]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/pnv_xive.c
xive: Link "xive" property to XiveSource::xive pointer
[mirror_qemu.git] / hw / intc / pnv_xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_core.h"
22 #include "hw/ppc/pnv_xscom.h"
23 #include "hw/ppc/pnv_xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "hw/ppc/ppc.h"
27
28 #include <libfdt.h>
29
30 #include "pnv_xive_regs.h"
31
32 #define XIVE_DEBUG
33
34 /*
35 * Virtual structures table (VST)
36 */
37 #define SBE_PER_BYTE 4
38
39 typedef struct XiveVstInfo {
40 const char *name;
41 uint32_t size;
42 uint32_t max_blocks;
43 } XiveVstInfo;
44
45 static const XiveVstInfo vst_infos[] = {
46 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
47 [VST_TSEL_SBE] = { "SBE", 1, 16 },
48 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
49 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
50
51 /*
52 * Interrupt fifo backing store table (not modeled) :
53 *
54 * 0 - IPI,
55 * 1 - HWD,
56 * 2 - First escalate,
57 * 3 - Second escalate,
58 * 4 - Redistribution,
59 * 5 - IPI cascaded queue ?
60 */
61 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
62 };
63
64 #define xive_error(xive, fmt, ...) \
65 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
66 (xive)->chip->chip_id, ## __VA_ARGS__);
67
68 /*
69 * QEMU version of the GETFIELD/SETFIELD macros
70 *
71 * TODO: It might be better to use the existing extract64() and
72 * deposit64() but this means that all the register definitions will
73 * change and become incompatible with the ones found in skiboot.
74 *
75 * Keep it as it is for now until we find a common ground.
76 */
77 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
78 {
79 return (word & mask) >> ctz64(mask);
80 }
81
82 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
83 uint64_t value)
84 {
85 return (word & ~mask) | ((value << ctz64(mask)) & mask);
86 }
87
88 /*
89 * Remote access to controllers. HW uses MMIOs. For now, a simple scan
90 * of the chips is good enough.
91 *
92 * TODO: Block scope support
93 */
94 static PnvXive *pnv_xive_get_ic(uint8_t blk)
95 {
96 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
97 int i;
98
99 for (i = 0; i < pnv->num_chips; i++) {
100 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
101 PnvXive *xive = &chip9->xive;
102
103 if (xive->chip->chip_id == blk) {
104 return xive;
105 }
106 }
107 return NULL;
108 }
109
110 /*
111 * VST accessors for SBE, EAT, ENDT, NVT
112 *
113 * Indirect VST tables are arrays of VSDs pointing to a page (of same
114 * size). Each page is a direct VST table.
115 */
116
117 #define XIVE_VSD_SIZE 8
118
119 /* Indirect page size can be 4K, 64K, 2M, 16M. */
120 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
121 {
122 return page_shift == 12 || page_shift == 16 ||
123 page_shift == 21 || page_shift == 24;
124 }
125
126 static uint64_t pnv_xive_vst_size(uint64_t vsd)
127 {
128 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
129
130 /*
131 * Read the first descriptor to get the page size of the indirect
132 * table.
133 */
134 if (VSD_INDIRECT & vsd) {
135 uint32_t nr_pages = vst_tsize / XIVE_VSD_SIZE;
136 uint32_t page_shift;
137
138 vsd = ldq_be_dma(&address_space_memory, vsd & VSD_ADDRESS_MASK);
139 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
140
141 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
142 return 0;
143 }
144
145 return nr_pages * (1ull << page_shift);
146 }
147
148 return vst_tsize;
149 }
150
151 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
152 uint64_t vsd, uint32_t idx)
153 {
154 const XiveVstInfo *info = &vst_infos[type];
155 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
156
157 return vst_addr + idx * info->size;
158 }
159
160 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
161 uint64_t vsd, uint32_t idx)
162 {
163 const XiveVstInfo *info = &vst_infos[type];
164 uint64_t vsd_addr;
165 uint32_t vsd_idx;
166 uint32_t page_shift;
167 uint32_t vst_per_page;
168
169 /* Get the page size of the indirect table. */
170 vsd_addr = vsd & VSD_ADDRESS_MASK;
171 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
172
173 if (!(vsd & VSD_ADDRESS_MASK)) {
174 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
175 return 0;
176 }
177
178 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
179
180 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
181 xive_error(xive, "VST: invalid %s page shift %d", info->name,
182 page_shift);
183 return 0;
184 }
185
186 vst_per_page = (1ull << page_shift) / info->size;
187 vsd_idx = idx / vst_per_page;
188
189 /* Load the VSD we are looking for, if not already done */
190 if (vsd_idx) {
191 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
192 vsd = ldq_be_dma(&address_space_memory, vsd_addr);
193
194 if (!(vsd & VSD_ADDRESS_MASK)) {
195 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
196 return 0;
197 }
198
199 /*
200 * Check that the pages have a consistent size across the
201 * indirect table
202 */
203 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
204 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
205 info->name, idx);
206 return 0;
207 }
208 }
209
210 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
211 }
212
213 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
214 uint32_t idx)
215 {
216 const XiveVstInfo *info = &vst_infos[type];
217 uint64_t vsd;
218 uint32_t idx_max;
219
220 if (blk >= info->max_blocks) {
221 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
222 blk, info->name, idx);
223 return 0;
224 }
225
226 vsd = xive->vsds[type][blk];
227
228 /* Remote VST access */
229 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
230 xive = pnv_xive_get_ic(blk);
231
232 return xive ? pnv_xive_vst_addr(xive, type, blk, idx) : 0;
233 }
234
235 idx_max = pnv_xive_vst_size(vsd) / info->size - 1;
236 if (idx > idx_max) {
237 #ifdef XIVE_DEBUG
238 xive_error(xive, "VST: %s entry %x/%x out of range [ 0 .. %x ] !?",
239 info->name, blk, idx, idx_max);
240 #endif
241 return 0;
242 }
243
244 if (VSD_INDIRECT & vsd) {
245 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
246 }
247
248 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
249 }
250
251 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
252 uint32_t idx, void *data)
253 {
254 const XiveVstInfo *info = &vst_infos[type];
255 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
256
257 if (!addr) {
258 return -1;
259 }
260
261 cpu_physical_memory_read(addr, data, info->size);
262 return 0;
263 }
264
265 #define XIVE_VST_WORD_ALL -1
266
267 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
268 uint32_t idx, void *data, uint32_t word_number)
269 {
270 const XiveVstInfo *info = &vst_infos[type];
271 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
272
273 if (!addr) {
274 return -1;
275 }
276
277 if (word_number == XIVE_VST_WORD_ALL) {
278 cpu_physical_memory_write(addr, data, info->size);
279 } else {
280 cpu_physical_memory_write(addr + word_number * 4,
281 data + word_number * 4, 4);
282 }
283 return 0;
284 }
285
286 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
287 XiveEND *end)
288 {
289 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
