns[startvec + i]) {
962 val |= (1 << i);
963 }
964 }
965 return val;
966 }
967 case 0xd00: /* CPUID Base. */
968 return cpu->midr;
969 case 0xd04: /* Interrupt Control State (ICSR) */
970 /* VECTACTIVE */
971 val = cpu->env.v7m.exception;
972 /* VECTPENDING */
973 val |= (s->vectpending & 0xff) << 12;
974 /* ISRPENDING - set if any external IRQ is pending */
975 if (nvic_isrpending(s)) {
976 val |= (1 << 22);
977 }
978 /* RETTOBASE - set if only one handler is active */
979 if (nvic_rettobase(s)) {
980 val |= (1 << 11);
981 }
982 if (attrs.secure) {
983 /* PENDSTSET */
984 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
985 val |= (1 << 26);
986 }
987 /* PENDSVSET */
988 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
989 val |= (1 << 28);
990 }
991 } else {
992 /* PENDSTSET */
993 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
994 val |= (1 << 26);
995 }
996 /* PENDSVSET */
997 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
998 val |= (1 << 28);
999 }
1000 }
1001 /* NMIPENDSET */
1002 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1003 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1004 val |= (1 << 31);
1005 }
1006 /* ISRPREEMPT: RES0 when halting debug not implemented */
1007 /* STTNS: RES0 for the Main Extension */
1008 return val;
1009 case 0xd08: /* Vector Table Offset. */
1010 return cpu->env.v7m.vecbase[attrs.secure];
1011 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1012 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1013 if (attrs.secure) {
1014 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1015 val |= cpu->env.v7m.aircr;
1016 } else {
1017 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1018 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1019 * security isn't supported then BFHFNMINS is RAO (and
1020 * the bit in env.v7m.aircr is always set).
1021 */
1022 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1023 }
1024 }
1025 return val;
1026 case 0xd10: /* System Control. */
1027 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1028 goto bad_offset;
1029 }
1030 return cpu->env.v7m.scr[attrs.secure];
1031 case 0xd14: /* Configuration Control. */
1032 /* The BFHFNMIGN bit is the only non-banked bit; we
1033 * keep it in the non-secure copy of the register.
1034 */
1035 val = cpu->env.v7m.ccr[attrs.secure];
1036 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1037 return val;
1038 case 0xd24: /* System Handler Control and State (SHCSR) */
1039 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1040 goto bad_offset;
1041 }
1042 val = 0;
1043 if (attrs.secure) {
1044 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1045 val |= (1 << 0);
1046 }
1047 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1048 val |= (1 << 2);
1049 }
1050 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1051 val |= (1 << 3);
1052 }
1053 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1054 val |= (1 << 7);
1055 }
1056 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1057 val |= (1 << 10);
1058 }
1059 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1060 val |= (1 << 11);
1061 }
1062 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1063 val |= (1 << 12);
1064 }
1065 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1066 val |= (1 << 13);
1067 }
1068 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1069 val |= (1 << 15);
1070 }
1071 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1072 val |= (1 << 16);
1073 }
1074 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1075 val |= (1 << 18);
1076 }
1077 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1078 val |= (1 << 21);
1079 }
1080 /* SecureFault is not banked but is always RAZ/WI to NS */
1081 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1082 val |= (1 << 4);
1083 }
1084 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1085 val |= (1 << 19);
1086 }
1087 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1088 val |= (1 << 20);
1089 }
1090 } else {
1091 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1092 val |= (1 << 0);
1093 }
1094 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1095 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1096 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1097 val |= (1 << 2);
1098 }
1099 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1100 val |= (1 << 21);
1101 }
1102 }
1103 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1104 val |= (1 << 3);
1105 }
1106 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1107 val |= (1 << 7);
1108 }
1109 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1110 val |= (1 << 10);
1111 }
1112 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1113 val |= (1 << 11);
1114 }
1115 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1116 val |= (1 << 12);
1117 }
1118 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1119 val |= (1 << 13);
1120 }
1121 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1122 val |= (1 << 15);
1123 }
1124 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1125 val |= (1 << 16);
1126 }
1127 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1128 val |= (1 << 18);
1129 }
1130 }
1131 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1132 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1133 val |= (1 << 1);
1134 }
1135 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1136 val |= (1 << 14);
1137 }
1138 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1139 val |= (1 << 17);
1140 }
1141 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1142 s->vectors[ARMV7M_EXCP_NMI].active) {
1143 /* NMIACT is not present in v7M */
1144 val |= (1 << 5);
1145 }
1146 }
1147
1148 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1149 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1150 val |= (1 << 8);
1151 }
1152 return val;
1153 case 0xd2c: /* Hard Fault Status. */
1154 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1155 goto bad_offset;
1156 }
1157 return cpu->env.v7m.hfsr;
1158 case 0xd30: /* Debug Fault Status. */
1159 return cpu->env.v7m.dfsr;
1160 case 0xd34: /* MMFAR MemManage Fault Address */
1161 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1162 goto bad_offset;
1163 }
1164 return cpu->env.v7m.mmfar[attrs.secure];
1165 case 0xd38: /* Bus Fault Address. */
