]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/pnv_xive.c
ppc/pnv: Fix TIMA indirect access
[mirror_qemu.git] / hw / intc / pnv_xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27
28 #include <libfdt.h>
29
30 #include "pnv_xive_regs.h"
31
32 #undef XIVE_DEBUG
33
34 /*
35 * Virtual structures table (VST)
36 */
37 #define SBE_PER_BYTE 4
38
39 typedef struct XiveVstInfo {
40 const char *name;
41 uint32_t size;
42 uint32_t max_blocks;
43 } XiveVstInfo;
44
45 static const XiveVstInfo vst_infos[] = {
46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
47 [VST_TSEL_SBE] = { "SBE", 1, 16 },
48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50
51 /*
52 * Interrupt fifo backing store table (not modeled) :
53 *
54 * 0 - IPI,
55 * 1 - HWD,
56 * 2 - First escalate,
57 * 3 - Second escalate,
58 * 4 - Redistribution,
59 * 5 - IPI cascaded queue ?
60 */
61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
62 };
63
64 #define xive_error(xive, fmt, ...) \
65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
66 (xive)->chip->chip_id, ## __VA_ARGS__);
67
68 /*
69 * QEMU version of the GETFIELD/SETFIELD macros
70 *
71 * TODO: It might be better to use the existing extract64() and
72 * deposit64() but this means that all the register definitions will
73 * change and become incompatible with the ones found in skiboot.
74 *
75 * Keep it as it is for now until we find a common ground.
76 */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79 return (word & mask) >> ctz64(mask);
80 }
81
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83 uint64_t value)
84 {
85 return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87
88 /*
89 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
90 * of the chips is good enough.
91 *
92 * TODO: Block scope support
93 */
94 static PnvXive *pnv_xive_get_ic(uint8_t blk)
95 {
96 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
97 int i;
98
99 for (i = 0; i < pnv->num_chips; i++) {
100 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
101 PnvXive *xive = &chip9->xive;
102
103 if (xive->chip->chip_id == blk) {
104 return xive;
105 }
106 }
107 return NULL;
108 }
109
110 /*
111 * VST accessors for SBE, EAT, ENDT, NVT
112 *
113 * Indirect VST tables are arrays of VSDs pointing to a page (of same
114 * size). Each page is a direct VST table.
115 */
116
117 #define XIVE_VSD_SIZE 8
118
119 /* Indirect page size can be 4K, 64K, 2M, 16M. */
120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
121 {
122 return page_shift == 12 || page_shift == 16 ||
123 page_shift == 21 || page_shift == 24;
124 }
125
126 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
127 uint64_t vsd, uint32_t idx)
128 {
129 const XiveVstInfo *info = &vst_infos[type];
130 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
131 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
132 uint32_t idx_max;
133
134 idx_max = vst_tsize / info->size - 1;
135 if (idx > idx_max) {
136 #ifdef XIVE_DEBUG
137 xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
138 info->name, idx, idx_max);
139 #endif
140 return 0;
141 }
142
143 return vst_addr + idx * info->size;
144 }
145
146 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
147 uint64_t vsd, uint32_t idx)
148 {
149 const XiveVstInfo *info = &vst_infos[type];
150 uint64_t vsd_addr;
151 uint32_t vsd_idx;
152 uint32_t page_shift;
153 uint32_t vst_per_page;
154
155 /* Get the page size of the indirect table. */
156 vsd_addr = vsd & VSD_ADDRESS_MASK;
157 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
158
159 if (!(vsd & VSD_ADDRESS_MASK)) {
160 #ifdef XIVE_DEBUG
161 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
162 #endif
163 return 0;
164 }
165
166 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
167
168 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
169 xive_error(xive, "VST: invalid %s page shift %d", info->name,
170 page_shift);
171 return 0;
172 }
173
174 vst_per_page = (1ull << page_shift) / info->size;
175 vsd_idx = idx / vst_per_page;
176
177 /* Load the VSD we are looking for, if not already done */
178 if (vsd_idx) {
179 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
180 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
181
182 if (!(vsd & VSD_ADDRESS_MASK)) {
183 #ifdef XIVE_DEBUG
184 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
185 #endif
186 return 0;
187 }
188
189 /*
190 * Check that the pages have a consistent size across the
191 * indirect table
192 */
193 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
194 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
195 info->name, idx);
196 return 0;
197 }
198 }
199
200 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
201 }
202
203 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
204 uint32_t idx)
205 {
206 const XiveVstInfo *info = &vst_infos[type];
207 uint64_t vsd;
208
209 if (blk >= info->max_blocks) {
210 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
211 blk, info->name, idx);
212 return 0;
213 }
214
215 vsd = xive->vsds[type][blk];
216
217 /* Remote VST access */
218 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
219 xive = pnv_xive_get_ic(blk);
220
221 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
222 }
223
224 if (VSD_INDIRECT & vsd) {
225 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
226 }
227
228 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
229 }
230
231 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
232 uint32_t idx, void *data)
233 {
234 const XiveVstInfo *info = &vst_infos[type];
235 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
236
237 if (!addr) {
238 return -1;
239 }
240
241 cpu_physical_memory_read(addr, data, info->size);
242 return 0;
243 }
244
245 #define XIVE_VST_WORD_ALL -1
246
247 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
248 uint32_t idx, void *data, uint32_t word_number)
249 {
250 const XiveVstInfo *info = &vst_infos[type];
251 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
252
253 if (!addr) {
254 return -1;
255 }
256
257 if (word_number == XIVE_VST_WORD_ALL) {
258 cpu_physical_memory_write(addr, data, info->size);
259 } else {
260 cpu_physical_memory_write(addr + word_number * 4,
261 data + word_number * 4, 4);
262 }
263 return 0;
264 }
265
266 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
267 XiveEND *end)
268 {
269 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
270 }
271
272 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
273 XiveEND *end, uint8_t word_number)
274 {
275 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
276 word_number);
277 }
278
279 static int pnv_xive_end_update(PnvXive *xive)
280 {
281 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
282 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
283 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
284 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
285 int i;
286 uint64_t eqc_watch[4];
287
288 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
289 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
290 }
291
292 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
293 XIVE_VST_WORD_ALL);
294 }
295
296 static void pnv_xive_end_cache_load(PnvXive *xive)
297 {
298 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
299 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
300 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
301 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
302 uint64_t eqc_watch[4] = { 0 };
303 int i;
304
305 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
306 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
307 }
308
309 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
310 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
311 }
312 }
313
314 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
315 XiveNVT *nvt)
316 {
317 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
318 }
319
320 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
321 XiveNVT *nvt, uint8_t word_number)
322 {
323 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
324 word_number);
325 }
326
327 static int pnv_xive_nvt_update(PnvXive *xive)
328 {
329 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
330 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
331 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
332 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
333 int i;
334 uint64_t vpc_watch[8];
335
336 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
337 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
338 }
339
340 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
341 XIVE_VST_WORD_ALL);
342 }
343
344 static void pnv_xive_nvt_cache_load(PnvXive *xive)
345 {
346 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
347 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
348 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
349 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
350 uint64_t vpc_watch[8] = { 0 };
351 int i;
352
353 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
354 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
355 }
356
357 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
358 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
359 }
360 }
361
362 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
363 XiveEAS *eas)
364 {
365 PnvXive *xive = PNV_XIVE(xrtr);
366
367 if (pnv_xive_get_ic(blk) != xive) {
368 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
369 return -1;
370 }
371
372 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
373 }
374
375 /*
376 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
377 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
378 * second register covers cores 16-23 (normal) or 8-11 (fused).