290 }
291
292 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
293 XiveEND *end, uint8_t word_number)
294 {
295 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
296 word_number);
297 }
298
299 static int pnv_xive_end_update(PnvXive *xive)
300 {
301 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
302 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
303 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
304 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
305 int i;
306 uint64_t eqc_watch[4];
307
308 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
309 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
310 }
311
312 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
313 XIVE_VST_WORD_ALL);
314 }
315
316 static void pnv_xive_end_cache_load(PnvXive *xive)
317 {
318 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
319 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
320 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
321 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
322 uint64_t eqc_watch[4] = { 0 };
323 int i;
324
325 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
326 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
327 }
328
329 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
330 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
331 }
332 }
333
334 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
335 XiveNVT *nvt)
336 {
337 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
338 }
339
340 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
341 XiveNVT *nvt, uint8_t word_number)
342 {
343 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
344 word_number);
345 }
346
347 static int pnv_xive_nvt_update(PnvXive *xive)
348 {
349 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
350 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
351 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
352 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
353 int i;
354 uint64_t vpc_watch[8];
355
356 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
357 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
358 }
359
360 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
361 XIVE_VST_WORD_ALL);
362 }
363
364 static void pnv_xive_nvt_cache_load(PnvXive *xive)
365 {
366 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
367 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
368 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
369 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
370 uint64_t vpc_watch[8] = { 0 };
371 int i;
372
373 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
374 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
375 }
376
377 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
378 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
379 }
380 }
381
382 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
383 XiveEAS *eas)
384 {
385 PnvXive *xive = PNV_XIVE(xrtr);
386
387 if (pnv_xive_get_ic(blk) != xive) {
388 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
389 return -1;
390 }
391
392 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
393 }
394
395 static XiveTCTX *pnv_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
396 {
397 PowerPCCPU *cpu = POWERPC_CPU(cs);
398 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
399 PnvXive *xive = NULL;
400 CPUPPCState *env = &cpu->env;
401 int pir = env->spr_cb[SPR_PIR].default_value;
402
403 /*
404 * Perform an extra check on the HW thread enablement.
405 *
406 * The TIMA is shared among the chips and to identify the chip
407 * from which the access is being done, we extract the chip id
408 * from the PIR.
409 */
410 xive = pnv_xive_get_ic((pir >> 8) & 0xf);
411 if (!xive) {
412 return NULL;
413 }
414
415 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
416 xive_error(PNV_XIVE(xrtr), "IC: CPU %x is not enabled", pir);
417 }
418
419 return tctx;
420 }
421
422 /*
423 * The internal sources (IPIs) of the interrupt controller have no
424 * knowledge of the XIVE chip on which they reside. Encode the block
425 * id in the source interrupt number before forwarding the source
426 * event notification to the Router. This is required on a multichip
427 * system.
428 */
429 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno)
430 {
431 PnvXive *xive = PNV_XIVE(xn);
432 uint8_t blk = xive->chip->chip_id;
433
434 xive_router_notify(xn, XIVE_EAS(blk, srcno));
435 }
436
437 /*
438 * XIVE helpers
439 */
440
441 static uint64_t pnv_xive_vc_size(PnvXive *xive)
442 {
443 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
444 }
445
446 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
447 {
448 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
449 }
450
451 static uint64_t pnv_xive_pc_size(PnvXive *xive)
452 {
453 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
454 }
455
456 static uint32_t pnv_xive_nr_ipis(PnvXive *xive)
457 {
458 uint8_t blk = xive->chip->chip_id;
459
460 return pnv_xive_vst_size(xive->vsds[VST_TSEL_SBE][blk]) * SBE_PER_BYTE;
461 }
462
463 static uint32_t pnv_xive_nr_ends(PnvXive *xive)
464 {
465 uint8_t blk = xive->chip->chip_id;
466
467 return pnv_xive_vst_size(xive->vsds[VST_TSEL_EQDT][blk])
468 / vst_infos[VST_TSEL_EQDT].size;
469 }
470
471 /*
472 * EDT Table
473 *
474 * The Virtualization Controller MMIO region containing the IPI ESB
475 * pages and END ESB pages is sub-divided into "sets" which map
476 * portions of the VC region to the different ESB pages. It is
477 * configured at runtime through the EDT "Domain Table" to let the
478 * firmware decide how to split the VC address space between IPI ESB
479 * pages and END ESB pages.
480 */
481
482 /*
483 * Computes the overall size of the IPI or the END ESB pages
484 */
485 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
486 {
487 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
488 uint64_t size = 0;
489 int i;
490
491 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
492 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
493
494 if (edt_type == type) {
495 size += edt_size;
496 }
497 }
498
499 return size;
500 }
501
502 /*
503 * Maps an offset of the VC region in the IPI or END region using the
504 * layout defined by the EDT "Domaine Table"
505 */
506 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
507 uint64_t type)
508 {
509 int i;
510 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
511 uint64_t edt_offset = vc_offset;
512
513 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
514 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
515
516 if (edt_type != type) {
517 edt_offset -= edt_size;
518 }
519 }
520
521 return edt_offset;
522 }
523
524 static void pnv_xive_edt_resize(PnvXive *xive)
525 {
526 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
527 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
528
529 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
530 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
531
532 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
533 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
534 }
535
536 /*
537 * XIVE Table configuration. Only EDT is supported.
