]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/riscv_aclint.c
Merge tag 'pull-xen-20220609' of https://xenbits.xen.org/git-http/people/aperard...
[mirror_qemu.git] / hw / intc / riscv_aclint.c
1 /*
2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
4 *
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8 *
9 * This provides real-time clock, timer and interprocessor interrupts.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 *
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35
36 typedef struct riscv_aclint_mtimer_callback {
37 RISCVAclintMTimerState *s;
38 int num;
39 } riscv_aclint_mtimer_callback;
40
41 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq)
42 {
43 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44 timebase_freq, NANOSECONDS_PER_SECOND);
45 }
46
47 static uint64_t cpu_riscv_read_rtc(void *opaque)
48 {
49 RISCVAclintMTimerState *mtimer = opaque;
50 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta;
51 }
52
53 /*
54 * Called when timecmp is written to update the QEMU timer or immediately
55 * trigger timer interrupt if mtimecmp <= current timer value.
56 */
57 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
58 RISCVCPU *cpu,
59 int hartid,
60 uint64_t value)
61 {
62 uint32_t timebase_freq = mtimer->timebase_freq;
63 uint64_t next;
64 uint64_t diff;
65
66 uint64_t rtc_r = cpu_riscv_read_rtc(mtimer);
67
68 cpu->env.timecmp = value;
69 if (cpu->env.timecmp <= rtc_r) {
70 /*
71 * If we're setting an MTIMECMP value in the "past",
72 * immediately raise the timer interrupt
73 */
74 qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
75 return;
76 }
77
78 /* otherwise, set up the future timer interrupt */
79 qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
80 diff = cpu->env.timecmp - rtc_r;
81 /* back to ns (note args switched in muldiv64) */
82 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
83
84 /*
85 * check if ns_diff overflowed and check if the addition would potentially
86 * overflow
87 */
88 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
89 ns_diff > INT64_MAX) {
90 next = INT64_MAX;
91 } else {
92 /*
93 * as it is very unlikely qemu_clock_get_ns will return a value
94 * greater than INT64_MAX, no additional check is needed for an
95 * unsigned integer overflow.
96 */
97 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
98 /*
99 * if ns_diff is INT64_MAX next may still be outside the range
100 * of a signed integer.
101 */
102 next = MIN(next, INT64_MAX);
103 }
104
105 timer_mod(cpu->env.timer, next);
106 }
107
108 /*
109 * Callback used when the timer set using timer_mod expires.
110 * Should raise the timer interrupt line
111 */
112 static void riscv_aclint_mtimer_cb(void *opaque)
113 {
114 riscv_aclint_mtimer_callback *state = opaque;
115
116 qemu_irq_raise(state->s->timer_irqs[state->num]);
117 }
118
119 /* CPU read MTIMER register */
120 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
121 unsigned size)
122 {
123 RISCVAclintMTimerState *mtimer = opaque;
124
125 if (addr >= mtimer->timecmp_base &&
126 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
127 size_t hartid = mtimer->hartid_base +
128 ((addr - mtimer->timecmp_base) >> 3);
129 CPUState *cpu = qemu_get_cpu(hartid);
130 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
131 if (!env) {
132 qemu_log_mask(LOG_GUEST_ERROR,
133 "aclint-mtimer: invalid hartid: %zu", hartid);
134 } else if ((addr & 0x7) == 0) {
135 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
136 uint64_t timecmp = env->timecmp;
137 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
138 } else if ((addr & 0x7) == 4) {
139 /* timecmp_hi */
140 uint64_t timecmp = env->timecmp;
141 return (timecmp >> 32) & 0xFFFFFFFF;
142 } else {
143 qemu_log_mask(LOG_UNIMP,
144 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
145 return 0;
146 }
147 } else if (addr == mtimer->time_base) {
148 /* time_lo for RV32/RV64 or timecmp for RV64 */
149 uint64_t rtc = cpu_riscv_read_rtc(mtimer);
150 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
151 } else if (addr == mtimer->time_base + 4) {
152 /* time_hi */
153 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF;
154 }
155
156 qemu_log_mask(LOG_UNIMP,
157 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
158 return 0;
159 }
160
161 /* CPU write MTIMER register */
162 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
163 uint64_t value, unsigned size)
164 {
165 RISCVAclintMTimerState *mtimer = opaque;
166 int i;
167
168 if (addr >= mtimer->timecmp_base &&
169 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
170 size_t hartid = mtimer->hartid_base +
171 ((addr - mtimer->timecmp_base) >> 3);
172 CPUState *cpu = qemu_get_cpu(hartid);
173 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
174 if (!env) {
175 qemu_log_mask(LOG_GUEST_ERROR,
176 "aclint-mtimer: invalid hartid: %zu", hartid);