379 */
380 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
381 {
382 int pir = ppc_cpu_pir(cpu);
383 uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
384 uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
385 uint32_t bit = pir & 0x3f;
386
387 return xive->regs[reg >> 3] & PPC_BIT(bit);
388 }
389
390 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
391 uint8_t nvt_blk, uint32_t nvt_idx,
392 bool cam_ignore, uint8_t priority,
393 uint32_t logic_serv, XiveTCTXMatch *match)
394 {
395 PnvXive *xive = PNV_XIVE(xptr);
396 PnvChip *chip = xive->chip;
397 int count = 0;
398 int i, j;
399
400 for (i = 0; i < chip->nr_cores; i++) {
401 PnvCore *pc = chip->cores[i];
402 CPUCore *cc = CPU_CORE(pc);
403
404 for (j = 0; j < cc->nr_threads; j++) {
405 PowerPCCPU *cpu = pc->threads[j];
406 XiveTCTX *tctx;
407 int ring;
408
409 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
410 continue;
411 }
412
413 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
414
415 /*
416 * Check the thread context CAM lines and record matches.
417 */
418 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
419 nvt_idx, cam_ignore, logic_serv);
420 /*
421 * Save the context and follow on to catch duplicates, that we
422 * don't support yet.
423 */
424 if (ring != -1) {
425 if (match->tctx) {
426 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
427 "thread context NVT %x/%x\n",
428 nvt_blk, nvt_idx);
429 return -1;
430 }
431
432 match->ring = ring;
433 match->tctx = tctx;
434 count++;
435 }
436 }
437 }
438
439 return count;
440 }
441
442 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
443 {
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
446 PnvXive *xive = NULL;
447 CPUPPCState *env = &cpu->env;
448 int pir = env->spr_cb[SPR_PIR].default_value;
449
450 /*
451 * Perform an extra check on the HW thread enablement.
452 *
453 * The TIMA is shared among the chips and to identify the chip
454 * from which the access is being done, we extract the chip id
455 * from the PIR.
456 */
457 xive = pnv_xive_get_ic((pir >> 8) & 0xf);
458 if (!xive) {
459 return NULL;
460 }
461
462 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
463 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
464 }
465
466 return tctx;
467 }
468
469 /*
470 * The internal sources (IPIs) of the interrupt controller have no
471 * knowledge of the XIVE chip on which they reside. Encode the block
472 * id in the source interrupt number before forwarding the source
473 * event notification to the Router. This is required on a multichip
474 * system.
475 */
476 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
477 {
478 PnvXive *xive = PNV_XIVE(xn);
479 uint8_t blk = xive->chip->chip_id;
480
481 xive_router_notify(xn, XIVE_EAS(blk, srcno));
482 }
483
484 /*
485 * XIVE helpers
486 */
487
488 static uint64_t pnv_xive_vc_size(PnvXive *xive)
489 {
490 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
491 }
492
493 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
494 {
495 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
496 }
497
498 static uint64_t pnv_xive_pc_size(PnvXive *xive)
499 {
500 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
501 }
502
503 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
504 {
505 uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
506 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
507
508 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
509 }
510
511 /*
512 * EDT Table
513 *
514 * The Virtualization Controller MMIO region containing the IPI ESB
515 * pages and END ESB pages is sub-divided into "sets" which map
516 * portions of the VC region to the different ESB pages. It is
517 * configured at runtime through the EDT "Domain Table" to let the
518 * firmware decide how to split the VC address space between IPI ESB
519 * pages and END ESB pages.
520 */
521
522 /*
523 * Computes the overall size of the IPI or the END ESB pages
524 */
525 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
526 {
527 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
528 uint64_t size = 0;
529 int i;
530
531 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
532 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
533
534 if (edt_type == type) {
535 size += edt_size;
536 }
537 }
538
539 return size;
540 }
541
542 /*
543 * Maps an offset of the VC region in the IPI or END region using the
544 * layout defined by the EDT "Domaine Table"
545 */
546 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
547 uint64_t type)
548 {
549 int i;
550 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
551 uint64_t edt_offset = vc_offset;
552
553 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
554 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
555
556 if (edt_type != type) {
557 edt_offset -= edt_size;
558 }
559 }
560
561 return edt_offset;
562 }
563
564 static void pnv_xive_edt_resize(PnvXive *xive)
565 {
566 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
567 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
568
569 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
570 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
571
572 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
573 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
574 }
575
576 /*
577 * XIVE Table configuration. Only EDT is supported.
