]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/armv7m_nvic.c
hw/intc/armv7m_nvic: NS BFAR and BFSR are RAZ/WI if BFHFNMINS == 0
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
1 /*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25
26 /* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53 /* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59
60 static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63
64 static int nvic_pending_prio(NVICState *s)
65 {
66 /* return the group priority of the current pending interrupt,
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
69 return s->vectpending_prio;
70 }
71
72 /* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86 static bool nvic_rettobase(NVICState *s)
87 {
88 int irq, nhand = 0;
89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103 }
104
105 /* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109 static bool nvic_isrpending(NVICState *s)
110 {
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129 }
130
131 static bool exc_is_banked(int exc)
132 {
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142 }
143
144 /* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150 return ~0U << (s->prigroup[secure] + 1);
151 }
152
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184 }
185
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204 }
205
206 /* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216 int pend_subprio = 0;
217
218 /* R_CQRV: precedence is by:
219 * - lowest group priority; if both the same then
220 * - lowest subpriority; if both the same then
221 * - lowest exception number; if both the same (ie banked) then
222 * - secure exception takes precedence
223 * Compare pseudocode RawExecutionPriority.
224 * Annoyingly, now we have two prigroup values (for S and NS)
225 * we can't do the loop comparison on raw priority values.
226 */
227 for (i = 1; i < s->num_irq; i++) {
228 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
229 VecInfo *vec;
230 int prio, subprio;
231 bool targets_secure;
232
233 if (bank == M_REG_S) {
234 if (!exc_is_banked(i)) {
235 continue;
236 }
237 vec = &s->sec_vectors[i];
238 targets_secure = true;
239 } else {
240 vec = &s->vectors[i];
241 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
242 }
243
244 prio = exc_group_prio(s, vec->prio, targets_secure);
245 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
246 if (vec->enabled && vec->pending &&
247 ((prio < pend_prio) ||
248 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
249 pend_prio = prio;
250 pend_subprio = subprio;
251 pend_irq = i;
252 pending_is_s_banked = (bank == M_REG_S);
253 }
254 if (vec->active && prio < active_prio) {
255 active_prio = prio;
256 }
257 }
258 }
259
260 s->vectpending_is_s_banked = pending_is_s_banked;
261 s->vectpending = pend_irq;
262 s->vectpending_prio = pend_prio;
263 s->exception_prio = active_prio;
264
265 trace_nvic_recompute_state_secure(s->vectpending,
266 s->vectpending_is_s_banked,
267 s->vectpending_prio,
268 s->exception_prio);
269 }
270
271 /* Recompute vectpending and exception_prio */
272 static void nvic_recompute_state(NVICState *s)
273 {
274 int i;
275 int pend_prio = NVIC_NOEXC_PRIO;
276 int active_prio = NVIC_NOEXC_PRIO;
277 int pend_irq = 0;
278
279 /* In theory we could write one function that handled both
280 * the "security extension present" and "not present"; however
281 * the security related changes significantly complicate the
282 * recomputation just by themselves and mixing both cases together
283 * would be even worse, so we retain a separate non-secure-only
284 * version for CPUs which don't implement the security extension.
285 */
286 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
287 nvic_recompute_state_secure(s);
288 return;
289 }
290
291 for (i = 1; i < s->num_irq; i++) {
292 VecInfo *vec = &s->vectors[i];
293
294 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
295 pend_prio = vec->prio;
296 pend_irq = i;
297 }
298 if (vec->active && vec->prio < active_prio) {
299 active_prio = vec->prio;
300 }
301 }
302
303 if (active_prio > 0) {
304 active_prio &= nvic_gprio_mask(s, false);
305 }
306
307 if (pend_prio > 0) {
308 pend_prio &= nvic_gprio_mask(s, false);
309 }
310
311 s->vectpending = pend_irq;
312 s->vectpending_prio = pend_prio;
313 s->exception_prio = active_prio;
314
315 trace_nvic_recompute_state(s->vectpending,
316 s->vectpending_prio,
317 s->exception_prio);
318 }
319
320 /* Return the current execution priority of the CPU
321 * (equivalent to the pseudocode ExecutionPriority function).
322 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
323 */
324 static inline int nvic_exec_prio(NVICState *s)
325 {
326 CPUARMState *env = &s->cpu->env;
327 int running = NVIC_NOEXC_PRIO;
328
329 if (env->v7m.basepri[M_REG_NS] > 0) {
330 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
331 }
332
333 if (env->v7m.basepri[M_REG_S] > 0) {
334 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
335 if (running > basepri) {
336 running = basepri;
337 }
338 }
339
340 if (env->v7m.primask[M_REG_NS]) {
341 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
342 if (running > NVIC_NS_PRIO_LIMIT) {
343 running = NVIC_NS_PRIO_LIMIT;
344 }
345 } else {
346 running = 0;
347 }
348 }
349
350 if (env->v7m.primask[M_REG_S]) {
351 running = 0;
352 }
353
354 if (env->v7m.faultmask[M_REG_NS]) {
355 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
356 running = -1;
357 } else {
358 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
359 if (running > NVIC_NS_PRIO_LIMIT) {
360 running = NVIC_NS_PRIO_LIMIT;
361 }
362 } else {
363 running = 0;
364 }
365 }
366 }
367
368 if (env->v7m.faultmask[M_REG_S]) {
369 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
370 }
371
372 /* consider priority of active handler */
373 return MIN(running, s->exception_prio);
374 }
375
376 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
377 {
378 /* Return true if the requested execution priority is negative
379 * for the specified security state, ie that security state
380 * has an active NMI or HardFault or has set its FAULTMASK.
381 * Note that this is not the same as whether the execution
382 * priority is actually negative (for instance AIRCR.PRIS may
383 * mean we don't allow FAULTMASK_NS to actually make the execution
384 * priority negative). Compare pseudocode IsReqExcPriNeg().
385 */
386 NVICState *s = opaque;
387
388 if (s->cpu->env.v7m.faultmask[secure]) {
389 return true;
390 }
391
392 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
393 s->vectors[ARMV7M_EXCP_HARD].active) {
394 return true;
395 }
396
397 if (s->vectors[ARMV7M_EXCP_NMI].active &&
398 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
399 return true;
400 }
401
402 return false;
403 }
404
405 bool armv7m_nvic_can_take_pending_exception(void *opaque)
406 {
407 NVICState *s = opaque;
408
409 return nvic_exec_prio(s) > nvic_pending_prio(s);
410 }
411
412 int armv7m_nvic_raw_execution_priority(void *opaque)
413 {
414 NVICState *s = opaque;
415
416 return s->exception_prio;
417 }
418
419 /* caller must call nvic_irq_update() after this.
420 * secure indicates the bank to use for banked exceptions (we assert if
421 * we are passed secure=true for a non-banked exception).
422 */
423 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
424 {
425 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
426 assert(irq < s->num_irq);
427
428 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
429
430 if (secure) {
431 assert(exc_is_banked(irq));
432 s->sec_vectors[irq].prio = prio;
433 } else {
434 s->vectors[irq].prio = prio;
435 }
436
437 trace_nvic_set_prio(irq, secure, prio);
438 }
439
440 /* Return the current raw priority register value.
441 * secure indicates the bank to use for banked exceptions (we assert if
442 * we are passed secure=true for a non-banked exception).
443 */
444 static int get_prio(NVICState *s, unsigned irq, bool secure)
445 {
446 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
447 assert(irq < s->num_irq);
448
449 if (secure) {
450 assert(exc_is_banked(irq));
451 return s->sec_vectors[irq].prio;
452 } else {
453 return s->vectors[irq].prio;
454 }
455 }
456
457 /* Recompute state and assert irq line accordingly.
458 * Must be called after changes to:
459 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
460 * prigroup
461 */
462 static void nvic_irq_update(NVICState *s)
463 {
464 int lvl;
465 int pend_prio;
466
467 nvic_recompute_state(s);
468 pend_prio = nvic_pending_prio(s);
469
470 /* Raise NVIC output if this IRQ would be taken, except that we
471 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
472 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
473 * to those CPU registers don't cause us to recalculate the NVIC
474 * pending info.
475 */
476 lvl = (pend_prio < s->exception_prio);
477 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
478 qemu_set_irq(s->excpout, lvl);
479 }
480
481 /**
482 * armv7m_nvic_clear_pending: mark the specified exception as not pending
483 * @opaque: the NVIC
484 * @irq: the exception number to mark as not pending
485 * @secure: false for non-banked exceptions or for the nonsecure
486 * version of a banked exception, true for the secure version of a banked
487 * exception.
488 *
489 * Marks the specified exception as not pending. Note that we will assert()
490 * if @secure is true and @irq does not specify one of the fixed set
491 * of architecturally banked exceptions.
492 */
493 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
494 {
495 NVICState *s = (NVICState *)opaque;
496 VecInfo *vec;
497
498 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
499
500 if (secure) {
501 assert(exc_is_banked(irq));
502 vec = &s->sec_vectors[irq];
503 } else {
504 vec = &s->vectors[irq];
505 }
506 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
507 if (vec->pending) {
508 vec->pending = 0;
509 nvic_irq_update(s);
510 }
511 }
512
513 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
514 bool derived)
515 {
516 /* Pend an exception, including possibly escalating it to HardFault.