177 } else if ((addr & 0x7) == 0) {
178 if (size == 4) {
179 /* timecmp_lo for RV32/RV64 */
180 uint64_t timecmp_hi = env->timecmp >> 32;
181 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
182 timecmp_hi << 32 | (value & 0xFFFFFFFF));
183 } else {
184 /* timecmp for RV64 */
185 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
186 value);
187 }
188 } else if ((addr & 0x7) == 4) {
189 if (size == 4) {
190 /* timecmp_hi for RV32/RV64 */
191 uint64_t timecmp_lo = env->timecmp;
192 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
193 value << 32 | (timecmp_lo & 0xFFFFFFFF));
194 } else {
195 qemu_log_mask(LOG_GUEST_ERROR,
196 "aclint-mtimer: invalid timecmp_hi write: %08x",
197 (uint32_t)addr);
198 }
199 } else {
200 qemu_log_mask(LOG_UNIMP,
201 "aclint-mtimer: invalid timecmp write: %08x",
202 (uint32_t)addr);
203 }
204 return;
205 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) {
206 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq);
207
208 if (addr == mtimer->time_base) {
209 if (size == 4) {
210 /* time_lo for RV32/RV64 */
211 mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r;
212 } else {
213 /* time for RV64 */
214 mtimer->time_delta = value - rtc_r;
215 }
216 } else {
217 if (size == 4) {
218 /* time_hi for RV32/RV64 */
219 mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r;
220 } else {
221 qemu_log_mask(LOG_GUEST_ERROR,
222 "aclint-mtimer: invalid time_hi write: %08x",
223 (uint32_t)addr);
224 return;
225 }
226 }
227
228 /* Check if timer interrupt is triggered for each hart. */
229 for (i = 0; i < mtimer->num_harts; i++) {
230 CPUState *cpu = qemu_get_cpu(mtimer->hartid_base + i);
231 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
232 if (!env) {
233 continue;
234 }
235 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu),
236 mtimer->hartid_base + i,
237 env->timecmp);
238 }
239 return;
240 }
241
242 qemu_log_mask(LOG_UNIMP,
243 "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
244 }
245
246 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
247 .read = riscv_aclint_mtimer_read,
248 .write = riscv_aclint_mtimer_write,
249 .endianness = DEVICE_LITTLE_ENDIAN,
250 .valid = {
251 .min_access_size = 4,
252 .max_access_size = 8
253 },
254 .impl = {
255 .min_access_size = 4,
256 .max_access_size = 8,
257 }
258 };
259
260 static Property riscv_aclint_mtimer_properties[] = {
261 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
262 hartid_base, 0),
263 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
264 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
265 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
266 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
267 time_base, RISCV_ACLINT_DEFAULT_MTIME),
268 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
269 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
270 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
271 timebase_freq, 0),
272 DEFINE_PROP_END_OF_LIST(),
273 };
274
275 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
276 {
277 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
278 int i;
279
280 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
281 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
282 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
283
284 s->timer_irqs = g_new(qemu_irq, s->num_harts);
285 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
286
287 /* Claim timer interrupt bits */
288 for (i = 0; i < s->num_harts; i++) {
289 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
290 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
291 error_report("MTIP already claimed");
292 exit(1);
293 }
294 }
295 }
296
297 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type)
298 {
299 /*
300 * According to RISC-V ACLINT spec:
301 * - On MTIMER device reset, the MTIME register is cleared to zero.
302 * - On MTIMER device reset, the MTIMECMP registers are in unknown state.
303 */
304 RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj);
305
306 /*
307 * Clear mtime register by writing to 0 it.
308 * Pending mtime interrupts will also be cleared at the same time.
309 */
310 riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8);
311 }
312
313 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
314 {
315 DeviceClass *dc = DEVICE_CLASS(klass);
316 dc->realize = riscv_aclint_mtimer_realize;
317 device_class_set_props(dc, riscv_aclint_mtimer_properties);
318 ResettableClass *rc = RESETTABLE_CLASS(klass);
319 rc->phases.enter = riscv_aclint_mtimer_reset_enter;
320 }
321
322 static const TypeInfo riscv_aclint_mtimer_info = {
323 .name = TYPE_RISCV_ACLINT_MTIMER,
324 .parent = TYPE_SYS_BUS_DEVICE,
325 .instance_size = sizeof(RISCVAclintMTimerState),
326 .class_init = riscv_aclint_mtimer_class_init,
327 };
328
329 /*
330 * Create ACLINT MTIMER device.