578 */
579 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
580 {
581 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
582 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
583 uint64_t *xive_table;
584 uint8_t max_index;
585
586 switch (tsel) {
587 case CQ_TAR_TSEL_BLK:
588 max_index = ARRAY_SIZE(xive->blk);
589 xive_table = xive->blk;
590 break;
591 case CQ_TAR_TSEL_MIG:
592 max_index = ARRAY_SIZE(xive->mig);
593 xive_table = xive->mig;
594 break;
595 case CQ_TAR_TSEL_EDT:
596 max_index = ARRAY_SIZE(xive->edt);
597 xive_table = xive->edt;
598 break;
599 case CQ_TAR_TSEL_VDT:
600 max_index = ARRAY_SIZE(xive->vdt);
601 xive_table = xive->vdt;
602 break;
603 default:
604 xive_error(xive, "IC: invalid table %d", (int) tsel);
605 return -1;
606 }
607
608 if (tsel_index >= max_index) {
609 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
610 return -1;
611 }
612
613 xive_table[tsel_index] = val;
614
615 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
616 xive->regs[CQ_TAR >> 3] =
617 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
618 }
619
620 /*
621 * EDT configuration is complete. Resize the MMIO windows exposing
622 * the IPI and the END ESBs in the VC region.
623 */
624 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
625 pnv_xive_edt_resize(xive);
626 }
627
628 return 0;
629 }
630
631 /*
632 * Virtual Structure Tables (VST) configuration
633 */
634 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
635 uint8_t blk, uint64_t vsd)
636 {
637 XiveENDSource *end_xsrc = &xive->end_source;
638 XiveSource *xsrc = &xive->ipi_source;
639 const XiveVstInfo *info = &vst_infos[type];
640 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
641 uint64_t vst_tsize = 1ull << page_shift;
642 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
643
644 /* Basic checks */
645
646 if (VSD_INDIRECT & vsd) {
647 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
648 xive_error(xive, "VST: %s indirect tables are not enabled",
649 info->name);
650 return;
651 }
652
653 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
654 xive_error(xive, "VST: invalid %s page shift %d", info->name,
655 page_shift);
656 return;
657 }
658 }
659
660 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
661 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
662 " page shift %d", info->name, vst_addr, page_shift);
663 return;
664 }
665
666 /* Record the table configuration (in SRAM on HW) */
667 xive->vsds[type][blk] = vsd;
668
669 /* Now tune the models with the configuration provided by the FW */
670
671 switch (type) {
672 case VST_TSEL_IVT: /* Nothing to be done */
673 break;
674
675 case VST_TSEL_EQDT:
676 /*
677 * Backing store pages for the END.
678 *
679 * If the table is direct, we can compute the number of PQ
680 * entries provisioned by FW (such as skiboot) and resize the
681 * END ESB window accordingly.
682 */
683 if (!(VSD_INDIRECT & vsd)) {
684 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
685 * (1ull << xsrc->esb_shift));
686 }
687 memory_region_add_subregion(&xive->end_edt_mmio, 0,
688 &end_xsrc->esb_mmio);
689 break;
690
691 case VST_TSEL_SBE:
692 /*
693 * Backing store pages for the source PQ bits. The model does
694 * not use these PQ bits backed in RAM because the XiveSource
695 * model has its own.
696 *
697 * If the table is direct, we can compute the number of PQ
698 * entries provisioned by FW (such as skiboot) and resize the
699 * ESB window accordingly.
700 */
701 if (!(VSD_INDIRECT & vsd)) {
702 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
703 * (1ull << xsrc->esb_shift));
704 }
705 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
706 break;
707
708 case VST_TSEL_VPDT: /* Not modeled */
709 case VST_TSEL_IRQ: /* Not modeled */
710 /*
711 * These tables contains the backing store pages for the
712 * interrupt fifos of the VC sub-engine in case of overflow.
713 */
714 break;
715
716 default:
717 g_assert_not_reached();
718 }
719 }
720
721 /*
722 * Both PC and VC sub-engines are configured as each use the Virtual
723 * Structure Tables : SBE, EAS, END and NVT.
724 */
725 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
726 {
727 uint8_t mode = GETFIELD(VSD_MODE, vsd);
728 uint8_t type = GETFIELD(VST_TABLE_SELECT,
729 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
730 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
731 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
732 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
733
734 if (type > VST_TSEL_IRQ) {
735 xive_error(xive, "VST: invalid table type %d", type);
736 return;
737 }
738
739 if (blk >= vst_infos[type].max_blocks) {
740 xive_error(xive, "VST: invalid block id %d for"
741 " %s table", blk, vst_infos[type].name);
742 return;
743 }
744
745 /*
746 * Only take the VC sub-engine configuration into account because
747 * the XiveRouter model combines both VC and PC sub-engines
748 */
749 if (pc_engine) {
750 return;
751 }
752
753 if (!vst_addr) {
754 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
755 return;
756 }
757
758 switch (mode) {
759 case VSD_MODE_FORWARD:
760 xive->vsds[type][blk] = vsd;
761 break;
762
763 case VSD_MODE_EXCLUSIVE:
764 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
765 break;
766
767 default:
768 xive_error(xive, "VST: unsupported table mode %d", mode);
769 return;
770 }
771 }
772
773 /*
774 * Interrupt controller MMIO region. The layout is compatible between
775 * 4K and 64K pages :
776 *
777 * Page 0 sub-engine BARs
778 * 0x000 - 0x3FF IC registers
779 * 0x400 - 0x7FF PC registers
780 * 0x800 - 0xFFF VC registers
781 *
782 * Page 1 Notify page (writes only)
783 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
784 * 0x800 - 0xFFF forwards and syncs
785 *
786 * Page 2 LSI Trigger page (writes only) (not modeled)
787 * Page 3 LSI SB EOI page (reads only) (not modeled)
788 *
789 * Page 4-7 indirect TIMA
790 */
791
792 /*
793 * IC - registers MMIO
794 */
795 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
796 uint64_t val, unsigned size)
797 {
798 PnvXive *xive = PNV_XIVE(opaque);
799 MemoryRegion *sysmem = get_system_memory();
800 uint32_t reg = offset >> 3;
801 bool is_chip0 = xive->chip->chip_id == 0;
802
803 switch (offset) {
804
805 /*
806 * XIVE CQ (PowerBus bridge) settings
807 */
808 case CQ_MSGSND: /* msgsnd for doorbells */
809 case CQ_FIRMASK_OR: /* FIR error reporting */
810 break;
811 case CQ_PBI_CTL:
812 if (val & CQ_PBI_PC_64K) {
813 xive->pc_shift = 16;
814 }
815 if (val & CQ_PBI_VC_64K) {
816 xive->vc_shift = 16;
817 }
818 break;
819 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
820 /*
821 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
822 */
823 break;
824
825 /*
826 * XIVE Virtualization Controller settings
827 */
828 case VC_GLOBAL_CONFIG:
829 break;
830
831 /*
832 * XIVE Presenter Controller settings
833 */
834 case PC_GLOBAL_CONFIG:
835 /*
836 * PC_GCONF_CHIPID_OVR
837 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
838 */
839 break;
840 case PC_TCTXT_CFG:
841 /*
842 * TODO: block group support
843 *
844 * PC_TCTXT_CFG_BLKGRP_EN
845 * PC_TCTXT_CFG_HARD_CHIPID_BLK :
846 * Moves the chipid into block field for hardwired CAM compares.