1166 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1167 goto bad_offset;
1168 }
1169 if (!attrs.secure &&
1170 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1171 return 0;
1172 }
1173 return cpu->env.v7m.bfar;
1174 case 0xd3c: /* Aux Fault Status. */
1175 /* TODO: Implement fault status registers. */
1176 qemu_log_mask(LOG_UNIMP,
1177 "Aux Fault status registers unimplemented\n");
1178 return 0;
1179 case 0xd40: /* PFR0. */
1180 return cpu->id_pfr0;
1181 case 0xd44: /* PFR1. */
1182 return cpu->id_pfr1;
1183 case 0xd48: /* DFR0. */
1184 return cpu->id_dfr0;
1185 case 0xd4c: /* AFR0. */
1186 return cpu->id_afr0;
1187 case 0xd50: /* MMFR0. */
1188 return cpu->id_mmfr0;
1189 case 0xd54: /* MMFR1. */
1190 return cpu->id_mmfr1;
1191 case 0xd58: /* MMFR2. */
1192 return cpu->id_mmfr2;
1193 case 0xd5c: /* MMFR3. */
1194 return cpu->id_mmfr3;
1195 case 0xd60: /* ISAR0. */
1196 return cpu->isar.id_isar0;
1197 case 0xd64: /* ISAR1. */
1198 return cpu->isar.id_isar1;
1199 case 0xd68: /* ISAR2. */
1200 return cpu->isar.id_isar2;
1201 case 0xd6c: /* ISAR3. */
1202 return cpu->isar.id_isar3;
1203 case 0xd70: /* ISAR4. */
1204 return cpu->isar.id_isar4;
1205 case 0xd74: /* ISAR5. */
1206 return cpu->isar.id_isar5;
1207 case 0xd78: /* CLIDR */
1208 return cpu->clidr;
1209 case 0xd7c: /* CTR */
1210 return cpu->ctr;
1211 case 0xd80: /* CSSIDR */
1212 {
1213 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1214 return cpu->ccsidr[idx];
1215 }
1216 case 0xd84: /* CSSELR */
1217 return cpu->env.v7m.csselr[attrs.secure];
1218 case 0xd88: /* CPACR */
1219 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1220 return 0;
1221 }
1222 return cpu->env.v7m.cpacr[attrs.secure];
1223 case 0xd8c: /* NSACR */
1224 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1225 return 0;
1226 }
1227 return cpu->env.v7m.nsacr;
1228 /* TODO: Implement debug registers. */
1229 case 0xd90: /* MPU_TYPE */
1230 /* Unified MPU; if the MPU is not present this value is zero */
1231 return cpu->pmsav7_dregion << 8;
1232 break;
1233 case 0xd94: /* MPU_CTRL */
1234 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1235 case 0xd98: /* MPU_RNR */
1236 return cpu->env.pmsav7.rnr[attrs.secure];
1237 case 0xd9c: /* MPU_RBAR */
1238 case 0xda4: /* MPU_RBAR_A1 */
1239 case 0xdac: /* MPU_RBAR_A2 */
1240 case 0xdb4: /* MPU_RBAR_A3 */
1241 {
1242 int region = cpu->env.pmsav7.rnr[attrs.secure];
1243
1244 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1245 /* PMSAv8M handling of the aliases is different from v7M:
1246 * aliases A1, A2, A3 override the low two bits of the region
1247 * number in MPU_RNR, and there is no 'region' field in the
1248 * RBAR register.
1249 */
1250 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1251 if (aliasno) {
1252 region = deposit32(region, 0, 2, aliasno);
1253 }
1254 if (region >= cpu->pmsav7_dregion) {
1255 return 0;
1256 }
1257 return cpu->env.pmsav8.rbar[attrs.secure][region];
1258 }
1259
1260 if (region >= cpu->pmsav7_dregion) {
1261 return 0;
1262 }
1263 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1264 }
1265 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1266 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1267 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1268 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1269 {
1270 int region = cpu->env.pmsav7.rnr[attrs.secure];
1271
1272 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1273 /* PMSAv8M handling of the aliases is different from v7M:
1274 * aliases A1, A2, A3 override the low two bits of the region
1275 * number in MPU_RNR.
1276 */
1277 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1278 if (aliasno) {
1279 region = deposit32(region, 0, 2, aliasno);
1280 }
1281 if (region >= cpu->pmsav7_dregion) {
1282 return 0;
1283 }
1284 return cpu->env.pmsav8.rlar[attrs.secure][region];
1285 }
1286
1287 if (region >= cpu->pmsav7_dregion) {
1288 return 0;
1289 }
1290 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1291 (cpu->env.pmsav7.drsr[region] & 0xffff);
1292 }
1293 case 0xdc0: /* MPU_MAIR0 */
1294 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1295 goto bad_offset;
1296 }
1297 return cpu->env.pmsav8.mair0[attrs.secure];
1298 case 0xdc4: /* MPU_MAIR1 */
1299 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1300 goto bad_offset;
1301 }
1302 return cpu->env.pmsav8.mair1[attrs.secure];
1303 case 0xdd0: /* SAU_CTRL */
1304 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1305 goto bad_offset;
1306 }
1307 if (!attrs.secure) {
1308 return 0;
1309 }
1310 return cpu->env.sau.ctrl;
1311 case 0xdd4: /* SAU_TYPE */
1312 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1313 goto bad_offset;
1314 }
1315 if (!attrs.secure) {
1316 return 0;
1317 }
1318 return cpu->sau_sregion;
1319 case 0xdd8: /* SAU_RNR */
1320 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1321 goto bad_offset;
1322 }
1323 if (!attrs.secure) {
1324 return 0;
1325 }
1326 return cpu->env.sau.rnr;
1327 case 0xddc: /* SAU_RBAR */
1328 {
1329 int region = cpu->env.sau.rnr;
1330
1331 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1332 goto bad_offset;
1333 }
1334 if (!attrs.secure) {
1335 return 0;
1336 }
1337 if (region >= cpu->sau_sregion) {
1338 return 0;
1339 }
1340 return cpu->env.sau.rbar[region];
1341 }
1342 case 0xde0: /* SAU_RLAR */
1343 {
1344 int region = cpu->env.sau.rnr;
1345
1346 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1347 goto bad_offset;
1348 }
1349 if (!attrs.secure) {
1350 return 0;
1351 }
1352 if (region >= cpu->sau_sregion) {
1353 return 0;
1354 }
1355 return cpu->env.sau.rlar[region];
1356 }
1357 case 0xde4: /* SFSR */
1358 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1359 goto bad_offset;
1360 }
1361 if (!attrs.secure) {
1362 return 0;
1363 }
1364 return cpu->env.v7m.sfsr;
1365 case 0xde8: /* SFAR */
1366 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1367 goto bad_offset;
1368 }
1369 if (!attrs.secure) {
1370 return 0;
1371 }
1372 return cpu->env.v7m.sfar;
1373 case 0xf34: /* FPCCR */
1374 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1375 return 0;
1376 }
1377 if (attrs.secure) {
1378 return cpu->env.v7m.fpccr[M_REG_S];
1379 } else {
1380 /*
1381 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1382 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1383 * other non-banked bits RAZ.