517 *
518 * This function handles both "normal" pending of interrupts and
519 * exceptions, and also derived exceptions (ones which occur as
520 * a result of trying to take some other exception).
521 *
522 * If derived == true, the caller guarantees that we are part way through
523 * trying to take an exception (but have not yet called
524 * armv7m_nvic_acknowledge_irq() to make it active), and so:
525 * - s->vectpending is the "original exception" we were trying to take
526 * - irq is the "derived exception"
527 * - nvic_exec_prio(s) gives the priority before exception entry
528 * Here we handle the prioritization logic which the pseudocode puts
529 * in the DerivedLateArrival() function.
530 */
531
532 NVICState *s = (NVICState *)opaque;
533 bool banked = exc_is_banked(irq);
534 VecInfo *vec;
535 bool targets_secure;
536
537 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
538 assert(!secure || banked);
539
540 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
541
542 targets_secure = banked ? secure : exc_targets_secure(s, irq);
543
544 trace_nvic_set_pending(irq, secure, targets_secure,
545 derived, vec->enabled, vec->prio);
546
547 if (derived) {
548 /* Derived exceptions are always synchronous. */
549 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
550
551 if (irq == ARMV7M_EXCP_DEBUG &&
552 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
553 /* DebugMonitorFault, but its priority is lower than the
554 * preempted exception priority: just ignore it.
555 */
556 return;
557 }
558
559 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
560 /* If this is a terminal exception (one which means we cannot
561 * take the original exception, like a failure to read its
562 * vector table entry), then we must take the derived exception.
563 * If the derived exception can't take priority over the
564 * original exception, then we go into Lockup.
565 *
566 * For QEMU, we rely on the fact that a derived exception is
567 * terminal if and only if it's reported to us as HardFault,
568 * which saves having to have an extra argument is_terminal
569 * that we'd only use in one place.
570 */
571 cpu_abort(&s->cpu->parent_obj,
572 "Lockup: can't take terminal derived exception "
573 "(original exception priority %d)\n",
574 s->vectpending_prio);
575 }
576 /* We now continue with the same code as for a normal pending
577 * exception, which will cause us to pend the derived exception.
578 * We'll then take either the original or the derived exception
579 * based on which is higher priority by the usual mechanism
580 * for selecting the highest priority pending interrupt.
581 */
582 }
583
584 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
585 /* If a synchronous exception is pending then it may be
586 * escalated to HardFault if:
587 * * it is equal or lower priority to current execution
588 * * it is disabled
589 * (ie we need to take it immediately but we can't do so).
590 * Asynchronous exceptions (and interrupts) simply remain pending.
591 *
592 * For QEMU, we don't have any imprecise (asynchronous) faults,
593 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
594 * synchronous.
595 * Debug exceptions are awkward because only Debug exceptions
596 * resulting from the BKPT instruction should be escalated,
597 * but we don't currently implement any Debug exceptions other
598 * than those that result from BKPT, so we treat all debug exceptions
599 * as needing escalation.
600 *
601 * This all means we can identify whether to escalate based only on
602 * the exception number and don't (yet) need the caller to explicitly
603 * tell us whether this exception is synchronous or not.
604 */
605 int running = nvic_exec_prio(s);
606 bool escalate = false;
607
608 if (exc_group_prio(s, vec->prio, secure) >= running) {
609 trace_nvic_escalate_prio(irq, vec->prio, running);
610 escalate = true;
611 } else if (!vec->enabled) {
612 trace_nvic_escalate_disabled(irq);
613 escalate = true;
614 }
615
616 if (escalate) {
617
618 /* We need to escalate this exception to a synchronous HardFault.
619 * If BFHFNMINS is set then we escalate to the banked HF for
620 * the target security state of the original exception; otherwise
621 * we take a Secure HardFault.
622 */
623 irq = ARMV7M_EXCP_HARD;
624 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
625 (targets_secure ||
626 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
627 vec = &s->sec_vectors[irq];
628 } else {
629 vec = &s->vectors[irq];
630 }
631 if (running <= vec->prio) {
632 /* We want to escalate to HardFault but we can't take the
633 * synchronous HardFault at this point either. This is a
634 * Lockup condition due to a guest bug. We don't model
635 * Lockup, so report via cpu_abort() instead.
636 */
637 cpu_abort(&s->cpu->parent_obj,
638 "Lockup: can't escalate %d to HardFault "
639 "(current priority %d)\n", irq, running);
640 }
641
642 /* HF may be banked but there is only one shared HFSR */
643 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
644 }
645 }
646
647 if (!vec->pending) {
648 vec->pending = 1;
649 nvic_irq_update(s);
650 }
651 }
652
653 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
654 {
655 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
656 }
657
658 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
659 {
660 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
661 }
662
663 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
664 {
665 /*
666 * Pend an exception during lazy FP stacking. This differs
667 * from the usual exception pending because the logic for
668 * whether we should escalate depends on the saved context
669 * in the FPCCR register, not on the current state of the CPU/NVIC.
670 */
671 NVICState *s = (NVICState *)opaque;
672 bool banked = exc_is_banked(irq);
673 VecInfo *vec;
674 bool targets_secure;
675 bool escalate = false;
676 /*
677 * We will only look at bits in fpccr if this is a banked exception
678 * (in which case 'secure' tells us whether it is the S or NS version).
679 * All the bits for the non-banked exceptions are in fpccr_s.
680 */
681 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
682 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
683
684 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
685 assert(!secure || banked);
686
687 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
688
689 targets_secure = banked ? secure : exc_targets_secure(s, irq);
690
691 switch (irq) {
692 case ARMV7M_EXCP_DEBUG:
693 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
694 /* Ignore DebugMonitor exception */
695 return;
696 }
697 break;
698 case ARMV7M_EXCP_MEM:
699 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
700 break;
701 case ARMV7M_EXCP_USAGE:
702 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
703 break;
704 case ARMV7M_EXCP_BUS:
705 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
706 break;
707 case ARMV7M_EXCP_SECURE:
708 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
709 break;
710 default:
711 g_assert_not_reached();
712 }
713
714 if (escalate) {
715 /*
716 * Escalate to HardFault: faults that initially targeted Secure
717 * continue to do so, even if HF normally targets NonSecure.
718 */
719 irq = ARMV7M_EXCP_HARD;
720 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
721 (targets_secure ||
722 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
723 vec = &s->sec_vectors[irq];
724 } else {
725 vec = &s->vectors[irq];
726 }
727 }
728
729 if (!vec->enabled ||
730 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
731 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
732 /*
733 * We want to escalate to HardFault but the context the
734 * FP state belongs to prevents the exception pre-empting.
735 */
736 cpu_abort(&s->cpu->parent_obj,
737 "Lockup: can't escalate to HardFault during "
738 "lazy FP register stacking\n");
739 }
740 }
741
742 if (escalate) {
743 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
744 }
745 if (!vec->pending) {
746 vec->pending = 1;
747 /*
748 * We do not call nvic_irq_update(), because we know our caller
749 * is going to handle causing us to take the exception by
750 * raising EXCP_LAZYFP, so raising the IRQ line would be
751 * pointless extra work. We just need to recompute the
752 * priorities so that armv7m_nvic_can_take_pending_exception()
753 * returns the right answer.
754 */
755 nvic_recompute_state(s);
756 }
757 }
758
759 /* Make pending IRQ active. */
760 void armv7m_nvic_acknowledge_irq(void *opaque)
761 {
762 NVICState *s = (NVICState *)opaque;
763 CPUARMState *env = &s->cpu->env;
764 const int pending = s->vectpending;
765 const int running = nvic_exec_prio(s);
766 VecInfo *vec;
767
768 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
769
770 if (s->vectpending_is_s_banked) {
771 vec = &s->sec_vectors[pending];
772 } else {
773 vec = &s->vectors[pending];
774 }
775
776 assert(vec->enabled);
777 assert(vec->pending);
778
779 assert(s->vectpending_prio < running);
780
781 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
782
783 vec->active = 1;
784 vec->pending = 0;
785
786 write_v7m_exception(env, s->vectpending);
787
788 nvic_irq_update(s);
789 }
790
791 void armv7m_nvic_get_pending_irq_info(void *opaque,
792 int *pirq, bool *ptargets_secure)
793 {
794 NVICState *s = (NVICState *)opaque;
795 const int pending = s->vectpending;
796 bool targets_secure;
797
798 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
799
800 if (s->vectpending_is_s_banked) {
801 targets_secure = true;
802 } else {
803 targets_secure = !exc_is_banked(pending) &&
804 exc_targets_secure(s, pending);
805 }
806
807 trace_nvic_get_pending_irq_info(pending, targets_secure);
808
809 *ptargets_secure = targets_secure;
810 *pirq = pending;
811 }
812
813 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
814 {
815 NVICState *s = (NVICState *)opaque;
816 VecInfo *vec;
817 int ret;
818
819 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
820
821 if (secure && exc_is_banked(irq)) {
822 vec = &s->sec_vectors[irq];
823 } else {
824 vec = &s->vectors[irq];
825 }
826
827 trace_nvic_complete_irq(irq, secure);
828
829 if (!vec->active) {
830 /* Tell the caller this was an illegal exception return */
831 return -1;
832 }
833
834 ret = nvic_rettobase(s);
835
836 vec->active = 0;
837 if (vec->level) {
838 /* Re-pend the exception if it's still held high; only
839 * happens for extenal IRQs
840 */
841 assert(irq >= NVIC_FIRST_IRQ);
842 vec->pending = 1;
843 }
844
845 nvic_irq_update(s);
846
847 return ret;
848 }
849
850 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
851 {
852 /*
853 * Return whether an exception is "ready", i.e. it is enabled and is
854 * configured at a priority which would allow it to interrupt the
855 * current execution priority.