847 * Block offset value is adjusted to 0b0..01 & ThrdId
848 *
849 * Will require changes in xive_presenter_tctx_match(). I am
850 * not sure how to handle that yet.
851 */
852
853 /* Overrides hardwired chip ID with the chip ID field */
854 if (val & PC_TCTXT_CHIPID_OVERRIDE) {
855 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
856 }
857 break;
858 case PC_TCTXT_TRACK:
859 /*
860 * PC_TCTXT_TRACK_EN:
861 * enable block tracking and exchange of block ownership
862 * information between Interrupt controllers
863 */
864 break;
865
866 /*
867 * Misc settings
868 */
869 case VC_SBC_CONFIG: /* Store EOI configuration */
870 /*
871 * Configure store EOI if required by firwmare (skiboot has removed
872 * support recently though)
873 */
874 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
875 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
876 }
877 break;
878
879 case VC_EQC_CONFIG: /* TODO: silent escalation */
880 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
881 break;
882
883 /*
884 * XIVE BAR settings (XSCOM only)
885 */
886 case CQ_RST_CTL:
887 /* bit4: resets all BAR registers */
888 break;
889
890 case CQ_IC_BAR: /* IC BAR. 8 pages */
891 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
892 if (!(val & CQ_IC_BAR_VALID)) {
893 xive->ic_base = 0;
894 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
895 memory_region_del_subregion(&xive->ic_mmio,
896 &xive->ic_reg_mmio);
897 memory_region_del_subregion(&xive->ic_mmio,
898 &xive->ic_notify_mmio);
899 memory_region_del_subregion(&xive->ic_mmio,
900 &xive->ic_lsi_mmio);
901 memory_region_del_subregion(&xive->ic_mmio,
902 &xive->tm_indirect_mmio);
903
904 memory_region_del_subregion(sysmem, &xive->ic_mmio);
905 }
906 } else {
907 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
908 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
909 memory_region_add_subregion(sysmem, xive->ic_base,
910 &xive->ic_mmio);
911
912 memory_region_add_subregion(&xive->ic_mmio, 0,
913 &xive->ic_reg_mmio);
914 memory_region_add_subregion(&xive->ic_mmio,
915 1ul << xive->ic_shift,
916 &xive->ic_notify_mmio);
917 memory_region_add_subregion(&xive->ic_mmio,
918 2ul << xive->ic_shift,
919 &xive->ic_lsi_mmio);
920 memory_region_add_subregion(&xive->ic_mmio,
921 4ull << xive->ic_shift,
922 &xive->tm_indirect_mmio);
923 }
924 }
925 break;
926
927 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
928 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
929 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
930 if (!(val & CQ_TM_BAR_VALID)) {
931 xive->tm_base = 0;
932 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
933 memory_region_del_subregion(sysmem, &xive->tm_mmio);
934 }
935 } else {
936 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
937 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
938 memory_region_add_subregion(sysmem, xive->tm_base,
939 &xive->tm_mmio);
940 }
941 }
942 break;
943
944 case CQ_PC_BARM:
945 xive->regs[reg] = val;
946 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
947 break;
948 case CQ_PC_BAR: /* From 32M to 512G */
949 if (!(val & CQ_PC_BAR_VALID)) {
950 xive->pc_base = 0;
951 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
952 memory_region_del_subregion(sysmem, &xive->pc_mmio);
953 }
954 } else {
955 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
956 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
957 memory_region_add_subregion(sysmem, xive->pc_base,
958 &xive->pc_mmio);
959 }
960 }
961 break;
962
963 case CQ_VC_BARM:
964 xive->regs[reg] = val;
965 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
966 break;
967 case CQ_VC_BAR: /* From 64M to 4TB */
968 if (!(val & CQ_VC_BAR_VALID)) {
969 xive->vc_base = 0;
970 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
971 memory_region_del_subregion(sysmem, &xive->vc_mmio);
972 }
973 } else {
974 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
975 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
976 memory_region_add_subregion(sysmem, xive->vc_base,
977 &xive->vc_mmio);
978 }
979 }
980 break;
981
982 /*
983 * XIVE Table settings.
984 */
985 case CQ_TAR: /* Table Address */
986 break;
987 case CQ_TDR: /* Table Data */
988 pnv_xive_table_set_data(xive, val);
989 break;
990
991 /*
992 * XIVE VC & PC Virtual Structure Table settings
993 */
994 case VC_VSD_TABLE_ADDR:
995 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
996 break;
997 case VC_VSD_TABLE_DATA: /* Virtual table setting */
998 case PC_VSD_TABLE_DATA:
999 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1000 break;
1001
1002 /*
1003 * Interrupt fifo overflow in memory backing store (Not modeled)
1004 */
1005 case VC_IRQ_CONFIG_IPI:
1006 case VC_IRQ_CONFIG_HW:
1007 case VC_IRQ_CONFIG_CASCADE1:
1008 case VC_IRQ_CONFIG_CASCADE2:
1009 case VC_IRQ_CONFIG_REDIST:
1010 case VC_IRQ_CONFIG_IPI_CASC:
1011 break;
1012
1013 /*
1014 * XIVE hardware thread enablement
1015 */
1016 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1017 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1018 break;
1019
1020 case PC_THREAD_EN_REG0_SET:
1021 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1022 break;
1023 case PC_THREAD_EN_REG1_SET:
1024 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1025 break;
1026 case PC_THREAD_EN_REG0_CLR:
1027 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1028 break;
1029 case PC_THREAD_EN_REG1_CLR:
1030 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1031 break;
1032
1033 /*
1034 * Indirect TIMA access set up. Defines the PIR of the HW thread
1035 * to use.