538 */
539 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
540 {
541 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
542 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
543 uint64_t *xive_table;
544 uint8_t max_index;
545
546 switch (tsel) {
547 case CQ_TAR_TSEL_BLK:
548 max_index = ARRAY_SIZE(xive->blk);
549 xive_table = xive->blk;
550 break;
551 case CQ_TAR_TSEL_MIG:
552 max_index = ARRAY_SIZE(xive->mig);
553 xive_table = xive->mig;
554 break;
555 case CQ_TAR_TSEL_EDT:
556 max_index = ARRAY_SIZE(xive->edt);
557 xive_table = xive->edt;
558 break;
559 case CQ_TAR_TSEL_VDT:
560 max_index = ARRAY_SIZE(xive->vdt);
561 xive_table = xive->vdt;
562 break;
563 default:
564 xive_error(xive, "IC: invalid table %d", (int) tsel);
565 return -1;
566 }
567
568 if (tsel_index >= max_index) {
569 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
570 return -1;
571 }
572
573 xive_table[tsel_index] = val;
574
575 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
576 xive->regs[CQ_TAR >> 3] =
577 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
578 }
579
580 /*
581 * EDT configuration is complete. Resize the MMIO windows exposing
582 * the IPI and the END ESBs in the VC region.
583 */
584 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
585 pnv_xive_edt_resize(xive);
586 }
587
588 return 0;
589 }
590
591 /*
592 * Virtual Structure Tables (VST) configuration
593 */
594 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
595 uint8_t blk, uint64_t vsd)
596 {
597 XiveENDSource *end_xsrc = &xive->end_source;
598 XiveSource *xsrc = &xive->ipi_source;
599 const XiveVstInfo *info = &vst_infos[type];
600 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
601 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
602
603 /* Basic checks */
604
605 if (VSD_INDIRECT & vsd) {
606 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
607 xive_error(xive, "VST: %s indirect tables are not enabled",
608 info->name);
609 return;
610 }
611
612 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
613 xive_error(xive, "VST: invalid %s page shift %d", info->name,
614 page_shift);
615 return;
616 }
617 }
618
619 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
620 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
621 " page shift %d", info->name, vst_addr, page_shift);
622 return;
623 }
624
625 /* Record the table configuration (in SRAM on HW) */
626 xive->vsds[type][blk] = vsd;
627
628 /* Now tune the models with the configuration provided by the FW */
629
630 switch (type) {
631 case VST_TSEL_IVT: /* Nothing to be done */
632 break;
633
634 case VST_TSEL_EQDT:
635 /*
636 * Backing store pages for the END. Compute the number of ENDs
637 * provisioned by FW and resize the END ESB window accordingly.
638 */
639 memory_region_set_size(&end_xsrc->esb_mmio, pnv_xive_nr_ends(xive) *
640 (1ull << (end_xsrc->esb_shift + 1)));
641 memory_region_add_subregion(&xive->end_edt_mmio, 0,
642 &end_xsrc->esb_mmio);
643 break;
644
645 case VST_TSEL_SBE:
646 /*
647 * Backing store pages for the source PQ bits. The model does
648 * not use these PQ bits backed in RAM because the XiveSource
649 * model has its own. Compute the number of IRQs provisioned
650 * by FW and resize the IPI ESB window accordingly.
651 */
652 memory_region_set_size(&xsrc->esb_mmio, pnv_xive_nr_ipis(xive) *
653 (1ull << xsrc->esb_shift));
654 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
655 break;
656
657 case VST_TSEL_VPDT: /* Not modeled */
658 case VST_TSEL_IRQ: /* Not modeled */
659 /*
660 * These tables contains the backing store pages for the
661 * interrupt fifos of the VC sub-engine in case of overflow.
662 */
663 break;
664
665 default:
666 g_assert_not_reached();
667 }
668 }
669
670 /*
671 * Both PC and VC sub-engines are configured as each use the Virtual
672 * Structure Tables : SBE, EAS, END and NVT.
673 */
674 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
675 {
676 uint8_t mode = GETFIELD(VSD_MODE, vsd);
677 uint8_t type = GETFIELD(VST_TABLE_SELECT,
678 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
679 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
680 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
681 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
682
683 if (type > VST_TSEL_IRQ) {
684 xive_error(xive, "VST: invalid table type %d", type);
685 return;
686 }
687
688 if (blk >= vst_infos[type].max_blocks) {
689 xive_error(xive, "VST: invalid block id %d for"
690 " %s table", blk, vst_infos[type].name);
691 return;
692 }
693
694 /*
695 * Only take the VC sub-engine configuration into account because
696 * the XiveRouter model combines both VC and PC sub-engines
697 */
698 if (pc_engine) {
699 return;
700 }
701
702 if (!vst_addr) {
703 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
704 return;
705 }
706
707 switch (mode) {
708 case VSD_MODE_FORWARD:
709 xive->vsds[type][blk] = vsd;
710 break;
711
712 case VSD_MODE_EXCLUSIVE:
713 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
714 break;
715
716 default:
717 xive_error(xive, "VST: unsupported table mode %d", mode);
718 return;
719 }
720 }
721
722 /*
723 * Interrupt controller MMIO region. The layout is compatible between
724 * 4K and 64K pages :
725 *
726 * Page 0 sub-engine BARs
727 * 0x000 - 0x3FF IC registers
728 * 0x400 - 0x7FF PC registers
729 * 0x800 - 0xFFF VC registers
730 *
731 * Page 1 Notify page (writes only)
732 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
733 * 0x800 - 0xFFF forwards and syncs
734 *
735 * Page 2 LSI Trigger page (writes only) (not modeled)
736 * Page 3 LSI SB EOI page (reads only) (not modeled)
737 *
738 * Page 4-7 indirect TIMA
739 */
740
741 /*
742 * IC - registers MMIO
743 */
744 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
745 uint64_t val, unsigned size)
746 {
747 PnvXive *xive = PNV_XIVE(opaque);
748 MemoryRegion *sysmem = get_system_memory();
749 uint32_t reg = offset >> 3;
750 bool is_chip0 = xive->chip->chip_id == 0;
751
752 switch (offset) {
753
754 /*
755 * XIVE CQ (PowerBus bridge) settings
756 */
757 case CQ_MSGSND: /* msgsnd for doorbells */
758 case CQ_FIRMASK_OR: /* FIR error reporting */
759 break;
760 case CQ_PBI_CTL:
761 if (val & CQ_PBI_PC_64K) {
762 xive->pc_shift = 16;
763 }
764 if (val & CQ_PBI_VC_64K) {
765 xive->vc_shift = 16;
766 }
767 break;
768 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
769 /*
770 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
771 */
772 break;
773
774 /*
775 * XIVE Virtualization Controller settings
776 */
777 case VC_GLOBAL_CONFIG:
778 break;
779
780 /*
781 * XIVE Presenter Controller settings
782 */
783 case PC_GLOBAL_CONFIG:
784 /*
785 * PC_GCONF_CHIPID_OVR
786 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
787 */
788 break;
789 case PC_TCTXT_CFG:
790 /*
791 * TODO: block group support
792 *
793 * PC_TCTXT_CFG_BLKGRP_EN
794 * PC_TCTXT_CFG_HARD_CHIPID_BLK :
795 * Moves the chipid into block field for hardwired CAM compares.