856 *
857 * irq and secure have the same semantics as for armv7m_nvic_set_pending():
858 * for non-banked exceptions secure is always false; for banked exceptions
859 * it indicates which of the exceptions is required.
860 */
861 NVICState *s = (NVICState *)opaque;
862 bool banked = exc_is_banked(irq);
863 VecInfo *vec;
864 int running = nvic_exec_prio(s);
865
866 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
867 assert(!secure || banked);
868
869 /*
870 * HardFault is an odd special case: we always check against -1,
871 * even if we're secure and HardFault has priority -3; we never
872 * need to check for enabled state.
873 */
874 if (irq == ARMV7M_EXCP_HARD) {
875 return running > -1;
876 }
877
878 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
879
880 return vec->enabled &&
881 exc_group_prio(s, vec->prio, secure) < running;
882 }
883
884 /* callback when external interrupt line is changed */
885 static void set_irq_level(void *opaque, int n, int level)
886 {
887 NVICState *s = opaque;
888 VecInfo *vec;
889
890 n += NVIC_FIRST_IRQ;
891
892 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
893
894 trace_nvic_set_irq_level(n, level);
895
896 /* The pending status of an external interrupt is
897 * latched on rising edge and exception handler return.
898 *
899 * Pulsing the IRQ will always run the handler
900 * once, and the handler will re-run until the
901 * level is low when the handler completes.
902 */
903 vec = &s->vectors[n];
904 if (level != vec->level) {
905 vec->level = level;
906 if (level) {
907 armv7m_nvic_set_pending(s, n, false);
908 }
909 }
910 }
911
912 /* callback when external NMI line is changed */
913 static void nvic_nmi_trigger(void *opaque, int n, int level)
914 {
915 NVICState *s = opaque;
916
917 trace_nvic_set_nmi_level(level);
918
919 /*
920 * The architecture doesn't specify whether NMI should share
921 * the normal-interrupt behaviour of being resampled on
922 * exception handler return. We choose not to, so just
923 * set NMI pending here and don't track the current level.
924 */
925 if (level) {
926 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
927 }
928 }
929
930 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
931 {
932 ARMCPU *cpu = s->cpu;
933 uint32_t val;
934
935 switch (offset) {
936 case 4: /* Interrupt Control Type. */
937 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
938 goto bad_offset;
939 }
940 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
941 case 0xc: /* CPPWR */
942 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
943 goto bad_offset;
944 }
945 /* We make the IMPDEF choice that nothing can ever go into a
946 * non-retentive power state, which allows us to RAZ/WI this.
947 */
948 return 0;
949 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
950 {
951 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
952 int i;
953
954 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
955 goto bad_offset;
956 }
957 if (!attrs.secure) {
958 return 0;
959 }
960 val = 0;
961 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
962 if (s->itns[startvec + i]) {
963 val |= (1 << i);
964 }
965 }
966 return val;
967 }
968 case 0xd00: /* CPUID Base. */
969 return cpu->midr;
970 case 0xd04: /* Interrupt Control State (ICSR) */
971 /* VECTACTIVE */
972 val = cpu->env.v7m.exception;
973 /* VECTPENDING */
974 val |= (s->vectpending & 0xff) << 12;
975 /* ISRPENDING - set if any external IRQ is pending */
976 if (nvic_isrpending(s)) {
977 val |= (1 << 22);
978 }
979 /* RETTOBASE - set if only one handler is active */
980 if (nvic_rettobase(s)) {
981 val |= (1 << 11);
982 }
983 if (attrs.secure) {
984 /* PENDSTSET */
985 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
986 val |= (1 << 26);
987 }
988 /* PENDSVSET */
989 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
990 val |= (1 << 28);
991 }
992 } else {
993 /* PENDSTSET */
994 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
995 val |= (1 << 26);
996 }
997 /* PENDSVSET */
998 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
999 val |= (1 << 28);
1000 }
1001 }
1002 /* NMIPENDSET */
1003 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1004 && s->vectors[ARMV7M_EXCP_NMI].pending) {
1005 val |= (1 << 31);
1006 }
1007 /* ISRPREEMPT: RES0 when halting debug not implemented */
1008 /* STTNS: RES0 for the Main Extension */
1009 return val;
1010 case 0xd08: /* Vector Table Offset. */
1011 return cpu->env.v7m.vecbase[attrs.secure];
1012 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1013 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1014 if (attrs.secure) {
1015 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1016 val |= cpu->env.v7m.aircr;
1017 } else {
1018 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1019 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1020 * security isn't supported then BFHFNMINS is RAO (and
1021 * the bit in env.v7m.aircr is always set).
1022 */
1023 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1024 }
1025 }
1026 return val;
1027 case 0xd10: /* System Control. */
1028 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1029 goto bad_offset;
1030 }
1031 return cpu->env.v7m.scr[attrs.secure];
1032 case 0xd14: /* Configuration Control. */
1033 /* The BFHFNMIGN bit is the only non-banked bit; we
1034 * keep it in the non-secure copy of the register.
1035 */
1036 val = cpu->env.v7m.ccr[attrs.secure];
1037 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1038 return val;
1039 case 0xd24: /* System Handler Control and State (SHCSR) */
1040 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1041 goto bad_offset;
1042 }
1043 val = 0;
1044 if (attrs.secure) {
1045 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1046 val |= (1 << 0);
1047 }
1048 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1049 val |= (1 << 2);
1050 }
1051 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1052 val |= (1 << 3);
1053 }
1054 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1055 val |= (1 << 7);
1056 }
1057 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1058 val |= (1 << 10);
1059 }
1060 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1061 val |= (1 << 11);
1062 }
1063 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1064 val |= (1 << 12);
1065 }
1066 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1067 val |= (1 << 13);
1068 }
1069 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1070 val |= (1 << 15);
1071 }
1072 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1073 val |= (1 << 16);
1074 }
1075 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1076 val |= (1 << 18);
1077 }
1078 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1079 val |= (1 << 21);
1080 }
1081 /* SecureFault is not banked but is always RAZ/WI to NS */
1082 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1083 val |= (1 << 4);
1084 }
1085 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1086 val |= (1 << 19);
1087 }
1088 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1089 val |= (1 << 20);
1090 }
1091 } else {
1092 if (s->vectors[ARMV7M_EXCP_MEM].active) {
1093 val |= (1 << 0);
1094 }
1095 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1096 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1097 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1098 val |= (1 << 2);
1099 }
1100 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1101 val |= (1 << 21);
1102 }
1103 }
1104 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1105 val |= (1 << 3);
1106 }
1107 if (s->vectors[ARMV7M_EXCP_SVC].active) {
1108 val |= (1 << 7);
1109 }
1110 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1111 val |= (1 << 10);
1112 }
1113 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1114 val |= (1 << 11);
1115 }
1116 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1117 val |= (1 << 12);
1118 }
1119 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1120 val |= (1 << 13);
1121 }
1122 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1123 val |= (1 << 15);
1124 }
1125 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1126 val |= (1 << 16);
1127 }
1128 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1129 val |= (1 << 18);
1130 }
1131 }
1132 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1133 if (s->vectors[ARMV7M_EXCP_BUS].active) {
1134 val |= (1 << 1);
1135 }
1136 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1137 val |= (1 << 14);
1138 }
1139 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1140 val |= (1 << 17);
1141 }
1142 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1143 s->vectors[ARMV7M_EXCP_NMI].active) {
1144 /* NMIACT is not present in v7M */
1145 val |= (1 << 5);
1146 }
1147 }
1148
1149 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1150 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1151 val |= (1 << 8);
1152 }
1153 return val;
1154 case 0xd2c: /* Hard Fault Status. */
1155 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1156 goto bad_offset;
1157 }
1158 return cpu->env.v7m.hfsr;
1159 case 0xd30: /* Debug Fault Status. */
1160 return cpu->env.v7m.dfsr;
1161 case 0xd34: /* MMFAR MemManage Fault Address */
1162 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1163 goto bad_offset;
1164 }
1165 return cpu->env.v7m.mmfar[attrs.secure];
1166 case 0xd38: /* Bus Fault Address. */
1167 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1168 goto bad_offset;
1169 }
1170 if (!attrs.secure &&
1171 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1172 return 0;
1173 }
1174 return cpu->env.v7m.bfar;
1175 case 0xd3c: /* Aux Fault Status. */
1176 /* TODO: Implement fault status registers. */
1177 qemu_log_mask(LOG_UNIMP,
1178 "Aux Fault status registers unimplemented\n");
1179 return 0;
1180 case 0xd40: /* PFR0. */
1181 return cpu->id_pfr0;
1182 case 0xd44: /* PFR1. */
1183 return cpu->id_pfr1;