1036 */
1037 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1038 break;
1039
1040 /*
1041 * XIVE PC & VC cache updates for EAS, NVT and END
1042 */
1043 case VC_IVC_SCRUB_MASK:
1044 case VC_IVC_SCRUB_TRIG:
1045 break;
1046
1047 case VC_EQC_CWATCH_SPEC:
1048 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1049 break;
1050 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1051 break;
1052 case VC_EQC_CWATCH_DAT0:
1053 /* writing to DATA0 triggers the cache write */
1054 xive->regs[reg] = val;
1055 pnv_xive_end_update(xive);
1056 break;
1057 case VC_EQC_SCRUB_MASK:
1058 case VC_EQC_SCRUB_TRIG:
1059 /*
1060 * The scrubbing registers flush the cache in RAM and can also
1061 * invalidate.
1062 */
1063 break;
1064
1065 case PC_VPC_CWATCH_SPEC:
1066 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1067 break;
1068 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1069 break;
1070 case PC_VPC_CWATCH_DAT0:
1071 /* writing to DATA0 triggers the cache write */
1072 xive->regs[reg] = val;
1073 pnv_xive_nvt_update(xive);
1074 break;
1075 case PC_VPC_SCRUB_MASK:
1076 case PC_VPC_SCRUB_TRIG:
1077 /*
1078 * The scrubbing registers flush the cache in RAM and can also
1079 * invalidate.
1080 */
1081 break;
1082
1083
1084 /*
1085 * XIVE PC & VC cache invalidation
1086 */
1087 case PC_AT_KILL:
1088 break;
1089 case VC_AT_MACRO_KILL:
1090 break;
1091 case PC_AT_KILL_MASK:
1092 case VC_AT_MACRO_KILL_MASK:
1093 break;
1094
1095 default:
1096 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1097 return;
1098 }
1099
1100 xive->regs[reg] = val;
1101 }
1102
1103 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1104 {
1105 PnvXive *xive = PNV_XIVE(opaque);
1106 uint64_t val = 0;
1107 uint32_t reg = offset >> 3;
1108
1109 switch (offset) {
1110 case CQ_CFG_PB_GEN:
1111 case CQ_IC_BAR:
1112 case CQ_TM1_BAR:
1113 case CQ_TM2_BAR:
1114 case CQ_PC_BAR:
1115 case CQ_PC_BARM:
1116 case CQ_VC_BAR:
1117 case CQ_VC_BARM:
1118 case CQ_TAR:
1119 case CQ_TDR:
1120 case CQ_PBI_CTL:
1121
1122 case PC_TCTXT_CFG:
1123 case PC_TCTXT_TRACK:
1124 case PC_TCTXT_INDIR0:
1125 case PC_TCTXT_INDIR1:
1126 case PC_TCTXT_INDIR2:
1127 case PC_TCTXT_INDIR3:
1128 case PC_GLOBAL_CONFIG:
1129
1130 case PC_VPC_SCRUB_MASK:
1131
1132 case VC_GLOBAL_CONFIG:
1133 case VC_AIB_TX_ORDER_TAG2:
1134
1135 case VC_IRQ_CONFIG_IPI:
1136 case VC_IRQ_CONFIG_HW:
1137 case VC_IRQ_CONFIG_CASCADE1:
1138 case VC_IRQ_CONFIG_CASCADE2:
1139 case VC_IRQ_CONFIG_REDIST:
1140 case VC_IRQ_CONFIG_IPI_CASC:
1141
1142 case VC_EQC_SCRUB_MASK:
1143 case VC_IVC_SCRUB_MASK:
1144 case VC_SBC_CONFIG:
1145 case VC_AT_MACRO_KILL_MASK:
1146 case VC_VSD_TABLE_ADDR:
1147 case PC_VSD_TABLE_ADDR:
1148 case VC_VSD_TABLE_DATA:
1149 case PC_VSD_TABLE_DATA:
1150 case PC_THREAD_EN_REG0:
1151 case PC_THREAD_EN_REG1:
1152 val = xive->regs[reg];
1153 break;
1154
1155 /*
1156 * XIVE hardware thread enablement
1157 */
1158 case PC_THREAD_EN_REG0_SET:
1159 case PC_THREAD_EN_REG0_CLR:
1160 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1161 break;
1162 case PC_THREAD_EN_REG1_SET:
1163 case PC_THREAD_EN_REG1_CLR:
1164 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1165 break;
1166
1167 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1168 val = 0xffffff0000000000;
1169 break;
1170
1171 /*
1172 * XIVE PC & VC cache updates for EAS, NVT and END
1173 */
1174 case VC_EQC_CWATCH_SPEC:
1175 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1176 val = xive->regs[reg];
1177 break;
1178 case VC_EQC_CWATCH_DAT0:
1179 /*
1180 * Load DATA registers from cache with data requested by the
1181 * SPEC register
1182 */
1183 pnv_xive_end_cache_load(xive);
1184 val = xive->regs[reg];
1185 break;
1186 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1187 val = xive->regs[reg];
1188 break;
1189
1190 case PC_VPC_CWATCH_SPEC:
1191 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1192 val = xive->regs[reg];
1193 break;
1194 case PC_VPC_CWATCH_DAT0:
1195 /*
1196 * Load DATA registers from cache with data requested by the
1197 * SPEC register
1198 */
1199 pnv_xive_nvt_cache_load(xive);
1200 val = xive->regs[reg];
1201 break;
1202 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1203 val = xive->regs[reg];
1204 break;
1205
1206 case PC_VPC_SCRUB_TRIG:
1207 case VC_IVC_SCRUB_TRIG:
1208 case VC_EQC_SCRUB_TRIG:
1209 xive->regs[reg] &= ~VC_SCRUB_VALID;
1210 val = xive->regs[reg];
1211 break;
1212
1213 /*
1214 * XIVE PC & VC cache invalidation
1215 */
1216 case PC_AT_KILL:
1217 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1218 val = xive->regs[reg];
1219 break;
1220 case VC_AT_MACRO_KILL:
1221 xive->regs[reg] &= ~VC_KILL_VALID;
1222 val = xive->regs[reg];
1223 break;
1224
1225 /*
1226 * XIVE synchronisation
1227 */
1228 case VC_EQC_CONFIG:
1229 val = VC_EQC_SYNC_MASK;
1230 break;
1231
1232 default:
1233 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1234 }
1235
1236 return val;
1237 }
1238
1239 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1240 .read = pnv_xive_ic_reg_read,
1241 .write = pnv_xive_ic_reg_write,
1242 .endianness = DEVICE_BIG_ENDIAN,
1243 .valid = {
1244 .min_access_size = 8,
1245 .max_access_size = 8,
1246 },
1247 .impl = {
1248 .min_access_size = 8,
1249 .max_access_size = 8,
1250 },
1251 };
1252
1253 /*
1254 * IC - Notify MMIO port page (write only)
1255 */
1256 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1257 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1258 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1259 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1260 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1261 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1262 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1263 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1264
1265 /* VC synchronisation */
1266 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1267 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1268 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1269 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1270 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1271
1272 /* PC synchronisation */
1273 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1274 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1275 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1276
1277 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1278 {
1279 uint8_t blk;
1280 uint32_t idx;
1281
1282 if (val & XIVE_TRIGGER_END) {
1283 xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1284 addr, val);
1285 return;
1286 }
1287
1288 /*
1289 * Forward the source event notification directly to the Router.