796 * Block offset value is adjusted to 0b0..01 & ThrdId
797 *
798 * Will require changes in xive_presenter_tctx_match(). I am
799 * not sure how to handle that yet.
800 */
801
802 /* Overrides hardwired chip ID with the chip ID field */
803 if (val & PC_TCTXT_CHIPID_OVERRIDE) {
804 xive->tctx_chipid = GETFIELD(PC_TCTXT_CHIPID, val);
805 }
806 break;
807 case PC_TCTXT_TRACK:
808 /*
809 * PC_TCTXT_TRACK_EN:
810 * enable block tracking and exchange of block ownership
811 * information between Interrupt controllers
812 */
813 break;
814
815 /*
816 * Misc settings
817 */
818 case VC_SBC_CONFIG: /* Store EOI configuration */
819 /*
820 * Configure store EOI if required by firwmare (skiboot has removed
821 * support recently though)
822 */
823 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
824 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
825 }
826 break;
827
828 case VC_EQC_CONFIG: /* TODO: silent escalation */
829 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
830 break;
831
832 /*
833 * XIVE BAR settings (XSCOM only)
834 */
835 case CQ_RST_CTL:
836 /* bit4: resets all BAR registers */
837 break;
838
839 case CQ_IC_BAR: /* IC BAR. 8 pages */
840 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
841 if (!(val & CQ_IC_BAR_VALID)) {
842 xive->ic_base = 0;
843 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
844 memory_region_del_subregion(&xive->ic_mmio,
845 &xive->ic_reg_mmio);
846 memory_region_del_subregion(&xive->ic_mmio,
847 &xive->ic_notify_mmio);
848 memory_region_del_subregion(&xive->ic_mmio,
849 &xive->ic_lsi_mmio);
850 memory_region_del_subregion(&xive->ic_mmio,
851 &xive->tm_indirect_mmio);
852
853 memory_region_del_subregion(sysmem, &xive->ic_mmio);
854 }
855 } else {
856 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
857 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
858 memory_region_add_subregion(sysmem, xive->ic_base,
859 &xive->ic_mmio);
860
861 memory_region_add_subregion(&xive->ic_mmio, 0,
862 &xive->ic_reg_mmio);
863 memory_region_add_subregion(&xive->ic_mmio,
864 1ul << xive->ic_shift,
865 &xive->ic_notify_mmio);
866 memory_region_add_subregion(&xive->ic_mmio,
867 2ul << xive->ic_shift,
868 &xive->ic_lsi_mmio);
869 memory_region_add_subregion(&xive->ic_mmio,
870 4ull << xive->ic_shift,
871 &xive->tm_indirect_mmio);
872 }
873 }
874 break;
875
876 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
877 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
878 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
879 if (!(val & CQ_TM_BAR_VALID)) {
880 xive->tm_base = 0;
881 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
882 memory_region_del_subregion(sysmem, &xive->tm_mmio);
883 }
884 } else {
885 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
886 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
887 memory_region_add_subregion(sysmem, xive->tm_base,
888 &xive->tm_mmio);
889 }
890 }
891 break;
892
893 case CQ_PC_BARM:
894 xive->regs[reg] = val;
895 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
896 break;
897 case CQ_PC_BAR: /* From 32M to 512G */
898 if (!(val & CQ_PC_BAR_VALID)) {
899 xive->pc_base = 0;
900 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
901 memory_region_del_subregion(sysmem, &xive->pc_mmio);
902 }
903 } else {
904 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
905 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
906 memory_region_add_subregion(sysmem, xive->pc_base,
907 &xive->pc_mmio);
908 }
909 }
910 break;
911
912 case CQ_VC_BARM:
913 xive->regs[reg] = val;
914 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
915 break;
916 case CQ_VC_BAR: /* From 64M to 4TB */
917 if (!(val & CQ_VC_BAR_VALID)) {
918 xive->vc_base = 0;
919 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
920 memory_region_del_subregion(sysmem, &xive->vc_mmio);
921 }
922 } else {
923 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
924 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
925 memory_region_add_subregion(sysmem, xive->vc_base,
926 &xive->vc_mmio);
927 }
928 }
929 break;
930
931 /*
932 * XIVE Table settings.
933 */
934 case CQ_TAR: /* Table Address */
935 break;
936 case CQ_TDR: /* Table Data */
937 pnv_xive_table_set_data(xive, val);
938 break;
939
940 /*
941 * XIVE VC & PC Virtual Structure Table settings
942 */
943 case VC_VSD_TABLE_ADDR:
944 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
945 break;
946 case VC_VSD_TABLE_DATA: /* Virtual table setting */
947 case PC_VSD_TABLE_DATA:
948 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
949 break;
950
951 /*
952 * Interrupt fifo overflow in memory backing store (Not modeled)
953 */
954 case VC_IRQ_CONFIG_IPI:
955 case VC_IRQ_CONFIG_HW:
956 case VC_IRQ_CONFIG_CASCADE1:
957 case VC_IRQ_CONFIG_CASCADE2:
958 case VC_IRQ_CONFIG_REDIST:
959 case VC_IRQ_CONFIG_IPI_CASC:
960 break;
961
962 /*
963 * XIVE hardware thread enablement
964 */
965 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
966 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
967 break;
968
969 case PC_THREAD_EN_REG0_SET:
970 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
971 break;
972 case PC_THREAD_EN_REG1_SET:
973 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
974 break;
975 case PC_THREAD_EN_REG0_CLR:
976 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
977 break;
978 case PC_THREAD_EN_REG1_CLR:
979 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
980 break;
981
982 /*
983 * Indirect TIMA access set up. Defines the PIR of the HW thread
984 * to use.