1384 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1385 */
1386 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1387 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1388 R_V7M_FPCCR_CLRONRET_MASK |
1389 R_V7M_FPCCR_MONRDY_MASK;
1390
1391 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1392 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1393 }
1394
1395 value &= mask;
1396
1397 value |= cpu->env.v7m.fpccr[M_REG_NS];
1398 return value;
1399 }
1400 case 0xf38: /* FPCAR */
1401 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1402 return 0;
1403 }
1404 return cpu->env.v7m.fpcar[attrs.secure];
1405 case 0xf3c: /* FPDSCR */
1406 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1407 return 0;
1408 }
1409 return cpu->env.v7m.fpdscr[attrs.secure];
1410 case 0xf40: /* MVFR0 */
1411 return cpu->isar.mvfr0;
1412 case 0xf44: /* MVFR1 */
1413 return cpu->isar.mvfr1;
1414 case 0xf48: /* MVFR2 */
1415 return cpu->isar.mvfr2;
1416 default:
1417 bad_offset:
1418 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1419 return 0;
1420 }
1421 }
1422
1423 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1424 MemTxAttrs attrs)
1425 {
1426 ARMCPU *cpu = s->cpu;
1427
1428 switch (offset) {
1429 case 0xc: /* CPPWR */
1430 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1431 goto bad_offset;
1432 }
1433 /* Make the IMPDEF choice to RAZ/WI this. */
1434 break;
1435 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1436 {
1437 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1438 int i;
1439
1440 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1441 goto bad_offset;
1442 }
1443 if (!attrs.secure) {
1444 break;
1445 }
1446 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1447 s->itns[startvec + i] = (value >> i) & 1;
1448 }
1449 nvic_irq_update(s);
1450 break;
1451 }
1452 case 0xd04: /* Interrupt Control State (ICSR) */
1453 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1454 if (value & (1 << 31)) {
1455 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1456 } else if (value & (1 << 30) &&
1457 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1458 /* PENDNMICLR didn't exist in v7M */
1459 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1460 }
1461 }
1462 if (value & (1 << 28)) {
1463 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1464 } else if (value & (1 << 27)) {
1465 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1466 }
1467 if (value & (1 << 26)) {
1468 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1469 } else if (value & (1 << 25)) {
1470 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1471 }
1472 break;
1473 case 0xd08: /* Vector Table Offset. */
1474 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1475 break;
1476 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1477 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1478 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1479 if (attrs.secure ||
1480 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1481 qemu_irq_pulse(s->sysresetreq);
1482 }
1483 }
1484 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1485 qemu_log_mask(LOG_GUEST_ERROR,
1486 "Setting VECTCLRACTIVE when not in DEBUG mode "
1487 "is UNPREDICTABLE\n");
1488 }
1489 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1490 /* NB: this bit is RES0 in v8M */
1491 qemu_log_mask(LOG_GUEST_ERROR,
1492 "Setting VECTRESET when not in DEBUG mode "
1493 "is UNPREDICTABLE\n");
1494 }
1495 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1496 s->prigroup[attrs.secure] =
1497 extract32(value,
1498 R_V7M_AIRCR_PRIGROUP_SHIFT,
1499 R_V7M_AIRCR_PRIGROUP_LENGTH);
1500 }
1501 if (attrs.secure) {
1502 /* These bits are only writable by secure */
1503 cpu->env.v7m.aircr = value &
1504 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1505 R_V7M_AIRCR_BFHFNMINS_MASK |
1506 R_V7M_AIRCR_PRIS_MASK);
1507 /* BFHFNMINS changes the priority of Secure HardFault, and
1508 * allows a pending Non-secure HardFault to preempt (which
1509 * we implement by marking it enabled).
1510 */
1511 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1512 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1513 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1514 } else {
1515 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1516 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1517 }
1518 }
1519 nvic_irq_update(s);
1520 }
1521 break;
1522 case 0xd10: /* System Control. */
1523 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1524 goto bad_offset;
1525 }
1526 /* We don't implement deep-sleep so these bits are RAZ/WI.
1527 * The other bits in the register are banked.
1528 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1529 * is architecturally permitted.
1530 */
1531 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1532 cpu->env.v7m.scr[attrs.secure] = value;
1533 break;
1534 case 0xd14: /* Configuration Control. */
1535 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1536 goto bad_offset;
1537 }
1538
1539 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1540 value &= (R_V7M_CCR_STKALIGN_MASK |
1541 R_V7M_CCR_BFHFNMIGN_MASK |
1542 R_V7M_CCR_DIV_0_TRP_MASK |
1543 R_V7M_CCR_UNALIGN_TRP_MASK |
1544 R_V7M_CCR_USERSETMPEND_MASK |
1545 R_V7M_CCR_NONBASETHRDENA_MASK);
1546
1547 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1548 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1549 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1550 | R_V7M_CCR_STKALIGN_MASK;
1551 }
1552 if (attrs.secure) {
1553 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1554 cpu->env.v7m.ccr[M_REG_NS] =
1555 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1556 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1557 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1558 }
1559
1560 cpu->env.v7m.ccr[attrs.secure] = value;
1561 break;
1562 case 0xd24: /* System Handler Control and State (SHCSR) */
1563 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1564 goto bad_offset;
1565 }
1566 if (attrs.secure) {
1567 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1568 /* Secure HardFault active bit cannot be written */
1569 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1570 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1571 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1572 (value & (1 << 10)) != 0;
1573 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1574 (value & (1 << 11)) != 0;
1575 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1576 (value & (1 << 12)) != 0;
1577 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1578 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1579 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1580 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1581 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1582 (value & (1 << 18)) != 0;
1583 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1584 /* SecureFault not banked, but RAZ/WI to NS */
1585 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1586 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1587 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1588 } else {
1589 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1590 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1591 /* HARDFAULTPENDED is not present in v7M */
1592 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1593 }
1594 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1595 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1596 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1597 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1598 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1599 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1600 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1601 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1602 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1603 }
1604 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1605 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1606 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1607 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1608 }
1609 /* NMIACT can only be written if the write is of a zero, with
1610 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1611 */
1612 if (!attrs.secure && cpu->env.v7m.secure &&
1613 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1614 (value & (1 << 5)) == 0) {
1615 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1616 }
1617 /* HARDFAULTACT can only be written if the write is of a zero
1618 * to the non-secure HardFault state by the CPU in secure state.
1619 * The only case where we can be targeting the non-secure HF state
1620 * when in secure state is if this is a write via the NS alias
1621 * and BFHFNMINS is 1.