1290 * The source interrupt number should already be correctly encoded
1291 * with the chip block id by the sending device (PHB, PSI).
1292 */
1293 blk = XIVE_EAS_BLOCK(val);
1294 idx = XIVE_EAS_INDEX(val);
1295
1296 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1297 }
1298
1299 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1300 unsigned size)
1301 {
1302 PnvXive *xive = PNV_XIVE(opaque);
1303
1304 /* VC: HW triggers */
1305 switch (addr) {
1306 case 0x000 ... 0x7FF:
1307 pnv_xive_ic_hw_trigger(opaque, addr, val);
1308 break;
1309
1310 /* VC: Forwarded IRQs */
1311 case PNV_XIVE_FORWARD_IPI:
1312 case PNV_XIVE_FORWARD_HW:
1313 case PNV_XIVE_FORWARD_OS_ESC:
1314 case PNV_XIVE_FORWARD_HW_ESC:
1315 case PNV_XIVE_FORWARD_REDIS:
1316 /* TODO: forwarded IRQs. Should be like HW triggers */
1317 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1318 addr, val);
1319 break;
1320
1321 /* VC syncs */
1322 case PNV_XIVE_SYNC_IPI:
1323 case PNV_XIVE_SYNC_HW:
1324 case PNV_XIVE_SYNC_OS_ESC:
1325 case PNV_XIVE_SYNC_HW_ESC:
1326 case PNV_XIVE_SYNC_REDIS:
1327 break;
1328
1329 /* PC syncs */
1330 case PNV_XIVE_SYNC_PULL:
1331 case PNV_XIVE_SYNC_PUSH:
1332 case PNV_XIVE_SYNC_VPC:
1333 break;
1334
1335 default:
1336 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1337 }
1338 }
1339
1340 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1341 unsigned size)
1342 {
1343 PnvXive *xive = PNV_XIVE(opaque);
1344
1345 /* loads are invalid */
1346 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1347 return -1;
1348 }
1349
1350 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1351 .read = pnv_xive_ic_notify_read,
1352 .write = pnv_xive_ic_notify_write,
1353 .endianness = DEVICE_BIG_ENDIAN,
1354 .valid = {
1355 .min_access_size = 8,
1356 .max_access_size = 8,
1357 },
1358 .impl = {
1359 .min_access_size = 8,
1360 .max_access_size = 8,
1361 },
1362 };
1363
1364 /*
1365 * IC - LSI MMIO handlers (not modeled)
1366 */
1367
1368 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1369 uint64_t val, unsigned size)
1370 {
1371 PnvXive *xive = PNV_XIVE(opaque);
1372
1373 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1374 }
1375
1376 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1377 {
1378 PnvXive *xive = PNV_XIVE(opaque);
1379
1380 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1381 return -1;
1382 }
1383
1384 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1385 .read = pnv_xive_ic_lsi_read,
1386 .write = pnv_xive_ic_lsi_write,
1387 .endianness = DEVICE_BIG_ENDIAN,
1388 .valid = {
1389 .min_access_size = 8,
1390 .max_access_size = 8,
1391 },
1392 .impl = {
1393 .min_access_size = 8,
1394 .max_access_size = 8,
1395 },
1396 };
1397
1398 /*
1399 * IC - Indirect TIMA MMIO handlers
1400 */
1401
1402 /*
1403 * When the TIMA is accessed from the indirect page, the thread id of
1404 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1405 * use. This is used for resets and for debug purpose also.
1406 */
1407 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1408 {
1409 PnvChip *chip = xive->chip;
1410 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1411 PowerPCCPU *cpu = NULL;
1412 int pir;
1413
1414 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1415 xive_error(xive, "IC: no indirect TIMA access in progress");
1416 return NULL;
1417 }
1418
1419 pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1420 cpu = pnv_chip_find_cpu(chip, pir);
1421 if (!cpu) {
1422 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1423 return NULL;
1424 }
1425
1426 /* Check that HW thread is XIVE enabled */
1427 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1428 xive_error(xive, "IC: CPU %x is not enabled", pir);
1429 }
1430
1431 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1432 }
1433
1434 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1435 uint64_t value, unsigned size)
1436 {
1437 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1438
1439 xive_tctx_tm_write(tctx, offset, value, size);
1440 }
1441
1442 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1443 unsigned size)
1444 {
1445 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1446
1447 return xive_tctx_tm_read(tctx, offset, size);
1448 }
1449
1450 static const MemoryRegionOps xive_tm_indirect_ops = {
1451 .read = xive_tm_indirect_read,
1452 .write = xive_tm_indirect_write,
1453 .endianness = DEVICE_BIG_ENDIAN,
1454 .valid = {
1455 .min_access_size = 1,
1456 .max_access_size = 8,
1457 },
1458 .impl = {
1459 .min_access_size = 1,
1460 .max_access_size = 8,
1461 },
1462 };
1463
1464 /*
1465 * Interrupt controller XSCOM region.