985 */
986 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
987 break;
988
989 /*
990 * XIVE PC & VC cache updates for EAS, NVT and END
991 */
992 case VC_IVC_SCRUB_MASK:
993 case VC_IVC_SCRUB_TRIG:
994 break;
995
996 case VC_EQC_CWATCH_SPEC:
997 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
998 break;
999 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1000 break;
1001 case VC_EQC_CWATCH_DAT0:
1002 /* writing to DATA0 triggers the cache write */
1003 xive->regs[reg] = val;
1004 pnv_xive_end_update(xive);
1005 break;
1006 case VC_EQC_SCRUB_MASK:
1007 case VC_EQC_SCRUB_TRIG:
1008 /*
1009 * The scrubbing registers flush the cache in RAM and can also
1010 * invalidate.
1011 */
1012 break;
1013
1014 case PC_VPC_CWATCH_SPEC:
1015 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1016 break;
1017 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1018 break;
1019 case PC_VPC_CWATCH_DAT0:
1020 /* writing to DATA0 triggers the cache write */
1021 xive->regs[reg] = val;
1022 pnv_xive_nvt_update(xive);
1023 break;
1024 case PC_VPC_SCRUB_MASK:
1025 case PC_VPC_SCRUB_TRIG:
1026 /*
1027 * The scrubbing registers flush the cache in RAM and can also
1028 * invalidate.
1029 */
1030 break;
1031
1032
1033 /*
1034 * XIVE PC & VC cache invalidation
1035 */
1036 case PC_AT_KILL:
1037 break;
1038 case VC_AT_MACRO_KILL:
1039 break;
1040 case PC_AT_KILL_MASK:
1041 case VC_AT_MACRO_KILL_MASK:
1042 break;
1043
1044 default:
1045 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1046 return;
1047 }
1048
1049 xive->regs[reg] = val;
1050 }
1051
1052 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1053 {
1054 PnvXive *xive = PNV_XIVE(opaque);
1055 uint64_t val = 0;
1056 uint32_t reg = offset >> 3;
1057
1058 switch (offset) {
1059 case CQ_CFG_PB_GEN:
1060 case CQ_IC_BAR:
1061 case CQ_TM1_BAR:
1062 case CQ_TM2_BAR:
1063 case CQ_PC_BAR:
1064 case CQ_PC_BARM:
1065 case CQ_VC_BAR:
1066 case CQ_VC_BARM:
1067 case CQ_TAR:
1068 case CQ_TDR:
1069 case CQ_PBI_CTL:
1070
1071 case PC_TCTXT_CFG:
1072 case PC_TCTXT_TRACK:
1073 case PC_TCTXT_INDIR0:
1074 case PC_TCTXT_INDIR1:
1075 case PC_TCTXT_INDIR2:
1076 case PC_TCTXT_INDIR3:
1077 case PC_GLOBAL_CONFIG:
1078
1079 case PC_VPC_SCRUB_MASK:
1080
1081 case VC_GLOBAL_CONFIG:
1082 case VC_AIB_TX_ORDER_TAG2:
1083
1084 case VC_IRQ_CONFIG_IPI:
1085 case VC_IRQ_CONFIG_HW:
1086 case VC_IRQ_CONFIG_CASCADE1:
1087 case VC_IRQ_CONFIG_CASCADE2:
1088 case VC_IRQ_CONFIG_REDIST:
1089 case VC_IRQ_CONFIG_IPI_CASC:
1090
1091 case VC_EQC_SCRUB_MASK:
1092 case VC_IVC_SCRUB_MASK:
1093 case VC_SBC_CONFIG:
1094 case VC_AT_MACRO_KILL_MASK:
1095 case VC_VSD_TABLE_ADDR:
1096 case PC_VSD_TABLE_ADDR:
1097 case VC_VSD_TABLE_DATA:
1098 case PC_VSD_TABLE_DATA:
1099 case PC_THREAD_EN_REG0:
1100 case PC_THREAD_EN_REG1:
1101 val = xive->regs[reg];
1102 break;
1103
1104 /*
1105 * XIVE hardware thread enablement
1106 */
1107 case PC_THREAD_EN_REG0_SET:
1108 case PC_THREAD_EN_REG0_CLR:
1109 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1110 break;
1111 case PC_THREAD_EN_REG1_SET:
1112 case PC_THREAD_EN_REG1_CLR:
1113 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1114 break;
1115
1116 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1117 val = 0xffffff0000000000;
1118 break;
1119
1120 /*
1121 * XIVE PC & VC cache updates for EAS, NVT and END
1122 */
1123 case VC_EQC_CWATCH_SPEC:
1124 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1125 val = xive->regs[reg];
1126 break;
1127 case VC_EQC_CWATCH_DAT0:
1128 /*
1129 * Load DATA registers from cache with data requested by the
1130 * SPEC register
1131 */
1132 pnv_xive_end_cache_load(xive);
1133 val = xive->regs[reg];
1134 break;
1135 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1136 val = xive->regs[reg];
1137 break;
1138
1139 case PC_VPC_CWATCH_SPEC:
1140 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1141 val = xive->regs[reg];
1142 break;
1143 case PC_VPC_CWATCH_DAT0:
1144 /*
1145 * Load DATA registers from cache with data requested by the
1146 * SPEC register
1147 */
1148 pnv_xive_nvt_cache_load(xive);
1149 val = xive->regs[reg];
1150 break;
1151 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1152 val = xive->regs[reg];
1153 break;
1154
1155 case PC_VPC_SCRUB_TRIG:
1156 case VC_IVC_SCRUB_TRIG:
1157 case VC_EQC_SCRUB_TRIG:
1158 xive->regs[reg] &= ~VC_SCRUB_VALID;
1159 val = xive->regs[reg];
1160 break;
1161
1162 /*
1163 * XIVE PC & VC cache invalidation
1164 */
1165 case PC_AT_KILL:
1166 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1167 val = xive->regs[reg];
1168 break;
1169 case VC_AT_MACRO_KILL:
1170 xive->regs[reg] &= ~VC_KILL_VALID;
1171 val = xive->regs[reg];
1172 break;
1173
1174 /*
1175 * XIVE synchronisation
1176 */
1177 case VC_EQC_CONFIG:
1178 val = VC_EQC_SYNC_MASK;
1179 break;
1180
1181 default:
1182 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1183 }
1184
1185 return val;
1186 }
1187
1188 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1189 .read = pnv_xive_ic_reg_read,
1190 .write = pnv_xive_ic_reg_write,
1191 .endianness = DEVICE_BIG_ENDIAN,
1192 .valid = {
1193 .min_access_size = 8,
1194 .max_access_size = 8,
1195 },
1196 .impl = {
1197 .min_access_size = 8,
1198 .max_access_size = 8,
1199 },
1200 };
1201
1202 /*
1203 * IC - Notify MMIO port page (write only)
1204 */
1205 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1206 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1207 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1208 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1209 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1210 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1211 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1212 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1213
1214 /* VC synchronisation */
1215 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1216 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1217 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1218 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1219 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1220
1221 /* PC synchronisation */
1222 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1223 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1224 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1225
1226 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1227 {
1228 uint8_t blk;
1229 uint32_t idx;
1230
1231 if (val & XIVE_TRIGGER_END) {
1232 xive_error(xive, "IC: END trigger at @0x%"HWADDR_PRIx" data 0x%"PRIx64,
1233 addr, val);
1234 return;
1235 }
1236
1237 /*
1238 * Forward the source event notification directly to the Router.