1622 */
1623 if (!attrs.secure && cpu->env.v7m.secure &&
1624 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1625 (value & (1 << 2)) == 0) {
1626 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1627 }
1628
1629 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1630 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1631 nvic_irq_update(s);
1632 break;
1633 case 0xd2c: /* Hard Fault Status. */
1634 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1635 goto bad_offset;
1636 }
1637 cpu->env.v7m.hfsr &= ~value; /* W1C */
1638 break;
1639 case 0xd30: /* Debug Fault Status. */
1640 cpu->env.v7m.dfsr &= ~value; /* W1C */
1641 break;
1642 case 0xd34: /* Mem Manage Address. */
1643 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1644 goto bad_offset;
1645 }
1646 cpu->env.v7m.mmfar[attrs.secure] = value;
1647 return;
1648 case 0xd38: /* Bus Fault Address. */
1649 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1650 goto bad_offset;
1651 }
1652 if (!attrs.secure &&
1653 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1654 return;
1655 }
1656 cpu->env.v7m.bfar = value;
1657 return;
1658 case 0xd3c: /* Aux Fault Status. */
1659 qemu_log_mask(LOG_UNIMP,
1660 "NVIC: Aux fault status registers unimplemented\n");
1661 break;
1662 case 0xd84: /* CSSELR */
1663 if (!arm_v7m_csselr_razwi(cpu)) {
1664 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1665 }
1666 break;
1667 case 0xd88: /* CPACR */
1668 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1669 /* We implement only the Floating Point extension's CP10/CP11 */
1670 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1671 }
1672 break;
1673 case 0xd8c: /* NSACR */
1674 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1675 /* We implement only the Floating Point extension's CP10/CP11 */
1676 cpu->env.v7m.nsacr = value & (3 << 10);
1677 }
1678 break;
1679 case 0xd90: /* MPU_TYPE */
1680 return; /* RO */
1681 case 0xd94: /* MPU_CTRL */
1682 if ((value &
1683 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1684 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1685 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1686 "UNPREDICTABLE\n");
1687 }
1688 cpu->env.v7m.mpu_ctrl[attrs.secure]
1689 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1690 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1691 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1692 tlb_flush(CPU(cpu));
1693 break;
1694 case 0xd98: /* MPU_RNR */
1695 if (value >= cpu->pmsav7_dregion) {
1696 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1697 PRIu32 "/%" PRIu32 "\n",
1698 value, cpu->pmsav7_dregion);
1699 } else {
1700 cpu->env.pmsav7.rnr[attrs.secure] = value;
1701 }
1702 break;
1703 case 0xd9c: /* MPU_RBAR */
1704 case 0xda4: /* MPU_RBAR_A1 */
1705 case 0xdac: /* MPU_RBAR_A2 */
1706 case 0xdb4: /* MPU_RBAR_A3 */
1707 {
1708 int region;
1709
1710 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1711 /* PMSAv8M handling of the aliases is different from v7M:
1712 * aliases A1, A2, A3 override the low two bits of the region
1713 * number in MPU_RNR, and there is no 'region' field in the
1714 * RBAR register.
1715 */
1716 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1717
1718 region = cpu->env.pmsav7.rnr[attrs.secure];
1719 if (aliasno) {
1720 region = deposit32(region, 0, 2, aliasno);
1721 }
1722 if (region >= cpu->pmsav7_dregion) {
1723 return;
1724 }
1725 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1726 tlb_flush(CPU(cpu));
1727 return;
1728 }
1729
1730 if (value & (1 << 4)) {
1731 /* VALID bit means use the region number specified in this
1732 * value and also update MPU_RNR.REGION with that value.
1733 */
1734 region = extract32(value, 0, 4);
1735 if (region >= cpu->pmsav7_dregion) {
1736 qemu_log_mask(LOG_GUEST_ERROR,
1737 "MPU region out of range %u/%" PRIu32 "\n",
1738 region, cpu->pmsav7_dregion);
1739 return;
1740 }
1741 cpu->env.pmsav7.rnr[attrs.secure] = region;
1742 } else {
1743 region = cpu->env.pmsav7.rnr[attrs.secure];
1744 }
1745
1746 if (region >= cpu->pmsav7_dregion) {
1747 return;
1748 }
1749
1750 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1751 tlb_flush(CPU(cpu));
1752 break;
1753 }
1754 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1755 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1756 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1757 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1758 {
1759 int region = cpu->env.pmsav7.rnr[attrs.secure];
1760
1761 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1762 /* PMSAv8M handling of the aliases is different from v7M:
1763 * aliases A1, A2, A3 override the low two bits of the region
1764 * number in MPU_RNR.
1765 */
1766 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1767
1768 region = cpu->env.pmsav7.rnr[attrs.secure];
1769 if (aliasno) {
1770 region = deposit32(region, 0, 2, aliasno);
1771 }
1772 if (region >= cpu->pmsav7_dregion) {
1773 return;
1774 }
1775 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1776 tlb_flush(CPU(cpu));
1777 return;
1778 }
1779
1780 if (region >= cpu->pmsav7_dregion) {
1781 return;
1782 }
1783
1784 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1785 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1786 tlb_flush(CPU(cpu));
1787 break;
1788 }
1789 case 0xdc0: /* MPU_MAIR0 */
1790 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1791 goto bad_offset;
1792 }
1793 if (cpu->pmsav7_dregion) {
1794 /* Register is RES0 if no MPU regions are implemented */
1795 cpu->env.pmsav8.mair0[attrs.secure] = value;
1796 }
1797 /* We don't need to do anything else because memory attributes
1798 * only affect cacheability, and we don't implement caching.
1799 */
1800 break;
1801 case 0xdc4: /* MPU_MAIR1 */
1802 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1803 goto bad_offset;
1804 }
1805 if (cpu->pmsav7_dregion) {
1806 /* Register is RES0 if no MPU regions are implemented */
1807 cpu->env.pmsav8.mair1[attrs.secure] = value;
1808 }
1809 /* We don't need to do anything else because memory attributes
1810 * only affect cacheability, and we don't implement caching.