1184 case 0xd48: /* DFR0. */
1185 return cpu->id_dfr0;
1186 case 0xd4c: /* AFR0. */
1187 return cpu->id_afr0;
1188 case 0xd50: /* MMFR0. */
1189 return cpu->id_mmfr0;
1190 case 0xd54: /* MMFR1. */
1191 return cpu->id_mmfr1;
1192 case 0xd58: /* MMFR2. */
1193 return cpu->id_mmfr2;
1194 case 0xd5c: /* MMFR3. */
1195 return cpu->id_mmfr3;
1196 case 0xd60: /* ISAR0. */
1197 return cpu->isar.id_isar0;
1198 case 0xd64: /* ISAR1. */
1199 return cpu->isar.id_isar1;
1200 case 0xd68: /* ISAR2. */
1201 return cpu->isar.id_isar2;
1202 case 0xd6c: /* ISAR3. */
1203 return cpu->isar.id_isar3;
1204 case 0xd70: /* ISAR4. */
1205 return cpu->isar.id_isar4;
1206 case 0xd74: /* ISAR5. */
1207 return cpu->isar.id_isar5;
1208 case 0xd78: /* CLIDR */
1209 return cpu->clidr;
1210 case 0xd7c: /* CTR */
1211 return cpu->ctr;
1212 case 0xd80: /* CSSIDR */
1213 {
1214 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1215 return cpu->ccsidr[idx];
1216 }
1217 case 0xd84: /* CSSELR */
1218 return cpu->env.v7m.csselr[attrs.secure];
1219 case 0xd88: /* CPACR */
1220 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1221 return 0;
1222 }
1223 return cpu->env.v7m.cpacr[attrs.secure];
1224 case 0xd8c: /* NSACR */
1225 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1226 return 0;
1227 }
1228 return cpu->env.v7m.nsacr;
1229 /* TODO: Implement debug registers. */
1230 case 0xd90: /* MPU_TYPE */
1231 /* Unified MPU; if the MPU is not present this value is zero */
1232 return cpu->pmsav7_dregion << 8;
1233 break;
1234 case 0xd94: /* MPU_CTRL */
1235 return cpu->env.v7m.mpu_ctrl[attrs.secure];
1236 case 0xd98: /* MPU_RNR */
1237 return cpu->env.pmsav7.rnr[attrs.secure];
1238 case 0xd9c: /* MPU_RBAR */
1239 case 0xda4: /* MPU_RBAR_A1 */
1240 case 0xdac: /* MPU_RBAR_A2 */
1241 case 0xdb4: /* MPU_RBAR_A3 */
1242 {
1243 int region = cpu->env.pmsav7.rnr[attrs.secure];
1244
1245 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1246 /* PMSAv8M handling of the aliases is different from v7M:
1247 * aliases A1, A2, A3 override the low two bits of the region
1248 * number in MPU_RNR, and there is no 'region' field in the
1249 * RBAR register.
1250 */
1251 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1252 if (aliasno) {
1253 region = deposit32(region, 0, 2, aliasno);
1254 }
1255 if (region >= cpu->pmsav7_dregion) {
1256 return 0;
1257 }
1258 return cpu->env.pmsav8.rbar[attrs.secure][region];
1259 }
1260
1261 if (region >= cpu->pmsav7_dregion) {
1262 return 0;
1263 }
1264 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1265 }
1266 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1267 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1268 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1269 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1270 {
1271 int region = cpu->env.pmsav7.rnr[attrs.secure];
1272
1273 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1274 /* PMSAv8M handling of the aliases is different from v7M:
1275 * aliases A1, A2, A3 override the low two bits of the region
1276 * number in MPU_RNR.
1277 */
1278 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1279 if (aliasno) {
1280 region = deposit32(region, 0, 2, aliasno);
1281 }
1282 if (region >= cpu->pmsav7_dregion) {
1283 return 0;
1284 }
1285 return cpu->env.pmsav8.rlar[attrs.secure][region];
1286 }
1287
1288 if (region >= cpu->pmsav7_dregion) {
1289 return 0;
1290 }
1291 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1292 (cpu->env.pmsav7.drsr[region] & 0xffff);
1293 }
1294 case 0xdc0: /* MPU_MAIR0 */
1295 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1296 goto bad_offset;
1297 }
1298 return cpu->env.pmsav8.mair0[attrs.secure];
1299 case 0xdc4: /* MPU_MAIR1 */
1300 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1301 goto bad_offset;
1302 }
1303 return cpu->env.pmsav8.mair1[attrs.secure];
1304 case 0xdd0: /* SAU_CTRL */
1305 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1306 goto bad_offset;
1307 }
1308 if (!attrs.secure) {
1309 return 0;
1310 }
1311 return cpu->env.sau.ctrl;
1312 case 0xdd4: /* SAU_TYPE */
1313 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1314 goto bad_offset;
1315 }
1316 if (!attrs.secure) {
1317 return 0;
1318 }
1319 return cpu->sau_sregion;
1320 case 0xdd8: /* SAU_RNR */
1321 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1322 goto bad_offset;
1323 }
1324 if (!attrs.secure) {
1325 return 0;
1326 }
1327 return cpu->env.sau.rnr;
1328 case 0xddc: /* SAU_RBAR */
1329 {
1330 int region = cpu->env.sau.rnr;
1331
1332 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1333 goto bad_offset;
1334 }
1335 if (!attrs.secure) {
1336 return 0;
1337 }
1338 if (region >= cpu->sau_sregion) {
1339 return 0;
1340 }
1341 return cpu->env.sau.rbar[region];
1342 }
1343 case 0xde0: /* SAU_RLAR */
1344 {
1345 int region = cpu->env.sau.rnr;
1346
1347 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1348 goto bad_offset;
1349 }
1350 if (!attrs.secure) {
1351 return 0;
1352 }
1353 if (region >= cpu->sau_sregion) {
1354 return 0;
1355 }
1356 return cpu->env.sau.rlar[region];
1357 }
1358 case 0xde4: /* SFSR */
1359 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1360 goto bad_offset;
1361 }
1362 if (!attrs.secure) {
1363 return 0;
1364 }
1365 return cpu->env.v7m.sfsr;
1366 case 0xde8: /* SFAR */
1367 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1368 goto bad_offset;
1369 }
1370 if (!attrs.secure) {
1371 return 0;
1372 }
1373 return cpu->env.v7m.sfar;
1374 case 0xf34: /* FPCCR */
1375 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1376 return 0;
1377 }
1378 if (attrs.secure) {
1379 return cpu->env.v7m.fpccr[M_REG_S];
1380 } else {
1381 /*
1382 * NS can read LSPEN, CLRONRET and MONRDY. It can read
1383 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1384 * other non-banked bits RAZ.
1385 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1386 */
1387 uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1388 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1389 R_V7M_FPCCR_CLRONRET_MASK |
1390 R_V7M_FPCCR_MONRDY_MASK;
1391
1392 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1393 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1394 }
1395
1396 value &= mask;
1397
1398 value |= cpu->env.v7m.fpccr[M_REG_NS];
1399 return value;
1400 }
1401 case 0xf38: /* FPCAR */
1402 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1403 return 0;
1404 }
1405 return cpu->env.v7m.fpcar[attrs.secure];
1406 case 0xf3c: /* FPDSCR */
1407 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1408 return 0;
1409 }
1410 return cpu->env.v7m.fpdscr[attrs.secure];
1411 case 0xf40: /* MVFR0 */
1412 return cpu->isar.mvfr0;
1413 case 0xf44: /* MVFR1 */
1414 return cpu->isar.mvfr1;
1415 case 0xf48: /* MVFR2 */
1416 return cpu->isar.mvfr2;
1417 default:
1418 bad_offset:
1419 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1420 return 0;
1421 }
1422 }
1423
1424 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1425 MemTxAttrs attrs)
1426 {
1427 ARMCPU *cpu = s->cpu;
1428
1429 switch (offset) {
1430 case 0xc: /* CPPWR */
1431 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1432 goto bad_offset;
1433 }
1434 /* Make the IMPDEF choice to RAZ/WI this. */
1435 break;
1436 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1437 {
1438 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1439 int i;
1440
1441 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1442 goto bad_offset;
1443 }
1444 if (!attrs.secure) {
1445 break;
1446 }
1447 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1448 s->itns[startvec + i] = (value >> i) & 1;
1449 }
1450 nvic_irq_update(s);
1451 break;
1452 }
1453 case 0xd04: /* Interrupt Control State (ICSR) */
1454 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1455 if (value & (1 << 31)) {
1456 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1457 } else if (value & (1 << 30) &&
1458 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1459 /* PENDNMICLR didn't exist in v7M */
1460 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1461 }
1462 }
1463 if (value & (1 << 28)) {
1464 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1465 } else if (value & (1 << 27)) {
1466 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1467 }
1468 if (value & (1 << 26)) {
1469 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1470 } else if (value & (1 << 25)) {
1471 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1472 }
1473 break;
1474 case 0xd08: /* Vector Table Offset. */
1475 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1476 break;
1477 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1478 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1479 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1480 if (attrs.secure ||
1481 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1482 qemu_irq_pulse(s->sysresetreq);
1483 }
1484 }
1485 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1486 qemu_log_mask(LOG_GUEST_ERROR,
1487 "Setting VECTCLRACTIVE when not in DEBUG mode "
1488 "is UNPREDICTABLE\n");
1489 }
1490 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1491 /* NB: this bit is RES0 in v8M */
1492 qemu_log_mask(LOG_GUEST_ERROR,
1493 "Setting VECTRESET when not in DEBUG mode "
1494 "is UNPREDICTABLE\n");
1495 }
1496 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1497 s->prigroup[attrs.secure] =
1498 extract32(value,
1499 R_V7M_AIRCR_PRIGROUP_SHIFT,
1500 R_V7M_AIRCR_PRIGROUP_LENGTH);
1501 }
1502 if (attrs.secure) {
1503 /* These bits are only writable by secure */
1504 cpu->env.v7m.aircr = value &
1505 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1506 R_V7M_AIRCR_BFHFNMINS_MASK |
1507 R_V7M_AIRCR_PRIS_MASK);
1508 /* BFHFNMINS changes the priority of Secure HardFault, and
1509 * allows a pending Non-secure HardFault to preempt (which
1510 * we implement by marking it enabled).