1239 * The source interrupt number should already be correctly encoded
1240 * with the chip block id by the sending device (PHB, PSI).
1241 */
1242 blk = XIVE_EAS_BLOCK(val);
1243 idx = XIVE_EAS_INDEX(val);
1244
1245 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx));
1246 }
1247
1248 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1249 unsigned size)
1250 {
1251 PnvXive *xive = PNV_XIVE(opaque);
1252
1253 /* VC: HW triggers */
1254 switch (addr) {
1255 case 0x000 ... 0x7FF:
1256 pnv_xive_ic_hw_trigger(opaque, addr, val);
1257 break;
1258
1259 /* VC: Forwarded IRQs */
1260 case PNV_XIVE_FORWARD_IPI:
1261 case PNV_XIVE_FORWARD_HW:
1262 case PNV_XIVE_FORWARD_OS_ESC:
1263 case PNV_XIVE_FORWARD_HW_ESC:
1264 case PNV_XIVE_FORWARD_REDIS:
1265 /* TODO: forwarded IRQs. Should be like HW triggers */
1266 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1267 addr, val);
1268 break;
1269
1270 /* VC syncs */
1271 case PNV_XIVE_SYNC_IPI:
1272 case PNV_XIVE_SYNC_HW:
1273 case PNV_XIVE_SYNC_OS_ESC:
1274 case PNV_XIVE_SYNC_HW_ESC:
1275 case PNV_XIVE_SYNC_REDIS:
1276 break;
1277
1278 /* PC syncs */
1279 case PNV_XIVE_SYNC_PULL:
1280 case PNV_XIVE_SYNC_PUSH:
1281 case PNV_XIVE_SYNC_VPC:
1282 break;
1283
1284 default:
1285 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1286 }
1287 }
1288
1289 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1290 unsigned size)
1291 {
1292 PnvXive *xive = PNV_XIVE(opaque);
1293
1294 /* loads are invalid */
1295 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1296 return -1;
1297 }
1298
1299 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1300 .read = pnv_xive_ic_notify_read,
1301 .write = pnv_xive_ic_notify_write,
1302 .endianness = DEVICE_BIG_ENDIAN,
1303 .valid = {
1304 .min_access_size = 8,
1305 .max_access_size = 8,
1306 },
1307 .impl = {
1308 .min_access_size = 8,
1309 .max_access_size = 8,
1310 },
1311 };
1312
1313 /*
1314 * IC - LSI MMIO handlers (not modeled)
1315 */
1316
1317 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1318 uint64_t val, unsigned size)
1319 {
1320 PnvXive *xive = PNV_XIVE(opaque);
1321
1322 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1323 }
1324
1325 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1326 {
1327 PnvXive *xive = PNV_XIVE(opaque);
1328
1329 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1330 return -1;
1331 }
1332
1333 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1334 .read = pnv_xive_ic_lsi_read,
1335 .write = pnv_xive_ic_lsi_write,
1336 .endianness = DEVICE_BIG_ENDIAN,
1337 .valid = {
1338 .min_access_size = 8,
1339 .max_access_size = 8,
1340 },
1341 .impl = {
1342 .min_access_size = 8,
1343 .max_access_size = 8,
1344 },
1345 };
1346
1347 /*
1348 * IC - Indirect TIMA MMIO handlers
1349 */
1350
1351 /*
1352 * When the TIMA is accessed from the indirect page, the thread id
1353 * (PIR) has to be configured in the IC registers before. This is used
1354 * for resets and for debug purpose also.
1355 */
1356 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1357 {
1358 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1359 PowerPCCPU *cpu = NULL;
1360 int pir;
1361
1362 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1363 xive_error(xive, "IC: no indirect TIMA access in progress");
1364 return NULL;
1365 }
1366
1367 pir = GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir) & 0xff;
1368 cpu = ppc_get_vcpu_by_pir(pir);
1369 if (!cpu) {
1370 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1371 return NULL;
1372 }
1373
1374 /* Check that HW thread is XIVE enabled */
1375 if (!(xive->regs[PC_THREAD_EN_REG0 >> 3] & PPC_BIT(pir & 0x3f))) {
1376 xive_error(xive, "IC: CPU %x is not enabled", pir);
1377 }
1378
1379 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1380 }
1381
1382 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1383 uint64_t value, unsigned size)
1384 {
1385 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1386
1387 xive_tctx_tm_write(tctx, offset, value, size);
1388 }
1389
1390 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1391 unsigned size)
1392 {
1393 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1394
1395 return xive_tctx_tm_read(tctx, offset, size);
1396 }
1397
1398 static const MemoryRegionOps xive_tm_indirect_ops = {
1399 .read = xive_tm_indirect_read,
1400 .write = xive_tm_indirect_write,
1401 .endianness = DEVICE_BIG_ENDIAN,
1402 .valid = {
1403 .min_access_size = 1,
1404 .max_access_size = 8,
1405 },
1406 .impl = {
1407 .min_access_size = 1,
1408 .max_access_size = 8,
1409 },
1410 };
1411
1412 /*
1413 * Interrupt controller XSCOM region.