1466 */
1467 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1468 {
1469 switch (addr >> 3) {
1470 case X_VC_EQC_CONFIG:
1471 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1472 return VC_EQC_SYNC_MASK;
1473 default:
1474 return pnv_xive_ic_reg_read(opaque, addr, size);
1475 }
1476 }
1477
1478 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1479 uint64_t val, unsigned size)
1480 {
1481 pnv_xive_ic_reg_write(opaque, addr, val, size);
1482 }
1483
1484 static const MemoryRegionOps pnv_xive_xscom_ops = {
1485 .read = pnv_xive_xscom_read,
1486 .write = pnv_xive_xscom_write,
1487 .endianness = DEVICE_BIG_ENDIAN,
1488 .valid = {
1489 .min_access_size = 8,
1490 .max_access_size = 8,
1491 },
1492 .impl = {
1493 .min_access_size = 8,
1494 .max_access_size = 8,
1495 }
1496 };
1497
1498 /*
1499 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1500 */
1501 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1502 unsigned size)
1503 {
1504 PnvXive *xive = PNV_XIVE(opaque);
1505 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1506 uint64_t edt_type = 0;
1507 uint64_t edt_offset;
1508 MemTxResult result;
1509 AddressSpace *edt_as = NULL;
1510 uint64_t ret = -1;
1511
1512 if (edt_index < XIVE_TABLE_EDT_MAX) {
1513 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1514 }
1515
1516 switch (edt_type) {
1517 case CQ_TDR_EDT_IPI:
1518 edt_as = &xive->ipi_as;
1519 break;
1520 case CQ_TDR_EDT_EQ:
1521 edt_as = &xive->end_as;
1522 break;
1523 default:
1524 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1525 return -1;
1526 }
1527
1528 /* Remap the offset for the targeted address space */
1529 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1530
1531 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1532 &result);
1533
1534 if (result != MEMTX_OK) {
1535 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1536 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1537 offset, edt_offset);
1538 return -1;
1539 }
1540
1541 return ret;
1542 }
1543
1544 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1545 uint64_t val, unsigned size)
1546 {
1547 PnvXive *xive = PNV_XIVE(opaque);
1548 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1549 uint64_t edt_type = 0;
1550 uint64_t edt_offset;
1551 MemTxResult result;
1552 AddressSpace *edt_as = NULL;
1553
1554 if (edt_index < XIVE_TABLE_EDT_MAX) {
1555 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1556 }
1557
1558 switch (edt_type) {
1559 case CQ_TDR_EDT_IPI:
1560 edt_as = &xive->ipi_as;
1561 break;
1562 case CQ_TDR_EDT_EQ:
1563 edt_as = &xive->end_as;
1564 break;
1565 default:
1566 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1567 offset);
1568 return;
1569 }
1570
1571 /* Remap the offset for the targeted address space */
1572 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1573
1574 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1575 if (result != MEMTX_OK) {
1576 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1577 }
1578 }
1579
1580 static const MemoryRegionOps pnv_xive_vc_ops = {
1581 .read = pnv_xive_vc_read,
1582 .write = pnv_xive_vc_write,
1583 .endianness = DEVICE_BIG_ENDIAN,
1584 .valid = {
1585 .min_access_size = 8,
1586 .max_access_size = 8,
1587 },
1588 .impl = {
1589 .min_access_size = 8,
1590 .max_access_size = 8,
1591 },
1592 };
1593
1594 /*
1595 * Presenter Controller MMIO region. The Virtualization Controller
1596 * updates the IPB in the NVT table when required. Not modeled.
1597 */
1598 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1599 unsigned size)
1600 {
1601 PnvXive *xive = PNV_XIVE(opaque);
1602
1603 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1604 return -1;
1605 }
1606
1607 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1608 uint64_t value, unsigned size)
1609 {
1610 PnvXive *xive = PNV_XIVE(opaque);
1611
1612 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1613 }
1614
1615 static const MemoryRegionOps pnv_xive_pc_ops = {
1616 .read = pnv_xive_pc_read,
1617 .write = pnv_xive_pc_write,
1618 .endianness = DEVICE_BIG_ENDIAN,
1619 .valid = {
1620 .min_access_size = 8,
1621 .max_access_size = 8,
1622 },
1623 .impl = {
1624 .min_access_size = 8,
1625 .max_access_size = 8,
1626 },
1627 };
1628
1629 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1630 {
1631 XiveRouter *xrtr = XIVE_ROUTER(xive);
1632 uint8_t blk = xive->chip->chip_id;
1633 uint32_t srcno0 = XIVE_EAS(blk, 0);
1634 uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1635 XiveEAS eas;
1636 XiveEND end;
1637 int i;
1638
1639 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1640 srcno0 + nr_ipis - 1);
1641 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1642
1643 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1644 srcno0 + nr_ipis - 1);
1645 for (i = 0; i < nr_ipis; i++) {
1646 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1647 break;
1648 }
1649 if (!xive_eas_is_masked(&eas)) {
1650 xive_eas_pic_print_info(&eas, i, mon);
1651 }
1652 }
1653
1654 monitor_printf(mon, "XIVE[%x] ENDT\n", blk);
1655 i = 0;
1656 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1657 xive_end_pic_print_info(&end, i++, mon);
1658 }
1659
1660 monitor_printf(mon, "XIVE[%x] END Escalation EAT\n", blk);
1661 i = 0;
1662 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1663 xive_end_eas_pic_print_info(&end, i++, mon);
1664 }
1665 }
1666
1667 static void pnv_xive_reset(void *dev)
1668 {
1669 PnvXive *xive = PNV_XIVE(dev);
1670 XiveSource *xsrc = &xive->ipi_source;
1671 XiveENDSource *end_xsrc = &xive->end_source;
1672
1673 /*
1674 * Use the PnvChip id to identify the XIVE interrupt controller.