1511 */
1512 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1513 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1514 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1515 } else {
1516 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1517 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1518 }
1519 }
1520 nvic_irq_update(s);
1521 }
1522 break;
1523 case 0xd10: /* System Control. */
1524 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1525 goto bad_offset;
1526 }
1527 /* We don't implement deep-sleep so these bits are RAZ/WI.
1528 * The other bits in the register are banked.
1529 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1530 * is architecturally permitted.
1531 */
1532 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1533 cpu->env.v7m.scr[attrs.secure] = value;
1534 break;
1535 case 0xd14: /* Configuration Control. */
1536 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1537 goto bad_offset;
1538 }
1539
1540 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1541 value &= (R_V7M_CCR_STKALIGN_MASK |
1542 R_V7M_CCR_BFHFNMIGN_MASK |
1543 R_V7M_CCR_DIV_0_TRP_MASK |
1544 R_V7M_CCR_UNALIGN_TRP_MASK |
1545 R_V7M_CCR_USERSETMPEND_MASK |
1546 R_V7M_CCR_NONBASETHRDENA_MASK);
1547
1548 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1549 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1550 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1551 | R_V7M_CCR_STKALIGN_MASK;
1552 }
1553 if (attrs.secure) {
1554 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1555 cpu->env.v7m.ccr[M_REG_NS] =
1556 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1557 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1558 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1559 }
1560
1561 cpu->env.v7m.ccr[attrs.secure] = value;
1562 break;
1563 case 0xd24: /* System Handler Control and State (SHCSR) */
1564 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1565 goto bad_offset;
1566 }
1567 if (attrs.secure) {
1568 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1569 /* Secure HardFault active bit cannot be written */
1570 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1571 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1572 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1573 (value & (1 << 10)) != 0;
1574 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1575 (value & (1 << 11)) != 0;
1576 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1577 (value & (1 << 12)) != 0;
1578 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1579 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1580 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1581 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1582 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1583 (value & (1 << 18)) != 0;
1584 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1585 /* SecureFault not banked, but RAZ/WI to NS */
1586 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1587 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1588 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1589 } else {
1590 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1591 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1592 /* HARDFAULTPENDED is not present in v7M */
1593 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1594 }
1595 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1596 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1597 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1598 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1599 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1600 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1601 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1602 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1603 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1604 }
1605 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1606 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1607 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1608 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1609 }
1610 /* NMIACT can only be written if the write is of a zero, with
1611 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1612 */
1613 if (!attrs.secure && cpu->env.v7m.secure &&
1614 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1615 (value & (1 << 5)) == 0) {
1616 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1617 }
1618 /* HARDFAULTACT can only be written if the write is of a zero
1619 * to the non-secure HardFault state by the CPU in secure state.
1620 * The only case where we can be targeting the non-secure HF state
1621 * when in secure state is if this is a write via the NS alias
1622 * and BFHFNMINS is 1.
1623 */
1624 if (!attrs.secure && cpu->env.v7m.secure &&
1625 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1626 (value & (1 << 2)) == 0) {
1627 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1628 }
1629
1630 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1631 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1632 nvic_irq_update(s);
1633 break;
1634 case 0xd2c: /* Hard Fault Status. */
1635 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1636 goto bad_offset;
1637 }
1638 cpu->env.v7m.hfsr &= ~value; /* W1C */
1639 break;
1640 case 0xd30: /* Debug Fault Status. */
1641 cpu->env.v7m.dfsr &= ~value; /* W1C */
1642 break;
1643 case 0xd34: /* Mem Manage Address. */
1644 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1645 goto bad_offset;
1646 }
1647 cpu->env.v7m.mmfar[attrs.secure] = value;
1648 return;
1649 case 0xd38: /* Bus Fault Address. */
1650 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1651 goto bad_offset;
1652 }
1653 if (!attrs.secure &&
1654 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1655 return;
1656 }
1657 cpu->env.v7m.bfar = value;
1658 return;
1659 case 0xd3c: /* Aux Fault Status. */
1660 qemu_log_mask(LOG_UNIMP,
1661 "NVIC: Aux fault status registers unimplemented\n");
1662 break;
1663 case 0xd84: /* CSSELR */
1664 if (!arm_v7m_csselr_razwi(cpu)) {
1665 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1666 }
1667 break;
1668 case 0xd88: /* CPACR */
1669 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1670 /* We implement only the Floating Point extension's CP10/CP11 */
1671 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1672 }
1673 break;
1674 case 0xd8c: /* NSACR */
1675 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1676 /* We implement only the Floating Point extension's CP10/CP11 */
1677 cpu->env.v7m.nsacr = value & (3 << 10);
1678 }
1679 break;
1680 case 0xd90: /* MPU_TYPE */
1681 return; /* RO */
1682 case 0xd94: /* MPU_CTRL */
1683 if ((value &
1684 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1685 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1686 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1687 "UNPREDICTABLE\n");
1688 }
1689 cpu->env.v7m.mpu_ctrl[attrs.secure]
1690 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1691 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1692 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1693 tlb_flush(CPU(cpu));
1694 break;
1695 case 0xd98: /* MPU_RNR */
1696 if (value >= cpu->pmsav7_dregion) {
1697 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1698 PRIu32 "/%" PRIu32 "\n",
1699 value, cpu->pmsav7_dregion);
1700 } else {
1701 cpu->env.pmsav7.rnr[attrs.secure] = value;
1702 }
1703 break;
1704 case 0xd9c: /* MPU_RBAR */
1705 case 0xda4: /* MPU_RBAR_A1 */
1706 case 0xdac: /* MPU_RBAR_A2 */
1707 case 0xdb4: /* MPU_RBAR_A3 */
1708 {
1709 int region;
1710
1711 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1712 /* PMSAv8M handling of the aliases is different from v7M:
1713 * aliases A1, A2, A3 override the low two bits of the region
1714 * number in MPU_RNR, and there is no 'region' field in the
1715 * RBAR register.
1716 */
1717 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1718
1719 region = cpu->env.pmsav7.rnr[attrs.secure];
1720 if (aliasno) {
1721 region = deposit32(region, 0, 2, aliasno);
1722 }
1723 if (region >= cpu->pmsav7_dregion) {
1724 return;
1725 }
1726 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1727 tlb_flush(CPU(cpu));
1728 return;
1729 }
1730
1731 if (value & (1 << 4)) {
1732 /* VALID bit means use the region number specified in this
1733 * value and also update MPU_RNR.REGION with that value.
1734 */
1735 region = extract32(value, 0, 4);
1736 if (region >= cpu->pmsav7_dregion) {
1737 qemu_log_mask(LOG_GUEST_ERROR,
1738 "MPU region out of range %u/%" PRIu32 "\n",
1739 region, cpu->pmsav7_dregion);
1740 return;
1741 }
1742 cpu->env.pmsav7.rnr[attrs.secure] = region;
1743 } else {
1744 region = cpu->env.pmsav7.rnr[attrs.secure];
1745 }
1746
1747 if (region >= cpu->pmsav7_dregion) {
1748 return;
1749 }
1750
1751 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1752 tlb_flush(CPU(cpu));
1753 break;
1754 }
1755 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1756 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1757 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1758 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1759 {
1760 int region = cpu->env.pmsav7.rnr[attrs.secure];
1761
1762 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1763 /* PMSAv8M handling of the aliases is different from v7M:
1764 * aliases A1, A2, A3 override the low two bits of the region
1765 * number in MPU_RNR.