1811 */
1812 break;
1813 case 0xdd0: /* SAU_CTRL */
1814 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1815 goto bad_offset;
1816 }
1817 if (!attrs.secure) {
1818 return;
1819 }
1820 cpu->env.sau.ctrl = value & 3;
1821 break;
1822 case 0xdd4: /* SAU_TYPE */
1823 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1824 goto bad_offset;
1825 }
1826 break;
1827 case 0xdd8: /* SAU_RNR */
1828 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1829 goto bad_offset;
1830 }
1831 if (!attrs.secure) {
1832 return;
1833 }
1834 if (value >= cpu->sau_sregion) {
1835 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1836 PRIu32 "/%" PRIu32 "\n",
1837 value, cpu->sau_sregion);
1838 } else {
1839 cpu->env.sau.rnr = value;
1840 }
1841 break;
1842 case 0xddc: /* SAU_RBAR */
1843 {
1844 int region = cpu->env.sau.rnr;
1845
1846 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1847 goto bad_offset;
1848 }
1849 if (!attrs.secure) {
1850 return;
1851 }
1852 if (region >= cpu->sau_sregion) {
1853 return;
1854 }
1855 cpu->env.sau.rbar[region] = value & ~0x1f;
1856 tlb_flush(CPU(cpu));
1857 break;
1858 }
1859 case 0xde0: /* SAU_RLAR */
1860 {
1861 int region = cpu->env.sau.rnr;
1862
1863 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1864 goto bad_offset;
1865 }
1866 if (!attrs.secure) {
1867 return;
1868 }
1869 if (region >= cpu->sau_sregion) {
1870 return;
1871 }
1872 cpu->env.sau.rlar[region] = value & ~0x1c;
1873 tlb_flush(CPU(cpu));
1874 break;
1875 }
1876 case 0xde4: /* SFSR */
1877 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1878 goto bad_offset;
1879 }
1880 if (!attrs.secure) {
1881 return;
1882 }
1883 cpu->env.v7m.sfsr &= ~value; /* W1C */
1884 break;
1885 case 0xde8: /* SFAR */
1886 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1887 goto bad_offset;
1888 }
1889 if (!attrs.secure) {
1890 return;
1891 }
1892 cpu->env.v7m.sfsr = value;
1893 break;
1894 case 0xf00: /* Software Triggered Interrupt Register */
1895 {
1896 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1897
1898 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1899 goto bad_offset;
1900 }
1901
1902 if (excnum < s->num_irq) {
1903 armv7m_nvic_set_pending(s, excnum, false);
1904 }
1905 break;
1906 }
1907 case 0xf34: /* FPCCR */
1908 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1909 /* Not all bits here are banked. */
1910 uint32_t fpccr_s;
1911
1912 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1913 /* Don't allow setting of bits not present in v7M */
1914 value &= (R_V7M_FPCCR_LSPACT_MASK |
1915 R_V7M_FPCCR_USER_MASK |
1916 R_V7M_FPCCR_THREAD_MASK |
1917 R_V7M_FPCCR_HFRDY_MASK |
1918 R_V7M_FPCCR_MMRDY_MASK |
1919 R_V7M_FPCCR_BFRDY_MASK |
1920 R_V7M_FPCCR_MONRDY_MASK |
1921 R_V7M_FPCCR_LSPEN_MASK |
1922 R_V7M_FPCCR_ASPEN_MASK);
1923 }
1924 value &= ~R_V7M_FPCCR_RES0_MASK;
1925
1926 if (!attrs.secure) {
1927 /* Some non-banked bits are configurably writable by NS */
1928 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1929 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1930 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1931 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1932 }
1933 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1934 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1935 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1936 }
1937 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1938 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1939 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1940 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1941 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1942 }
1943 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1944 {
1945 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1946 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1947 }
1948
1949 /*
1950 * All other non-banked bits are RAZ/WI from NS; write
1951 * just the banked bits to fpccr[M_REG_NS].
1952 */
1953 value &= R_V7M_FPCCR_BANKED_MASK;
1954 cpu->env.v7m.fpccr[M_REG_NS] = value;
1955 } else {
1956 fpccr_s = value;
1957 }
1958 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
1959 }
1960 break;
1961 case 0xf38: /* FPCAR */
1962 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1963 value &= ~7;
1964 cpu->env.v7m.fpcar[attrs.secure] = value;
1965 }
1966 break;
1967 case 0xf3c: /* FPDSCR */
1968 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1969 value &= 0x07c00000;
1970 cpu->env.v7m.fpdscr[attrs.secure] = value;
1971 }
1972 break;
1973 case 0xf50: /* ICIALLU */
1974 case 0xf58: /* ICIMVAU */
1975 case 0xf5c: /* DCIMVAC */
1976 case 0xf60: /* DCISW */
1977 case 0xf64: /* DCCMVAU */
1978 case 0xf68: /* DCCMVAC */
1979 case 0xf6c: /* DCCSW */
1980 case 0xf70: /* DCCIMVAC */
1981 case 0xf74: /* DCCISW */
1982 case 0xf78: /* BPIALL */
1983 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1984 break;
1985 default:
1986 bad_offset:
1987 qemu_log_mask(LOG_GUEST_ERROR,
1988 "NVIC: Bad write offset 0x%x\n", offset);
1989 }
1990 }
1991
1992 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1993 {
1994 /* Return true if unprivileged access to this register is permitted. */
1995 switch (offset) {
1996 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1997 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1998 * controls access even though the CPU is in Secure state (I_QDKX).
1999 */
2000 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2001 default:
2002 /* All other user accesses cause a BusFault unconditionally */
2003 return false;
2004 }
2005 }
2006
2007 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2008 {
2009 /* Behaviour for the SHPR register field for this exception:
2010 * return M_REG_NS to use the nonsecure vector (including for
2011 * non-banked exceptions), M_REG_S for the secure version of
2012 * a banked exception, and -1 if this field should RAZ/WI.