1675 * It can be overriden by configuration at runtime.
1676 */
1677 xive->tctx_chipid = xive->chip->chip_id;
1678
1679 /* Default page size (Should be changed at runtime to 64k) */
1680 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1681
1682 /* Clear subregions */
1683 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1684 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1685 }
1686
1687 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1688 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1689 }
1690
1691 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1692 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1693 }
1694
1695 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1696 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1697 }
1698 }
1699
1700 static void pnv_xive_init(Object *obj)
1701 {
1702 PnvXive *xive = PNV_XIVE(obj);
1703
1704 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1705 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1706 &error_abort, NULL);
1707 object_initialize_child(obj, "end_source", &xive->end_source,
1708 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1709 &error_abort, NULL);
1710 }
1711
1712 /*
1713 * Maximum number of IRQs and ENDs supported by HW
1714 */
1715 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1716 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1717
1718 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1719 {
1720 PnvXive *xive = PNV_XIVE(dev);
1721 XiveSource *xsrc = &xive->ipi_source;
1722 XiveENDSource *end_xsrc = &xive->end_source;
1723 Error *local_err = NULL;
1724
1725 assert(xive->chip);
1726
1727 /*
1728 * The XiveSource and XiveENDSource objects are realized with the
1729 * maximum allowed HW configuration. The ESB MMIO regions will be
1730 * resized dynamically when the controller is configured by the FW
1731 * to limit accesses to resources not provisioned.
1732 */
1733 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1734 &error_fatal);
1735 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1736 &error_abort);
1737 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1738 if (local_err) {
1739 error_propagate(errp, local_err);
1740 return;
1741 }
1742
1743 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1744 &error_fatal);
1745 object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
1746 &error_abort);
1747 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1748 if (local_err) {
1749 error_propagate(errp, local_err);
1750 return;
1751 }
1752
1753 /* Default page size. Generally changed at runtime to 64k */
1754 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1755
1756 /* XSCOM region, used for initial configuration of the BARs */
1757 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1758 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1759
1760 /* Interrupt controller MMIO regions */
1761 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1762 PNV9_XIVE_IC_SIZE);
1763
1764 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1765 xive, "xive-ic-reg", 1 << xive->ic_shift);
1766 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1767 &pnv_xive_ic_notify_ops,
1768 xive, "xive-ic-notify", 1 << xive->ic_shift);
1769
1770 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1771 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1772 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1773
1774 /* Thread Interrupt Management Area (Indirect) */
1775 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1776 &xive_tm_indirect_ops,
1777 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1778 /*
1779 * Overall Virtualization Controller MMIO region containing the
1780 * IPI ESB pages and END ESB pages. The layout is defined by the
1781 * EDT "Domain table" and the accesses are dispatched using
1782 * address spaces for each.
1783 */
1784 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1785 "xive-vc", PNV9_XIVE_VC_SIZE);
1786
1787 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1788 PNV9_XIVE_VC_SIZE);
1789 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1790 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1791 PNV9_XIVE_VC_SIZE);
1792 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1793
1794 /*
1795 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1796 * VC region. Their size is configured by the FW in the EDT table.
1797 */
1798 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1799 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1800
1801 /* Presenter Controller MMIO region (not modeled) */
1802 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1803 "xive-pc", PNV9_XIVE_PC_SIZE);
1804
1805 /* Thread Interrupt Management Area (Direct) */
1806 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1807 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1808
1809 qemu_register_reset(pnv_xive_reset, dev);
1810 }
1811
1812 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1813 int xscom_offset)
1814 {
1815 const char compat[] = "ibm,power9-xive-x";
1816 char *name;
1817 int offset;
1818 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1819 uint32_t reg[] = {
1820 cpu_to_be32(lpc_pcba),
1821 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1822 };
1823
1824 name = g_strdup_printf("xive@%x", lpc_pcba);
1825 offset = fdt_add_subnode(fdt, xscom_offset, name);
1826 _FDT(offset);
1827 g_free(name);
1828
1829 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1830 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1831 sizeof(compat))));
1832 return 0;
1833 }
1834
1835 static Property pnv_xive_properties[] = {
1836 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1837 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1838 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1839 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1840 /* The PnvChip id identifies the XIVE interrupt controller. */
1841 DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
1842 DEFINE_PROP_END_OF_LIST(),
1843 };
1844
1845 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1846 {
1847 DeviceClass *dc = DEVICE_CLASS(klass);
1848 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1849 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1850 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1851 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
1852
1853 xdc->dt_xscom = pnv_xive_dt_xscom;
1854
1855 dc->desc = "PowerNV XIVE Interrupt Controller";
1856 dc->realize = pnv_xive_realize;
1857 dc->props = pnv_xive_properties;
1858
1859 xrc->get_eas = pnv_xive_get_eas;
1860 xrc->get_end = pnv_xive_get_end;
1861 xrc->write_end = pnv_xive_write_end;
1862 xrc->get_nvt = pnv_xive_get_nvt;
1863 xrc->write_nvt = pnv_xive_write_nvt;
1864 xrc->get_tctx = pnv_xive_get_tctx;
1865
1866 xnc->notify = pnv_xive_notify;
1867 xpc->match_nvt = pnv_xive_match_nvt;
1868 };
1869
1870 static const TypeInfo pnv_xive_info = {
1871 .name = TYPE_PNV_XIVE,
1872 .parent = TYPE_XIVE_ROUTER,
1873 .instance_init = pnv_xive_init,
1874 .instance_size = sizeof(PnvXive),
1875 .class_init = pnv_xive_class_init,
1876 .interfaces = (InterfaceInfo[]) {
1877 { TYPE_PNV_XSCOM_INTERFACE },
1878 { }
1879 }
1880 };
1881
1882 static void pnv_xive_register_types(void)
1883 {
1884 type_register_static(&pnv_xive_info);
1885 }
1886
1887 type_init(pnv_xive_register_types)