1414 */
1415 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1416 {
1417 switch (addr >> 3) {
1418 case X_VC_EQC_CONFIG:
1419 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1420 return VC_EQC_SYNC_MASK;
1421 default:
1422 return pnv_xive_ic_reg_read(opaque, addr, size);
1423 }
1424 }
1425
1426 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1427 uint64_t val, unsigned size)
1428 {
1429 pnv_xive_ic_reg_write(opaque, addr, val, size);
1430 }
1431
1432 static const MemoryRegionOps pnv_xive_xscom_ops = {
1433 .read = pnv_xive_xscom_read,
1434 .write = pnv_xive_xscom_write,
1435 .endianness = DEVICE_BIG_ENDIAN,
1436 .valid = {
1437 .min_access_size = 8,
1438 .max_access_size = 8,
1439 },
1440 .impl = {
1441 .min_access_size = 8,
1442 .max_access_size = 8,
1443 }
1444 };
1445
1446 /*
1447 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1448 */
1449 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1450 unsigned size)
1451 {
1452 PnvXive *xive = PNV_XIVE(opaque);
1453 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1454 uint64_t edt_type = 0;
1455 uint64_t edt_offset;
1456 MemTxResult result;
1457 AddressSpace *edt_as = NULL;
1458 uint64_t ret = -1;
1459
1460 if (edt_index < XIVE_TABLE_EDT_MAX) {
1461 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1462 }
1463
1464 switch (edt_type) {
1465 case CQ_TDR_EDT_IPI:
1466 edt_as = &xive->ipi_as;
1467 break;
1468 case CQ_TDR_EDT_EQ:
1469 edt_as = &xive->end_as;
1470 break;
1471 default:
1472 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1473 return -1;
1474 }
1475
1476 /* Remap the offset for the targeted address space */
1477 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1478
1479 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1480 &result);
1481
1482 if (result != MEMTX_OK) {
1483 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1484 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1485 offset, edt_offset);
1486 return -1;
1487 }
1488
1489 return ret;
1490 }
1491
1492 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1493 uint64_t val, unsigned size)
1494 {
1495 PnvXive *xive = PNV_XIVE(opaque);
1496 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1497 uint64_t edt_type = 0;
1498 uint64_t edt_offset;
1499 MemTxResult result;
1500 AddressSpace *edt_as = NULL;
1501
1502 if (edt_index < XIVE_TABLE_EDT_MAX) {
1503 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1504 }
1505
1506 switch (edt_type) {
1507 case CQ_TDR_EDT_IPI:
1508 edt_as = &xive->ipi_as;
1509 break;
1510 case CQ_TDR_EDT_EQ:
1511 edt_as = &xive->end_as;
1512 break;
1513 default:
1514 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1515 offset);
1516 return;
1517 }
1518
1519 /* Remap the offset for the targeted address space */
1520 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1521
1522 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1523 if (result != MEMTX_OK) {
1524 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1525 }
1526 }
1527
1528 static const MemoryRegionOps pnv_xive_vc_ops = {
1529 .read = pnv_xive_vc_read,
1530 .write = pnv_xive_vc_write,
1531 .endianness = DEVICE_BIG_ENDIAN,
1532 .valid = {
1533 .min_access_size = 8,
1534 .max_access_size = 8,
1535 },
1536 .impl = {
1537 .min_access_size = 8,
1538 .max_access_size = 8,
1539 },
1540 };
1541
1542 /*
1543 * Presenter Controller MMIO region. The Virtualization Controller
1544 * updates the IPB in the NVT table when required. Not modeled.
1545 */
1546 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr addr,
1547 unsigned size)
1548 {
1549 PnvXive *xive = PNV_XIVE(opaque);
1550
1551 xive_error(xive, "PC: invalid read @%"HWADDR_PRIx, addr);
1552 return -1;
1553 }
1554
1555 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1556 uint64_t value, unsigned size)
1557 {
1558 PnvXive *xive = PNV_XIVE(opaque);
1559
1560 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1561 }
1562
1563 static const MemoryRegionOps pnv_xive_pc_ops = {
1564 .read = pnv_xive_pc_read,
1565 .write = pnv_xive_pc_write,
1566 .endianness = DEVICE_BIG_ENDIAN,
1567 .valid = {
1568 .min_access_size = 8,
1569 .max_access_size = 8,
1570 },
1571 .impl = {
1572 .min_access_size = 8,
1573 .max_access_size = 8,
1574 },
1575 };
1576
1577 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1578 {
1579 XiveRouter *xrtr = XIVE_ROUTER(xive);
1580 uint8_t blk = xive->chip->chip_id;
1581 uint32_t srcno0 = XIVE_EAS(blk, 0);
1582 uint32_t nr_ipis = pnv_xive_nr_ipis(xive);
1583 uint32_t nr_ends = pnv_xive_nr_ends(xive);
1584 XiveEAS eas;
1585 XiveEND end;
1586 int i;
1587
1588 monitor_printf(mon, "XIVE[%x] Source %08x .. %08x\n", blk, srcno0,
1589 srcno0 + nr_ipis - 1);
1590 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1591
1592 monitor_printf(mon, "XIVE[%x] EAT %08x .. %08x\n", blk, srcno0,
1593 srcno0 + nr_ipis - 1);
1594 for (i = 0; i < nr_ipis; i++) {
1595 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1596 break;
1597 }
1598 if (!xive_eas_is_masked(&eas)) {
1599 xive_eas_pic_print_info(&eas, i, mon);
1600 }
1601 }
1602
1603 monitor_printf(mon, "XIVE[%x] ENDT %08x .. %08x\n", blk, 0, nr_ends - 1);
1604 for (i = 0; i < nr_ends; i++) {
1605 if (xive_router_get_end(xrtr, blk, i, &end)) {
1606 break;
1607 }
1608 xive_end_pic_print_info(&end, i, mon);
1609 }
1610
1611 monitor_printf(mon, "XIVE[%x] END Escalation %08x .. %08x\n", blk, 0,
1612 nr_ends - 1);
1613 for (i = 0; i < nr_ends; i++) {
1614 if (xive_router_get_end(xrtr, blk, i, &end)) {
1615 break;
1616 }
1617 xive_end_eas_pic_print_info(&end, i, mon);
1618 }
1619 }
1620
1621 static void pnv_xive_reset(void *dev)
1622 {
1623 PnvXive *xive = PNV_XIVE(dev);
1624 XiveSource *xsrc = &xive->ipi_source;
1625 XiveENDSource *end_xsrc = &xive->end_source;
1626
1627 /*
1628 * Use the PnvChip id to identify the XIVE interrupt controller.
1629 * It can be overriden by configuration at runtime.