2013 */
2014 switch (exc) {
2015 case ARMV7M_EXCP_MEM:
2016 case ARMV7M_EXCP_USAGE:
2017 case ARMV7M_EXCP_SVC:
2018 case ARMV7M_EXCP_PENDSV:
2019 case ARMV7M_EXCP_SYSTICK:
2020 /* Banked exceptions */
2021 return attrs.secure;
2022 case ARMV7M_EXCP_BUS:
2023 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2024 if (!attrs.secure &&
2025 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2026 return -1;
2027 }
2028 return M_REG_NS;
2029 case ARMV7M_EXCP_SECURE:
2030 /* Not banked, RAZ/WI from nonsecure */
2031 if (!attrs.secure) {
2032 return -1;
2033 }
2034 return M_REG_NS;
2035 case ARMV7M_EXCP_DEBUG:
2036 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2037 return M_REG_NS;
2038 case 8 ... 10:
2039 case 13:
2040 /* RES0 */
2041 return -1;
2042 default:
2043 /* Not reachable due to decode of SHPR register addresses */
2044 g_assert_not_reached();
2045 }
2046 }
2047
2048 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2049 uint64_t *data, unsigned size,
2050 MemTxAttrs attrs)
2051 {
2052 NVICState *s = (NVICState *)opaque;
2053 uint32_t offset = addr;
2054 unsigned i, startvec, end;
2055 uint32_t val;
2056
2057 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2058 /* Generate BusFault for unprivileged accesses */
2059 return MEMTX_ERROR;
2060 }
2061
2062 switch (offset) {
2063 /* reads of set and clear both return the status */
2064 case 0x100 ... 0x13f: /* NVIC Set enable */
2065 offset += 0x80;
2066 /* fall through */
2067 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2068 val = 0;
2069 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2070
2071 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2072 if (s->vectors[startvec + i].enabled &&
2073 (attrs.secure || s->itns[startvec + i])) {
2074 val |= (1 << i);
2075 }
2076 }
2077 break;
2078 case 0x200 ... 0x23f: /* NVIC Set pend */
2079 offset += 0x80;
2080 /* fall through */
2081 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2082 val = 0;
2083 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2084 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2085 if (s->vectors[startvec + i].pending &&
2086 (attrs.secure || s->itns[startvec + i])) {
2087 val |= (1 << i);
2088 }
2089 }
2090 break;
2091 case 0x300 ... 0x33f: /* NVIC Active */
2092 val = 0;
2093
2094 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2095 break;
2096 }
2097
2098 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2099
2100 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2101 if (s->vectors[startvec + i].active &&
2102 (attrs.secure || s->itns[startvec + i])) {
2103 val |= (1 << i);
2104 }
2105 }
2106 break;
2107 case 0x400 ... 0x5ef: /* NVIC Priority */
2108 val = 0;
2109 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2110
2111 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2112 if (attrs.secure || s->itns[startvec + i]) {
2113 val |= s->vectors[startvec + i].prio << (8 * i);
2114 }
2115 }
2116 break;
2117 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2118 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2119 val = 0;
2120 break;
2121 }
2122 /* fall through */
2123 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2124 val = 0;
2125 for (i = 0; i < size; i++) {
2126 unsigned hdlidx = (offset - 0xd14) + i;
2127 int sbank = shpr_bank(s, hdlidx, attrs);
2128
2129 if (sbank < 0) {
2130 continue;
2131 }
2132 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2133 }
2134 break;
2135 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2136 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2137 val = 0;
2138 break;
2139 };
2140 /*
2141 * The BFSR bits [15:8] are shared between security states
2142 * and we store them in the NS copy. They are RAZ/WI for
2143 * NS code if AIRCR.BFHFNMINS is 0.
2144 */
2145 val = s->cpu->env.v7m.cfsr[attrs.secure];
2146 if (!attrs.secure &&
2147 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2148 val &= ~R_V7M_CFSR_BFSR_MASK;
2149 } else {
2150 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2151 }
2152 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2153 break;
2154 case 0xfe0 ... 0xfff: /* ID. */
2155 if (offset & 3) {
2156 val = 0;
2157 } else {
2158 val = nvic_id[(offset - 0xfe0) >> 2];
2159 }
2160 break;
2161 default:
2162 if (size == 4) {
2163 val = nvic_readl(s, offset, attrs);
2164 } else {
2165 qemu_log_mask(LOG_GUEST_ERROR,
2166 "NVIC: Bad read of size %d at offset 0x%x\n",
2167 size, offset);
2168 val = 0;
2169 }
2170 }
2171
2172 trace_nvic_sysreg_read(addr, val, size);
2173 *data = val;
2174 return MEMTX_OK;
2175 }
2176
2177 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2178 uint64_t value, unsigned size,
2179 MemTxAttrs attrs)
2180 {
2181 NVICState *s = (NVICState *)opaque;
2182 uint32_t offset = addr;
2183 unsigned i, startvec, end;
2184 unsigned setval = 0;
2185
2186 trace_nvic_sysreg_write(addr, value, size);
2187
2188 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2189 /* Generate BusFault for unprivileged accesses */
2190 return MEMTX_ERROR;
2191 }
2192
2193 switch (offset) {
2194 case 0x100 ... 0x13f: /* NVIC Set enable */
2195 offset += 0x80;
2196 setval = 1;
2197 /* fall through */
2198 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2199 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2200
2201 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2202 if (value & (1 << i) &&
2203 (attrs.secure || s->itns[startvec + i])) {
2204 s->vectors[startvec + i].enabled = setval;
2205 }
2206 }
2207 nvic_irq_update(s);
2208 return MEMTX_OK;
2209 case 0x200 ... 0x23f: /* NVIC Set pend */
2210 /* the special logic in armv7m_nvic_set_pending()
2211 * is not needed since IRQs are never escalated
2212 */
2213 offset += 0x80;
2214 setval = 1;
2215 /* fall through */
2216 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2217 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2218
2219 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2220 if (value & (1 << i) &&
2221 (attrs.secure || s->itns[startvec + i])) {
2222 s->vectors[startvec + i].pending = setval;
2223 }
2224 }
2225 nvic_irq_update(s);
2226 return MEMTX_OK;
2227 case 0x300 ... 0x33f: /* NVIC Active */
2228 return MEMTX_OK; /* R/O */
2229 case 0x400 ... 0x5ef: /* NVIC Priority */
2230 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2231
2232 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2233 if (attrs.secure || s->itns[startvec + i]) {
2234 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2235 }
2236 }
2237 nvic_irq_update(s);
2238 return MEMTX_OK;
2239 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2240 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2241 return MEMTX_OK;
2242 }
2243 /* fall through */
2244 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2245 for (i = 0; i < size; i++) {
2246 unsigned hdlidx = (offset - 0xd14) + i;
2247 int newprio = extract32(value, i * 8, 8);
2248 int sbank = shpr_bank(s, hdlidx, attrs);
2249
2250 if (sbank < 0) {
2251 continue;
2252 }
2253 set_prio(s, hdlidx, sbank, newprio);
2254 }
2255 nvic_irq_update(s);
2256 return MEMTX_OK;
2257 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2258 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2259 return MEMTX_OK;
2260 }
2261 /* All bits are W1C, so construct 32 bit value with 0s in
2262 * the parts not written by the access size
2263 */
2264 value <<= ((offset - 0xd28) * 8);
2265
2266 if (!attrs.secure &&
2267 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2268 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2269 value &= ~R_V7M_CFSR_BFSR_MASK;
2270 }
2271
2272 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2273 if (attrs.secure) {
2274 /* The BFSR bits [15:8] are shared between security states
2275 * and we store them in the NS copy.