1766 */
1767 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1768
1769 region = cpu->env.pmsav7.rnr[attrs.secure];
1770 if (aliasno) {
1771 region = deposit32(region, 0, 2, aliasno);
1772 }
1773 if (region >= cpu->pmsav7_dregion) {
1774 return;
1775 }
1776 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1777 tlb_flush(CPU(cpu));
1778 return;
1779 }
1780
1781 if (region >= cpu->pmsav7_dregion) {
1782 return;
1783 }
1784
1785 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1786 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1787 tlb_flush(CPU(cpu));
1788 break;
1789 }
1790 case 0xdc0: /* MPU_MAIR0 */
1791 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1792 goto bad_offset;
1793 }
1794 if (cpu->pmsav7_dregion) {
1795 /* Register is RES0 if no MPU regions are implemented */
1796 cpu->env.pmsav8.mair0[attrs.secure] = value;
1797 }
1798 /* We don't need to do anything else because memory attributes
1799 * only affect cacheability, and we don't implement caching.
1800 */
1801 break;
1802 case 0xdc4: /* MPU_MAIR1 */
1803 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1804 goto bad_offset;
1805 }
1806 if (cpu->pmsav7_dregion) {
1807 /* Register is RES0 if no MPU regions are implemented */
1808 cpu->env.pmsav8.mair1[attrs.secure] = value;
1809 }
1810 /* We don't need to do anything else because memory attributes
1811 * only affect cacheability, and we don't implement caching.
1812 */
1813 break;
1814 case 0xdd0: /* SAU_CTRL */
1815 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1816 goto bad_offset;
1817 }
1818 if (!attrs.secure) {
1819 return;
1820 }
1821 cpu->env.sau.ctrl = value & 3;
1822 break;
1823 case 0xdd4: /* SAU_TYPE */
1824 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1825 goto bad_offset;
1826 }
1827 break;
1828 case 0xdd8: /* SAU_RNR */
1829 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1830 goto bad_offset;
1831 }
1832 if (!attrs.secure) {
1833 return;
1834 }
1835 if (value >= cpu->sau_sregion) {
1836 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1837 PRIu32 "/%" PRIu32 "\n",
1838 value, cpu->sau_sregion);
1839 } else {
1840 cpu->env.sau.rnr = value;
1841 }
1842 break;
1843 case 0xddc: /* SAU_RBAR */
1844 {
1845 int region = cpu->env.sau.rnr;
1846
1847 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1848 goto bad_offset;
1849 }
1850 if (!attrs.secure) {
1851 return;
1852 }
1853 if (region >= cpu->sau_sregion) {
1854 return;
1855 }
1856 cpu->env.sau.rbar[region] = value & ~0x1f;
1857 tlb_flush(CPU(cpu));
1858 break;
1859 }
1860 case 0xde0: /* SAU_RLAR */
1861 {
1862 int region = cpu->env.sau.rnr;
1863
1864 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1865 goto bad_offset;
1866 }
1867 if (!attrs.secure) {
1868 return;
1869 }
1870 if (region >= cpu->sau_sregion) {
1871 return;
1872 }
1873 cpu->env.sau.rlar[region] = value & ~0x1c;
1874 tlb_flush(CPU(cpu));
1875 break;
1876 }
1877 case 0xde4: /* SFSR */
1878 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1879 goto bad_offset;
1880 }
1881 if (!attrs.secure) {
1882 return;
1883 }
1884 cpu->env.v7m.sfsr &= ~value; /* W1C */
1885 break;
1886 case 0xde8: /* SFAR */
1887 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1888 goto bad_offset;
1889 }
1890 if (!attrs.secure) {
1891 return;
1892 }
1893 cpu->env.v7m.sfsr = value;
1894 break;
1895 case 0xf00: /* Software Triggered Interrupt Register */
1896 {
1897 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1898
1899 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1900 goto bad_offset;
1901 }
1902
1903 if (excnum < s->num_irq) {
1904 armv7m_nvic_set_pending(s, excnum, false);
1905 }
1906 break;
1907 }
1908 case 0xf34: /* FPCCR */
1909 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1910 /* Not all bits here are banked. */
1911 uint32_t fpccr_s;
1912
1913 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1914 /* Don't allow setting of bits not present in v7M */
1915 value &= (R_V7M_FPCCR_LSPACT_MASK |
1916 R_V7M_FPCCR_USER_MASK |
1917 R_V7M_FPCCR_THREAD_MASK |
1918 R_V7M_FPCCR_HFRDY_MASK |
1919 R_V7M_FPCCR_MMRDY_MASK |
1920 R_V7M_FPCCR_BFRDY_MASK |
1921 R_V7M_FPCCR_MONRDY_MASK |
1922 R_V7M_FPCCR_LSPEN_MASK |
1923 R_V7M_FPCCR_ASPEN_MASK);
1924 }
1925 value &= ~R_V7M_FPCCR_RES0_MASK;
1926
1927 if (!attrs.secure) {
1928 /* Some non-banked bits are configurably writable by NS */
1929 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1930 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1931 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1932 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1933 }
1934 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1935 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1936 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1937 }
1938 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1939 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1940 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1941 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1942 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1943 }
1944 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1945 {
1946 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1947 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1948 }
1949
1950 /*
1951 * All other non-banked bits are RAZ/WI from NS; write
1952 * just the banked bits to fpccr[M_REG_NS].
1953 */
1954 value &= R_V7M_FPCCR_BANKED_MASK;
1955 cpu->env.v7m.fpccr[M_REG_NS] = value;
1956 } else {
1957 fpccr_s = value;
1958 }
1959 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
1960 }
1961 break;
1962 case 0xf38: /* FPCAR */
1963 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1964 value &= ~7;
1965 cpu->env.v7m.fpcar[attrs.secure] = value;
1966 }
1967 break;
1968 case 0xf3c: /* FPDSCR */
1969 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1970 value &= 0x07c00000;
1971 cpu->env.v7m.fpdscr[attrs.secure] = value;
1972 }
1973 break;
1974 case 0xf50: /* ICIALLU */
1975 case 0xf58: /* ICIMVAU */
1976 case 0xf5c: /* DCIMVAC */
1977 case 0xf60: /* DCISW */
1978 case 0xf64: /* DCCMVAU */
1979 case 0xf68: /* DCCMVAC */
1980 case 0xf6c: /* DCCSW */
1981 case 0xf70: /* DCCIMVAC */
1982 case 0xf74: /* DCCISW */
1983 case 0xf78: /* BPIALL */
1984 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1985 break;
1986 default:
1987 bad_offset:
1988 qemu_log_mask(LOG_GUEST_ERROR,
1989 "NVIC: Bad write offset 0x%x\n", offset);
1990 }
1991 }
1992
1993 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1994 {
1995 /* Return true if unprivileged access to this register is permitted. */
1996 switch (offset) {
1997 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1998 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1999 * controls access even though the CPU is in Secure state (I_QDKX).
2000 */
2001 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2002 default:
2003 /* All other user accesses cause a BusFault unconditionally */
2004 return false;
2005 }
2006 }
2007
2008 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2009 {
2010 /* Behaviour for the SHPR register field for this exception:
2011 * return M_REG_NS to use the nonsecure vector (including for
2012 * non-banked exceptions), M_REG_S for the secure version of
2013 * a banked exception, and -1 if this field should RAZ/WI.
2014 */
2015 switch (exc) {
2016 case ARMV7M_EXCP_MEM:
2017 case ARMV7M_EXCP_USAGE:
2018 case ARMV7M_EXCP_SVC:
2019 case ARMV7M_EXCP_PENDSV:
2020 case ARMV7M_EXCP_SYSTICK:
2021 /* Banked exceptions */
2022 return attrs.secure;
2023 case ARMV7M_EXCP_BUS:
2024 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2025 if (!attrs.secure &&
2026 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2027 return -1;
2028 }
2029 return M_REG_NS;
2030 case ARMV7M_EXCP_SECURE:
2031 /* Not banked, RAZ/WI from nonsecure */
2032 if (!attrs.secure) {
2033 return -1;
2034 }
2035 return M_REG_NS;
2036 case ARMV7M_EXCP_DEBUG:
2037 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2038 return M_REG_NS;
2039 case 8 ... 10:
2040 case 13:
2041 /* RES0 */
2042 return -1;
2043 default:
2044 /* Not reachable due to decode of SHPR register addresses */
2045 g_assert_not_reached();
2046 }
2047 }
2048
2049 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2050 uint64_t *data, unsigned size,
2051 MemTxAttrs attrs)
2052 {
2053 NVICState *s = (NVICState *)opaque;
2054 uint32_t offset = addr;
2055 unsigned i, startvec, end;
2056 uint32_t val;
2057
2058 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2059 /* Generate BusFault for unprivileged accesses */
2060 return MEMTX_ERROR;
2061 }
2062
2063 switch (offset) {
2064 /* reads of set and clear both return the status */
2065 case 0x100 ... 0x13f: /* NVIC Set enable */
2066 offset += 0x80;
2067 /* fall through */
2068 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2069 val = 0;
2070 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2071
2072 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2073 if (s->vectors[startvec + i].enabled &&
2074 (attrs.secure || s->itns[startvec + i])) {
2075 val |= (1 << i);
2076 }
2077 }
2078 break;
2079 case 0x200 ... 0x23f: /* NVIC Set pend */
2080 offset += 0x80;
2081 /* fall through */
2082 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2083 val = 0;
2084 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2085 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2086 if (s->vectors[startvec + i].pending &&
2087 (attrs.secure || s->itns[startvec + i])) {
2088 val |= (1 << i);
2089 }
2090 }
2091 break;
2092 case 0x300 ... 0x33f: /* NVIC Active */
2093 val = 0;
2094
2095 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2096 break;
2097 }
2098
2099 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2100
2101 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2102 if (s->vectors[startvec + i].active &&
2103 (attrs.secure || s->itns[startvec + i])) {
2104 val |= (1 << i);
2105 }
2106 }
2107 break;
2108 case 0x400 ... 0x5ef: /* NVIC Priority */
2109 val = 0;
2110 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2111
2112 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2113 if (attrs.secure || s->itns[startvec + i]) {
2114 val |= s->vectors[startvec + i].prio << (8 * i);
2115 }
2116 }
2117 break;
2118 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2119 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2120 val = 0;
2121 break;
2122 }
2123 /* fall through */
2124 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2125 val = 0;
2126 for (i = 0; i < size; i++) {
2127 unsigned hdlidx = (offset - 0xd14) + i;
2128 int sbank = shpr_bank(s, hdlidx, attrs);
2129
2130 if (sbank < 0) {
2131 continue;
2132 }
2133 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2134 }
2135 break;
2136 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2137 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2138 val = 0;
2139 break;
2140 };
2141 /*
2142 * The BFSR bits [15:8] are shared between security states
2143 * and we store them in the NS copy. They are RAZ/WI for
2144 * NS code if AIRCR.BFHFNMINS is 0.