331 */
332 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
333 uint32_t hartid_base, uint32_t num_harts,
334 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
335 bool provide_rdtime)
336 {
337 int i;
338 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
339
340 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
341 assert(!(addr & 0x7));
342 assert(!(timecmp_base & 0x7));
343 assert(!(time_base & 0x7));
344
345 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
346 qdev_prop_set_uint32(dev, "num-harts", num_harts);
347 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
348 qdev_prop_set_uint32(dev, "time-base", time_base);
349 qdev_prop_set_uint32(dev, "aperture-size", size);
350 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
351 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
352 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
353
354 for (i = 0; i < num_harts; i++) {
355 CPUState *cpu = qemu_get_cpu(hartid_base + i);
356 RISCVCPU *rvcpu = RISCV_CPU(cpu);
357 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
358 riscv_aclint_mtimer_callback *cb =
359 g_new0(riscv_aclint_mtimer_callback, 1);
360
361 if (!env) {
362 g_free(cb);
363 continue;
364 }
365 if (provide_rdtime) {
366 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev);
367 }
368
369 cb->s = RISCV_ACLINT_MTIMER(dev);
370 cb->num = i;
371 env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
372 &riscv_aclint_mtimer_cb, cb);
373 env->timecmp = 0;
374
375 qdev_connect_gpio_out(dev, i,
376 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
377 }
378
379 return dev;
380 }
381
382 /* CPU read [M|S]SWI register */
383 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
384 unsigned size)
385 {
386 RISCVAclintSwiState *swi = opaque;
387
388 if (addr < (swi->num_harts << 2)) {
389 size_t hartid = swi->hartid_base + (addr >> 2);
390 CPUState *cpu = qemu_get_cpu(hartid);
391 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
392 if (!env) {
393 qemu_log_mask(LOG_GUEST_ERROR,
394 "aclint-swi: invalid hartid: %zu", hartid);
395 } else if ((addr & 0x3) == 0) {
396 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
397 }
398 }
399
400 qemu_log_mask(LOG_UNIMP,
401 "aclint-swi: invalid read: %08x", (uint32_t)addr);
402 return 0;
403 }
404
405 /* CPU write [M|S]SWI register */
406 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
407 unsigned size)
408 {
409 RISCVAclintSwiState *swi = opaque;
410
411 if (addr < (swi->num_harts << 2)) {
412 size_t hartid = swi->hartid_base + (addr >> 2);
413 CPUState *cpu = qemu_get_cpu(hartid);
414 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
415 if (!env) {
416 qemu_log_mask(LOG_GUEST_ERROR,
417 "aclint-swi: invalid hartid: %zu", hartid);
418 } else if ((addr & 0x3) == 0) {
419 if (value & 0x1) {
420 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
421 } else {
422 if (!swi->sswi) {
423 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
424 }
425 }
426 return;
427 }
428 }
429
430 qemu_log_mask(LOG_UNIMP,
431 "aclint-swi: invalid write: %08x", (uint32_t)addr);
432 }
433
434 static const MemoryRegionOps riscv_aclint_swi_ops = {
435 .read = riscv_aclint_swi_read,
436 .write = riscv_aclint_swi_write,
437 .endianness = DEVICE_LITTLE_ENDIAN,
438 .valid = {
439 .min_access_size = 4,
440 .max_access_size = 4
441 }
442 };
443
444 static Property riscv_aclint_swi_properties[] = {
445 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
446 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
447 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
448 DEFINE_PROP_END_OF_LIST(),
449 };
450
451 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
452 {
453 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
454 int i;
455
456 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
457 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
458 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
459
460 swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
461 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
462
463 /* Claim software interrupt bits */
464 for (i = 0; i < swi->num_harts; i++) {
465 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
466 /* We don't claim mip.SSIP because it is writable by software */
467 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
468 error_report("MSIP already claimed");
469 exit(1);
470 }
471 }
472 }
473
474 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type)
475 {
476 /*
477 * According to RISC-V ACLINT spec:
478 * - On MSWI device reset, each MSIP register is cleared to zero.
479 *
480 * p.s. SSWI device reset does nothing since SETSIP register always reads 0.
481 */
482 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj);
483 int i;
484
485 if (!swi->sswi) {
486 for (i = 0; i < swi->num_harts; i++) {
487 /* Clear MSIP registers by lowering software interrupts. */
488 qemu_irq_lower(swi->soft_irqs[i]);
489 }
490 }
491 }
492
493 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
494 {
495 DeviceClass *dc = DEVICE_CLASS(klass);
496 dc->realize = riscv_aclint_swi_realize;
497 device_class_set_props(dc, riscv_aclint_swi_properties);
498 ResettableClass *rc = RESETTABLE_CLASS(klass);
499 rc->phases.enter = riscv_aclint_swi_reset_enter;
500 }
501
502 static const TypeInfo riscv_aclint_swi_info = {
503 .name = TYPE_RISCV_ACLINT_SWI,
504 .parent = TYPE_SYS_BUS_DEVICE,
505 .instance_size = sizeof(RISCVAclintSwiState),
506 .class_init = riscv_aclint_swi_class_init,
507 };
508
509 /*
510 * Create ACLINT [M|S]SWI device.
511 */
512 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
513 uint32_t num_harts, bool sswi)
514 {
515 int i;
516 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
517
518 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
519 assert(!(addr & 0x3));
520
521 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
522 qdev_prop_set_uint32(dev, "num-harts", num_harts);
523 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
524 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
525 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
526
527 for (i = 0; i < num_harts; i++) {
528 CPUState *cpu = qemu_get_cpu(hartid_base + i);
529 RISCVCPU *rvcpu = RISCV_CPU(cpu);
530
531 qdev_connect_gpio_out(dev, i,
532 qdev_get_gpio_in(DEVICE(rvcpu),
533 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
534 }
535
536 return dev;
537 }
538
539 static void riscv_aclint_register_types(void)
540 {
541 type_register_static(&riscv_aclint_mtimer_info);
542 type_register_static(&riscv_aclint_swi_info);
543 }
544
545 type_init(riscv_aclint_register_types)