2276 */
2277 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2278 }
2279 return MEMTX_OK;
2280 }
2281 if (size == 4) {
2282 nvic_writel(s, offset, value, attrs);
2283 return MEMTX_OK;
2284 }
2285 qemu_log_mask(LOG_GUEST_ERROR,
2286 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2287 /* This is UNPREDICTABLE; treat as RAZ/WI */
2288 return MEMTX_OK;
2289 }
2290
2291 static const MemoryRegionOps nvic_sysreg_ops = {
2292 .read_with_attrs = nvic_sysreg_read,
2293 .write_with_attrs = nvic_sysreg_write,
2294 .endianness = DEVICE_NATIVE_ENDIAN,
2295 };
2296
2297 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2298 uint64_t value, unsigned size,
2299 MemTxAttrs attrs)
2300 {
2301 MemoryRegion *mr = opaque;
2302
2303 if (attrs.secure) {
2304 /* S accesses to the alias act like NS accesses to the real region */
2305 attrs.secure = 0;
2306 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2307 } else {
2308 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2309 if (attrs.user) {
2310 return MEMTX_ERROR;
2311 }
2312 return MEMTX_OK;
2313 }
2314 }
2315
2316 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2317 uint64_t *data, unsigned size,
2318 MemTxAttrs attrs)
2319 {
2320 MemoryRegion *mr = opaque;
2321
2322 if (attrs.secure) {
2323 /* S accesses to the alias act like NS accesses to the real region */
2324 attrs.secure = 0;
2325 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2326 } else {
2327 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2328 if (attrs.user) {
2329 return MEMTX_ERROR;
2330 }
2331 *data = 0;
2332 return MEMTX_OK;
2333 }
2334 }
2335
2336 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2337 .read_with_attrs = nvic_sysreg_ns_read,
2338 .write_with_attrs = nvic_sysreg_ns_write,
2339 .endianness = DEVICE_NATIVE_ENDIAN,
2340 };
2341
2342 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2343 uint64_t value, unsigned size,
2344 MemTxAttrs attrs)
2345 {
2346 NVICState *s = opaque;
2347 MemoryRegion *mr;
2348
2349 /* Direct the access to the correct systick */
2350 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2351 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2352 }
2353
2354 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2355 uint64_t *data, unsigned size,
2356 MemTxAttrs attrs)
2357 {
2358 NVICState *s = opaque;
2359 MemoryRegion *mr;
2360
2361 /* Direct the access to the correct systick */
2362 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2363 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2364 }
2365
2366 static const MemoryRegionOps nvic_systick_ops = {
2367 .read_with_attrs = nvic_systick_read,
2368 .write_with_attrs = nvic_systick_write,
2369 .endianness = DEVICE_NATIVE_ENDIAN,
2370 };
2371
2372 static int nvic_post_load(void *opaque, int version_id)
2373 {
2374 NVICState *s = opaque;
2375 unsigned i;
2376 int resetprio;
2377
2378 /* Check for out of range priority settings */
2379 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2380
2381 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2382 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2383 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2384 return 1;
2385 }
2386 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2387 if (s->vectors[i].prio & ~0xff) {
2388 return 1;
2389 }
2390 }
2391
2392 nvic_recompute_state(s);
2393
2394 return 0;
2395 }
2396
2397 static const VMStateDescription vmstate_VecInfo = {
2398 .name = "armv7m_nvic_info",
2399 .version_id = 1,
2400 .minimum_version_id = 1,
2401 .fields = (VMStateField[]) {
2402 VMSTATE_INT16(prio, VecInfo),
2403 VMSTATE_UINT8(enabled, VecInfo),
2404 VMSTATE_UINT8(pending, VecInfo),
2405 VMSTATE_UINT8(active, VecInfo),
2406 VMSTATE_UINT8(level, VecInfo),
2407 VMSTATE_END_OF_LIST()
2408 }
2409 };
2410
2411 static bool nvic_security_needed(void *opaque)
2412 {
2413 NVICState *s = opaque;
2414
2415 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2416 }
2417
2418 static int nvic_security_post_load(void *opaque, int version_id)
2419 {
2420 NVICState *s = opaque;
2421 int i;
2422
2423 /* Check for out of range priority settings */
2424 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2425 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2426 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2427 * if the CPU state has been migrated yet; a mismatch won't
2428 * cause the emulation to blow up, though.
2429 */
2430 return 1;
2431 }
2432 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2433 if (s->sec_vectors[i].prio & ~0xff) {
2434 return 1;
2435 }
2436 }
2437 return 0;
2438 }
2439
2440 static const VMStateDescription vmstate_nvic_security = {
2441 .name = "armv7m_nvic/m-security",
2442 .version_id = 1,
2443 .minimum_version_id = 1,
2444 .needed = nvic_security_needed,
2445 .post_load = &nvic_security_post_load,
2446 .fields = (VMStateField[]) {
2447 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2448 vmstate_VecInfo, VecInfo),
2449 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2450 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2451 VMSTATE_END_OF_LIST()
2452 }
2453 };
2454
2455 static const VMStateDescription vmstate_nvic = {
2456 .name = "armv7m_nvic",
2457 .version_id = 4,
2458 .minimum_version_id = 4,
2459 .post_load = &nvic_post_load,
2460 .fields = (VMStateField[]) {
2461 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2462 vmstate_VecInfo, VecInfo),
2463 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2464 VMSTATE_END_OF_LIST()
2465 },
2466 .subsections = (const VMStateDescription*[]) {
2467 &vmstate_nvic_security,
2468 NULL
2469 }
2470 };
2471
2472 static Property props_nvic[] = {
2473 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2474 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2475 DEFINE_PROP_END_OF_LIST()
2476 };
2477
2478 static void armv7m_nvic_reset(DeviceState *dev)
2479 {
2480 int resetprio;
2481 NVICState *s = NVIC(dev);
2482
2483 memset(s->vectors, 0, sizeof(s->vectors));
2484 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2485 s->prigroup[M_REG_NS] = 0;
2486 s->prigroup[M_REG_S] = 0;
2487
2488 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2489 /* MEM, BUS, and USAGE are enabled through
2490 * the System Handler Control register
2491 */
2492 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2493 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2494 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2495
2496 /* DebugMonitor is enabled via DEMCR.MON_EN */
2497 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2498
2499 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2500 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2501 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2502 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2503
2504 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2505 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2506 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2507 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2508 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2509
2510 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2511 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2512 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2513 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2514 } else {
2515 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2516 }
2517
2518 /* Strictly speaking the reset handler should be enabled.