2145 */
2146 val = s->cpu->env.v7m.cfsr[attrs.secure];
2147 if (!attrs.secure &&
2148 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2149 val &= ~R_V7M_CFSR_BFSR_MASK;
2150 } else {
2151 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2152 }
2153 val = extract32(val, (offset - 0xd28) * 8, size * 8);
2154 break;
2155 case 0xfe0 ... 0xfff: /* ID. */
2156 if (offset & 3) {
2157 val = 0;
2158 } else {
2159 val = nvic_id[(offset - 0xfe0) >> 2];
2160 }
2161 break;
2162 default:
2163 if (size == 4) {
2164 val = nvic_readl(s, offset, attrs);
2165 } else {
2166 qemu_log_mask(LOG_GUEST_ERROR,
2167 "NVIC: Bad read of size %d at offset 0x%x\n",
2168 size, offset);
2169 val = 0;
2170 }
2171 }
2172
2173 trace_nvic_sysreg_read(addr, val, size);
2174 *data = val;
2175 return MEMTX_OK;
2176 }
2177
2178 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2179 uint64_t value, unsigned size,
2180 MemTxAttrs attrs)
2181 {
2182 NVICState *s = (NVICState *)opaque;
2183 uint32_t offset = addr;
2184 unsigned i, startvec, end;
2185 unsigned setval = 0;
2186
2187 trace_nvic_sysreg_write(addr, value, size);
2188
2189 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2190 /* Generate BusFault for unprivileged accesses */
2191 return MEMTX_ERROR;
2192 }
2193
2194 switch (offset) {
2195 case 0x100 ... 0x13f: /* NVIC Set enable */
2196 offset += 0x80;
2197 setval = 1;
2198 /* fall through */
2199 case 0x180 ... 0x1bf: /* NVIC Clear enable */
2200 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2201
2202 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2203 if (value & (1 << i) &&
2204 (attrs.secure || s->itns[startvec + i])) {
2205 s->vectors[startvec + i].enabled = setval;
2206 }
2207 }
2208 nvic_irq_update(s);
2209 return MEMTX_OK;
2210 case 0x200 ... 0x23f: /* NVIC Set pend */
2211 /* the special logic in armv7m_nvic_set_pending()
2212 * is not needed since IRQs are never escalated
2213 */
2214 offset += 0x80;
2215 setval = 1;
2216 /* fall through */
2217 case 0x280 ... 0x2bf: /* NVIC Clear pend */
2218 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2219
2220 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2221 if (value & (1 << i) &&
2222 (attrs.secure || s->itns[startvec + i])) {
2223 s->vectors[startvec + i].pending = setval;
2224 }
2225 }
2226 nvic_irq_update(s);
2227 return MEMTX_OK;
2228 case 0x300 ... 0x33f: /* NVIC Active */
2229 return MEMTX_OK; /* R/O */
2230 case 0x400 ... 0x5ef: /* NVIC Priority */
2231 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2232
2233 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2234 if (attrs.secure || s->itns[startvec + i]) {
2235 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2236 }
2237 }
2238 nvic_irq_update(s);
2239 return MEMTX_OK;
2240 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2241 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2242 return MEMTX_OK;
2243 }
2244 /* fall through */
2245 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2246 for (i = 0; i < size; i++) {
2247 unsigned hdlidx = (offset - 0xd14) + i;
2248 int newprio = extract32(value, i * 8, 8);
2249 int sbank = shpr_bank(s, hdlidx, attrs);
2250
2251 if (sbank < 0) {
2252 continue;
2253 }
2254 set_prio(s, hdlidx, sbank, newprio);
2255 }
2256 nvic_irq_update(s);
2257 return MEMTX_OK;
2258 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2259 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2260 return MEMTX_OK;
2261 }
2262 /* All bits are W1C, so construct 32 bit value with 0s in
2263 * the parts not written by the access size
2264 */
2265 value <<= ((offset - 0xd28) * 8);
2266
2267 if (!attrs.secure &&
2268 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2269 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2270 value &= ~R_V7M_CFSR_BFSR_MASK;
2271 }
2272
2273 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2274 if (attrs.secure) {
2275 /* The BFSR bits [15:8] are shared between security states
2276 * and we store them in the NS copy.
2277 */
2278 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2279 }
2280 return MEMTX_OK;
2281 }
2282 if (size == 4) {
2283 nvic_writel(s, offset, value, attrs);
2284 return MEMTX_OK;
2285 }
2286 qemu_log_mask(LOG_GUEST_ERROR,
2287 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2288 /* This is UNPREDICTABLE; treat as RAZ/WI */
2289 return MEMTX_OK;
2290 }
2291
2292 static const MemoryRegionOps nvic_sysreg_ops = {
2293 .read_with_attrs = nvic_sysreg_read,
2294 .write_with_attrs = nvic_sysreg_write,
2295 .endianness = DEVICE_NATIVE_ENDIAN,
2296 };
2297
2298 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2299 uint64_t value, unsigned size,
2300 MemTxAttrs attrs)
2301 {
2302 MemoryRegion *mr = opaque;
2303
2304 if (attrs.secure) {
2305 /* S accesses to the alias act like NS accesses to the real region */
2306 attrs.secure = 0;
2307 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2308 } else {
2309 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2310 if (attrs.user) {
2311 return MEMTX_ERROR;
2312 }
2313 return MEMTX_OK;
2314 }
2315 }
2316
2317 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2318 uint64_t *data, unsigned size,
2319 MemTxAttrs attrs)
2320 {
2321 MemoryRegion *mr = opaque;
2322
2323 if (attrs.secure) {
2324 /* S accesses to the alias act like NS accesses to the real region */
2325 attrs.secure = 0;
2326 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2327 } else {
2328 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2329 if (attrs.user) {
2330 return MEMTX_ERROR;
2331 }
2332 *data = 0;
2333 return MEMTX_OK;
2334 }
2335 }
2336
2337 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2338 .read_with_attrs = nvic_sysreg_ns_read,
2339 .write_with_attrs = nvic_sysreg_ns_write,
2340 .endianness = DEVICE_NATIVE_ENDIAN,
2341 };
2342
2343 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2344 uint64_t value, unsigned size,
2345 MemTxAttrs attrs)
2346 {
2347 NVICState *s = opaque;
2348 MemoryRegion *mr;
2349
2350 /* Direct the access to the correct systick */
2351 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2352 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2353 }
2354
2355 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2356 uint64_t *data, unsigned size,
2357 MemTxAttrs attrs)
2358 {
2359 NVICState *s = opaque;
2360 MemoryRegion *mr;
2361
2362 /* Direct the access to the correct systick */
2363 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2364 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2365 }
2366
2367 static const MemoryRegionOps nvic_systick_ops = {
2368 .read_with_attrs = nvic_systick_read,
2369 .write_with_attrs = nvic_systick_write,
2370 .endianness = DEVICE_NATIVE_ENDIAN,
2371 };
2372
2373 static int nvic_post_load(void *opaque, int version_id)
2374 {
2375 NVICState *s = opaque;
2376 unsigned i;
2377 int resetprio;
2378
2379 /* Check for out of range priority settings */
2380 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2381
2382 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2383 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2384 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2385 return 1;
2386 }
2387 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2388 if (s->vectors[i].prio & ~0xff) {
2389 return 1;
2390 }
2391 }
2392
2393 nvic_recompute_state(s);
2394
2395 return 0;
2396 }
2397
2398 static const VMStateDescription vmstate_VecInfo = {
2399 .name = "armv7m_nvic_info",
2400 .version_id = 1,
2401 .minimum_version_id = 1,
2402 .fields = (VMStateField[]) {
2403 VMSTATE_INT16(prio, VecInfo),
2404 VMSTATE_UINT8(enabled, VecInfo),
2405 VMSTATE_UINT8(pending, VecInfo),
2406 VMSTATE_UINT8(active, VecInfo),
2407 VMSTATE_UINT8(level, VecInfo),
2408 VMSTATE_END_OF_LIST()
2409 }
2410 };
2411
2412 static bool nvic_security_needed(void *opaque)
2413 {
2414 NVICState *s = opaque;
2415
2416 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2417 }
2418
2419 static int nvic_security_post_load(void *opaque, int version_id)
2420 {
2421 NVICState *s = opaque;
2422 int i;
2423
2424 /* Check for out of range priority settings */
2425 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2426 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2427 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2428 * if the CPU state has been migrated yet; a mismatch won't
2429 * cause the emulation to blow up, though.