1630 */
1631 xive->tctx_chipid = xive->chip->chip_id;
1632
1633 /* Default page size (Should be changed at runtime to 64k) */
1634 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1635
1636 /* Clear subregions */
1637 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1638 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1639 }
1640
1641 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1642 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1643 }
1644
1645 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1646 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1647 }
1648
1649 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1650 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1651 }
1652 }
1653
1654 static void pnv_xive_init(Object *obj)
1655 {
1656 PnvXive *xive = PNV_XIVE(obj);
1657
1658 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1659 sizeof(xive->ipi_source), TYPE_XIVE_SOURCE,
1660 &error_abort, NULL);
1661 object_initialize_child(obj, "end_source", &xive->end_source,
1662 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
1663 &error_abort, NULL);
1664 }
1665
1666 /*
1667 * Maximum number of IRQs and ENDs supported by HW
1668 */
1669 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1670 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1671
1672 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1673 {
1674 PnvXive *xive = PNV_XIVE(dev);
1675 XiveSource *xsrc = &xive->ipi_source;
1676 XiveENDSource *end_xsrc = &xive->end_source;
1677 Error *local_err = NULL;
1678 Object *obj;
1679
1680 obj = object_property_get_link(OBJECT(dev), "chip", &local_err);
1681 if (!obj) {
1682 error_propagate(errp, local_err);
1683 error_prepend(errp, "required link 'chip' not found: ");
1684 return;
1685 }
1686
1687 /* The PnvChip id identifies the XIVE interrupt controller. */
1688 xive->chip = PNV_CHIP(obj);
1689
1690 /*
1691 * The XiveSource and XiveENDSource objects are realized with the
1692 * maximum allowed HW configuration. The ESB MMIO regions will be
1693 * resized dynamically when the controller is configured by the FW
1694 * to limit accesses to resources not provisioned.
1695 */
1696 object_property_set_int(OBJECT(xsrc), PNV_XIVE_NR_IRQS, "nr-irqs",
1697 &error_fatal);
1698 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
1699 &error_abort);
1700 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
1701 if (local_err) {
1702 error_propagate(errp, local_err);
1703 return;
1704 }
1705
1706 object_property_set_int(OBJECT(end_xsrc), PNV_XIVE_NR_ENDS, "nr-ends",
1707 &error_fatal);
1708 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1709 &error_fatal);
1710 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
1711 if (local_err) {
1712 error_propagate(errp, local_err);
1713 return;
1714 }
1715
1716 /* Default page size. Generally changed at runtime to 64k */
1717 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1718
1719 /* XSCOM region, used for initial configuration of the BARs */
1720 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1721 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1722
1723 /* Interrupt controller MMIO regions */
1724 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1725 PNV9_XIVE_IC_SIZE);
1726
1727 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1728 xive, "xive-ic-reg", 1 << xive->ic_shift);
1729 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1730 &pnv_xive_ic_notify_ops,
1731 xive, "xive-ic-notify", 1 << xive->ic_shift);
1732
1733 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1734 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1735 xive, "xive-ic-lsi", 2 << xive->ic_shift);
1736
1737 /* Thread Interrupt Management Area (Indirect) */
1738 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
1739 &xive_tm_indirect_ops,
1740 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
1741 /*
1742 * Overall Virtualization Controller MMIO region containing the
1743 * IPI ESB pages and END ESB pages. The layout is defined by the
1744 * EDT "Domain table" and the accesses are dispatched using
1745 * address spaces for each.
1746 */
1747 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
1748 "xive-vc", PNV9_XIVE_VC_SIZE);
1749
1750 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
1751 PNV9_XIVE_VC_SIZE);
1752 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
1753 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
1754 PNV9_XIVE_VC_SIZE);
1755 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
1756
1757 /*
1758 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
1759 * VC region. Their size is configured by the FW in the EDT table.
1760 */
1761 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
1762 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
1763
1764 /* Presenter Controller MMIO region (not modeled) */
1765 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
1766 "xive-pc", PNV9_XIVE_PC_SIZE);
1767
1768 /* Thread Interrupt Management Area (Direct) */
1769 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops,
1770 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
1771
1772 qemu_register_reset(pnv_xive_reset, dev);
1773 }
1774
1775 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
1776 int xscom_offset)
1777 {
1778 const char compat[] = "ibm,power9-xive-x";
1779 char *name;
1780 int offset;
1781 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
1782 uint32_t reg[] = {
1783 cpu_to_be32(lpc_pcba),
1784 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
1785 };
1786
1787 name = g_strdup_printf("xive@%x", lpc_pcba);
1788 offset = fdt_add_subnode(fdt, xscom_offset, name);
1789 _FDT(offset);
1790 g_free(name);
1791
1792 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
1793 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
1794 sizeof(compat))));
1795 return 0;
1796 }
1797
1798 static Property pnv_xive_properties[] = {
1799 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
1800 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
1801 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
1802 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
1803 DEFINE_PROP_END_OF_LIST(),
1804 };
1805
1806 static void pnv_xive_class_init(ObjectClass *klass, void *data)
1807 {
1808 DeviceClass *dc = DEVICE_CLASS(klass);
1809 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
1810 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
1811 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1812
1813 xdc->dt_xscom = pnv_xive_dt_xscom;
1814
1815 dc->desc = "PowerNV XIVE Interrupt Controller";
1816 dc->realize = pnv_xive_realize;
1817 dc->props = pnv_xive_properties;
1818
1819 xrc->get_eas = pnv_xive_get_eas;
1820 xrc->get_end = pnv_xive_get_end;
1821 xrc->write_end = pnv_xive_write_end;
1822 xrc->get_nvt = pnv_xive_get_nvt;
1823 xrc->write_nvt = pnv_xive_write_nvt;
1824 xrc->get_tctx = pnv_xive_get_tctx;
1825
1826 xnc->notify = pnv_xive_notify;
1827 };
1828
1829 static const TypeInfo pnv_xive_info = {
1830 .name = TYPE_PNV_XIVE,
1831 .parent = TYPE_XIVE_ROUTER,
1832 .instance_init = pnv_xive_init,
1833 .instance_size = sizeof(PnvXive),
1834 .class_init = pnv_xive_class_init,
1835 .interfaces = (InterfaceInfo[]) {
1836 { TYPE_PNV_XSCOM_INTERFACE },
1837 { }
1838 }
1839 };
1840
1841 static void pnv_xive_register_types(void)
1842 {
1843 type_register_static(&pnv_xive_info);
1844 }
1845
1846 type_init(pnv_xive_register_types)