2519 * However, we don't simulate soft resets through the NVIC,
2520 * and the reset vector should never be pended.
2521 * So we leave it disabled to catch logic errors.
2522 */
2523
2524 s->exception_prio = NVIC_NOEXC_PRIO;
2525 s->vectpending = 0;
2526 s->vectpending_is_s_banked = false;
2527 s->vectpending_prio = NVIC_NOEXC_PRIO;
2528
2529 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2530 memset(s->itns, 0, sizeof(s->itns));
2531 } else {
2532 /* This state is constant and not guest accessible in a non-security
2533 * NVIC; we set the bits to true to avoid having to do a feature
2534 * bit check in the NVIC enable/pend/etc register accessors.
2535 */
2536 int i;
2537
2538 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2539 s->itns[i] = true;
2540 }
2541 }
2542 }
2543
2544 static void nvic_systick_trigger(void *opaque, int n, int level)
2545 {
2546 NVICState *s = opaque;
2547
2548 if (level) {
2549 /* SysTick just asked us to pend its exception.
2550 * (This is different from an external interrupt line's
2551 * behaviour.)
2552 * n == 0 : NonSecure systick
2553 * n == 1 : Secure systick
2554 */
2555 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2556 }
2557 }
2558
2559 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2560 {
2561 NVICState *s = NVIC(dev);
2562 Error *err = NULL;
2563 int regionlen;
2564
2565 /* The armv7m container object will have set our CPU pointer */
2566 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2567 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2568 return;
2569 }
2570
2571 if (s->num_irq > NVIC_MAX_IRQ) {
2572 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2573 return;
2574 }
2575
2576 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2577
2578 /* include space for internal exception vectors */
2579 s->num_irq += NVIC_FIRST_IRQ;
2580
2581 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2582
2583 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2584 "realized", &err);
2585 if (err != NULL) {
2586 error_propagate(errp, err);
2587 return;
2588 }
2589 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2590 qdev_get_gpio_in_named(dev, "systick-trigger",
2591 M_REG_NS));
2592
2593 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2594 /* We couldn't init the secure systick device in instance_init
2595 * as we didn't know then if the CPU had the security extensions;
2596 * so we have to do it here.
2597 */
2598 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2599 &s->systick[M_REG_S],
2600 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
2601
2602 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2603 "realized", &err);
2604 if (err != NULL) {
2605 error_propagate(errp, err);
2606 return;
2607 }
2608 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2609 qdev_get_gpio_in_named(dev, "systick-trigger",
2610 M_REG_S));
2611 }
2612
2613 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2614 * and looks like this:
2615 * 0x004 - ICTR
2616 * 0x010 - 0xff - systick
2617 * 0x100..0x7ec - NVIC
2618 * 0x7f0..0xcff - Reserved
2619 * 0xd00..0xd3c - SCS registers
2620 * 0xd40..0xeff - Reserved or Not implemented
2621 * 0xf00 - STIR
2622 *
2623 * Some registers within this space are banked between security states.
2624 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2625 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2626 * to the main SCS range, and non-secure accesses (including when
2627 * the security extension is not implemented) are RAZ/WI.
2628 * Note that both the main SCS range and the alias range are defined
2629 * to be exempt from memory attribution (R_BLJT) and so the memory
2630 * transaction attribute always matches the current CPU security
2631 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2632 * wrappers we change attrs.secure to indicate the NS access; so
2633 * generally code determining which banked register to use should
2634 * use attrs.secure; code determining actual behaviour of the system
2635 * should use env->v7m.secure.
2636 */
2637 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2638 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2639 /* The system register region goes at the bottom of the priority
2640 * stack as it covers the whole page.
2641 */
2642 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2643 "nvic_sysregs", 0x1000);
2644 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2645
2646 memory_region_init_io(&s->systickmem, OBJECT(s),
2647 &nvic_systick_ops, s,
2648 "nvic_systick", 0xe0);
2649
2650 memory_region_add_subregion_overlap(&s->container, 0x10,
2651 &s->systickmem, 1);
2652
2653 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2654 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2655 &nvic_sysreg_ns_ops, &s->sysregmem,
2656 "nvic_sysregs_ns", 0x1000);
2657 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2658 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2659 &nvic_sysreg_ns_ops, &s->systickmem,
2660 "nvic_systick_ns", 0xe0);
2661 memory_region_add_subregion_overlap(&s->container, 0x20010,
2662 &s->systick_ns_mem, 1);
2663 }
2664
2665 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2666 }
2667
2668 static void armv7m_nvic_instance_init(Object *obj)
2669 {
2670 /* We have a different default value for the num-irq property
2671 * than our superclass. This function runs after qdev init
2672 * has set the defaults from the Property array and before
2673 * any user-specified property setting, so just modify the
2674 * value in the GICState struct.
2675 */
2676 DeviceState *dev = DEVICE(obj);
2677 NVICState *nvic = NVIC(obj);
2678 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2679
2680 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2681 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2682 /* We can't initialize the secure systick here, as we don't know
2683 * yet if we need it.
2684 */
2685
2686 sysbus_init_irq(sbd, &nvic->excpout);
2687 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2688 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2689 M_REG_NUM_BANKS);
2690 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2691 }
2692
2693 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2694 {
2695 DeviceClass *dc = DEVICE_CLASS(klass);
2696
2697 dc->vmsd = &vmstate_nvic;
2698 dc->props = props_nvic;
2699 dc->reset = armv7m_nvic_reset;
2700 dc->realize = armv7m_nvic_realize;
2701 }
2702
2703 static const TypeInfo armv7m_nvic_info = {
2704 .name = TYPE_NVIC,
2705 .parent = TYPE_SYS_BUS_DEVICE,
2706 .instance_init = armv7m_nvic_instance_init,
2707 .instance_size = sizeof(NVICState),
2708 .class_init = armv7m_nvic_class_init,
2709 .class_size = sizeof(SysBusDeviceClass),
2710 };
2711
2712 static void armv7m_nvic_register_types(void)
2713 {
2714 type_register_static(&armv7m_nvic_info);
2715 }
2716
2717 type_init(armv7m_nvic_register_types)