2430 */
2431 return 1;
2432 }
2433 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2434 if (s->sec_vectors[i].prio & ~0xff) {
2435 return 1;
2436 }
2437 }
2438 return 0;
2439 }
2440
2441 static const VMStateDescription vmstate_nvic_security = {
2442 .name = "armv7m_nvic/m-security",
2443 .version_id = 1,
2444 .minimum_version_id = 1,
2445 .needed = nvic_security_needed,
2446 .post_load = &nvic_security_post_load,
2447 .fields = (VMStateField[]) {
2448 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2449 vmstate_VecInfo, VecInfo),
2450 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2451 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2452 VMSTATE_END_OF_LIST()
2453 }
2454 };
2455
2456 static const VMStateDescription vmstate_nvic = {
2457 .name = "armv7m_nvic",
2458 .version_id = 4,
2459 .minimum_version_id = 4,
2460 .post_load = &nvic_post_load,
2461 .fields = (VMStateField[]) {
2462 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2463 vmstate_VecInfo, VecInfo),
2464 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2465 VMSTATE_END_OF_LIST()
2466 },
2467 .subsections = (const VMStateDescription*[]) {
2468 &vmstate_nvic_security,
2469 NULL
2470 }
2471 };
2472
2473 static Property props_nvic[] = {
2474 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2475 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2476 DEFINE_PROP_END_OF_LIST()
2477 };
2478
2479 static void armv7m_nvic_reset(DeviceState *dev)
2480 {
2481 int resetprio;
2482 NVICState *s = NVIC(dev);
2483
2484 memset(s->vectors, 0, sizeof(s->vectors));
2485 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2486 s->prigroup[M_REG_NS] = 0;
2487 s->prigroup[M_REG_S] = 0;
2488
2489 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2490 /* MEM, BUS, and USAGE are enabled through
2491 * the System Handler Control register
2492 */
2493 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2494 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2495 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2496 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2497
2498 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2499 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2500 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2501 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2502
2503 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2504 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2505 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2506 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2507 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2508
2509 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2510 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2511 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2512 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2513 } else {
2514 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2515 }
2516
2517 /* Strictly speaking the reset handler should be enabled.
2518 * However, we don't simulate soft resets through the NVIC,
2519 * and the reset vector should never be pended.
2520 * So we leave it disabled to catch logic errors.
2521 */
2522
2523 s->exception_prio = NVIC_NOEXC_PRIO;
2524 s->vectpending = 0;
2525 s->vectpending_is_s_banked = false;
2526 s->vectpending_prio = NVIC_NOEXC_PRIO;
2527
2528 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2529 memset(s->itns, 0, sizeof(s->itns));
2530 } else {
2531 /* This state is constant and not guest accessible in a non-security
2532 * NVIC; we set the bits to true to avoid having to do a feature
2533 * bit check in the NVIC enable/pend/etc register accessors.
2534 */
2535 int i;
2536
2537 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2538 s->itns[i] = true;
2539 }
2540 }
2541 }
2542
2543 static void nvic_systick_trigger(void *opaque, int n, int level)
2544 {
2545 NVICState *s = opaque;
2546
2547 if (level) {
2548 /* SysTick just asked us to pend its exception.
2549 * (This is different from an external interrupt line's
2550 * behaviour.)
2551 * n == 0 : NonSecure systick
2552 * n == 1 : Secure systick
2553 */
2554 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2555 }
2556 }
2557
2558 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2559 {
2560 NVICState *s = NVIC(dev);
2561 Error *err = NULL;
2562 int regionlen;
2563
2564 /* The armv7m container object will have set our CPU pointer */
2565 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2566 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2567 return;
2568 }
2569
2570 if (s->num_irq > NVIC_MAX_IRQ) {
2571 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2572 return;
2573 }
2574
2575 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2576
2577 /* include space for internal exception vectors */
2578 s->num_irq += NVIC_FIRST_IRQ;
2579
2580 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2581
2582 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2583 "realized", &err);
2584 if (err != NULL) {
2585 error_propagate(errp, err);
2586 return;
2587 }
2588 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2589 qdev_get_gpio_in_named(dev, "systick-trigger",
2590 M_REG_NS));
2591
2592 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2593 /* We couldn't init the secure systick device in instance_init
2594 * as we didn't know then if the CPU had the security extensions;
2595 * so we have to do it here.
2596 */
2597 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2598 TYPE_SYSTICK);
2599 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2600
2601 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2602 "realized", &err);
2603 if (err != NULL) {
2604 error_propagate(errp, err);
2605 return;
2606 }
2607 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2608 qdev_get_gpio_in_named(dev, "systick-trigger",
2609 M_REG_S));
2610 }
2611
2612 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2613 * and looks like this:
2614 * 0x004 - ICTR
2615 * 0x010 - 0xff - systick
2616 * 0x100..0x7ec - NVIC
2617 * 0x7f0..0xcff - Reserved
2618 * 0xd00..0xd3c - SCS registers
2619 * 0xd40..0xeff - Reserved or Not implemented
2620 * 0xf00 - STIR
2621 *
2622 * Some registers within this space are banked between security states.
2623 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2624 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2625 * to the main SCS range, and non-secure accesses (including when
2626 * the security extension is not implemented) are RAZ/WI.
2627 * Note that both the main SCS range and the alias range are defined
2628 * to be exempt from memory attribution (R_BLJT) and so the memory
2629 * transaction attribute always matches the current CPU security
2630 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2631 * wrappers we change attrs.secure to indicate the NS access; so
2632 * generally code determining which banked register to use should
2633 * use attrs.secure; code determining actual behaviour of the system
2634 * should use env->v7m.secure.
2635 */
2636 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2637 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2638 /* The system register region goes at the bottom of the priority
2639 * stack as it covers the whole page.
2640 */
2641 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2642 "nvic_sysregs", 0x1000);
2643 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2644
2645 memory_region_init_io(&s->systickmem, OBJECT(s),
2646 &nvic_systick_ops, s,
2647 "nvic_systick", 0xe0);
2648
2649 memory_region_add_subregion_overlap(&s->container, 0x10,
2650 &s->systickmem, 1);
2651
2652 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2653 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2654 &nvic_sysreg_ns_ops, &s->sysregmem,
2655 "nvic_sysregs_ns", 0x1000);
2656 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2657 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2658 &nvic_sysreg_ns_ops, &s->systickmem,
2659 "nvic_systick_ns", 0xe0);
2660 memory_region_add_subregion_overlap(&s->container, 0x20010,
2661 &s->systick_ns_mem, 1);
2662 }
2663
2664 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2665 }
2666
2667 static void armv7m_nvic_instance_init(Object *obj)
2668 {
2669 /* We have a different default value for the num-irq property
2670 * than our superclass. This function runs after qdev init
2671 * has set the defaults from the Property array and before
2672 * any user-specified property setting, so just modify the
2673 * value in the GICState struct.
2674 */
2675 DeviceState *dev = DEVICE(obj);
2676 NVICState *nvic = NVIC(obj);
2677 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2678
2679 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2680 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2681 /* We can't initialize the secure systick here, as we don't know
2682 * yet if we need it.
2683 */
2684
2685 sysbus_init_irq(sbd, &nvic->excpout);
2686 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2687 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2688 M_REG_NUM_BANKS);
2689 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2690 }
2691
2692 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2693 {
2694 DeviceClass *dc = DEVICE_CLASS(klass);
2695
2696 dc->vmsd = &vmstate_nvic;
2697 dc->props = props_nvic;
2698 dc->reset = armv7m_nvic_reset;
2699 dc->realize = armv7m_nvic_realize;
2700 }
2701
2702 static const TypeInfo armv7m_nvic_info = {
2703 .name = TYPE_NVIC,
2704 .parent = TYPE_SYS_BUS_DEVICE,
2705 .instance_init = armv7m_nvic_instance_init,
2706 .instance_size = sizeof(NVICState),
2707 .class_init = armv7m_nvic_class_init,
2708 .class_size = sizeof(SysBusDeviceClass),
2709 };
2710
2711 static void armv7m_nvic_register_types(void)
2712 {
2713 type_register_static(&armv7m_nvic_info);
2714 }
2715
2716 type_init(armv7m_nvic_register_types)