]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/riscv_aclint.c
hw/intc: Make RISC-V ACLINT mtime MMIO register writable
[mirror_qemu.git] / hw / intc / riscv_aclint.c
1 /*
2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
4 *
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
8 *
9 * This provides real-time clock, timer and interprocessor interrupts.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 *
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
35
36 typedef struct riscv_aclint_mtimer_callback {
37 RISCVAclintMTimerState *s;
38 int num;
39 } riscv_aclint_mtimer_callback;
40
41 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq)
42 {
43 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44 timebase_freq, NANOSECONDS_PER_SECOND);
45 }
46
47 static uint64_t cpu_riscv_read_rtc(void *opaque)
48 {
49 RISCVAclintMTimerState *mtimer = opaque;
50 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta;
51 }
52
53 /*
54 * Called when timecmp is written to update the QEMU timer or immediately
55 * trigger timer interrupt if mtimecmp <= current timer value.
56 */
57 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
58 RISCVCPU *cpu,
59 int hartid,
60 uint64_t value)
61 {
62 uint32_t timebase_freq = mtimer->timebase_freq;
63 uint64_t next;
64 uint64_t diff;
65
66 uint64_t rtc_r = cpu_riscv_read_rtc(mtimer);
67
68 cpu->env.timecmp = value;
69 if (cpu->env.timecmp <= rtc_r) {
70 /*
71 * If we're setting an MTIMECMP value in the "past",
72 * immediately raise the timer interrupt
73 */
74 qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
75 return;
76 }
77
78 /* otherwise, set up the future timer interrupt */
79 qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
80 diff = cpu->env.timecmp - rtc_r;
81 /* back to ns (note args switched in muldiv64) */
82 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
83
84 /*
85 * check if ns_diff overflowed and check if the addition would potentially
86 * overflow
87 */
88 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
89 ns_diff > INT64_MAX) {
90 next = INT64_MAX;
91 } else {
92 /*
93 * as it is very unlikely qemu_clock_get_ns will return a value
94 * greater than INT64_MAX, no additional check is needed for an
95 * unsigned integer overflow.
96 */
97 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
98 /*
99 * if ns_diff is INT64_MAX next may still be outside the range
100 * of a signed integer.
101 */
102 next = MIN(next, INT64_MAX);
103 }
104
105 timer_mod(cpu->env.timer, next);
106 }
107
108 /*
109 * Callback used when the timer set using timer_mod expires.
110 * Should raise the timer interrupt line
111 */
112 static void riscv_aclint_mtimer_cb(void *opaque)
113 {
114 riscv_aclint_mtimer_callback *state = opaque;
115
116 qemu_irq_raise(state->s->timer_irqs[state->num]);
117 }
118
119 /* CPU read MTIMER register */
120 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
121 unsigned size)
122 {
123 RISCVAclintMTimerState *mtimer = opaque;
124
125 if (addr >= mtimer->timecmp_base &&
126 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
127 size_t hartid = mtimer->hartid_base +
128 ((addr - mtimer->timecmp_base) >> 3);
129 CPUState *cpu = qemu_get_cpu(hartid);
130 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
131 if (!env) {
132 qemu_log_mask(LOG_GUEST_ERROR,
133 "aclint-mtimer: invalid hartid: %zu", hartid);
134 } else if ((addr & 0x7) == 0) {
135 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */
136 uint64_t timecmp = env->timecmp;
137 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp;
138 } else if ((addr & 0x7) == 4) {
139 /* timecmp_hi */
140 uint64_t timecmp = env->timecmp;
141 return (timecmp >> 32) & 0xFFFFFFFF;
142 } else {
143 qemu_log_mask(LOG_UNIMP,
144 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
145 return 0;
146 }
147 } else if (addr == mtimer->time_base) {
148 /* time_lo for RV32/RV64 or timecmp for RV64 */
149 uint64_t rtc = cpu_riscv_read_rtc(mtimer);
150 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc;
151 } else if (addr == mtimer->time_base + 4) {
152 /* time_hi */
153 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF;
154 }
155
156 qemu_log_mask(LOG_UNIMP,
157 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
158 return 0;
159 }
160
161 /* CPU write MTIMER register */
162 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
163 uint64_t value, unsigned size)
164 {
165 RISCVAclintMTimerState *mtimer = opaque;
166 int i;
167
168 if (addr >= mtimer->timecmp_base &&
169 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
170 size_t hartid = mtimer->hartid_base +
171 ((addr - mtimer->timecmp_base) >> 3);
172 CPUState *cpu = qemu_get_cpu(hartid);
173 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
174 if (!env) {
175 qemu_log_mask(LOG_GUEST_ERROR,
176 "aclint-mtimer: invalid hartid: %zu", hartid);
177 } else if ((addr & 0x7) == 0) {
178 if (size == 4) {
179 /* timecmp_lo for RV32/RV64 */
180 uint64_t timecmp_hi = env->timecmp >> 32;
181 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
182 timecmp_hi << 32 | (value & 0xFFFFFFFF));
183 } else {
184 /* timecmp for RV64 */
185 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
186 value);
187 }
188 } else if ((addr & 0x7) == 4) {
189 if (size == 4) {
190 /* timecmp_hi for RV32/RV64 */
191 uint64_t timecmp_lo = env->timecmp;
192 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
193 value << 32 | (timecmp_lo & 0xFFFFFFFF));
194 } else {
195 qemu_log_mask(LOG_GUEST_ERROR,
196 "aclint-mtimer: invalid timecmp_hi write: %08x",
197 (uint32_t)addr);
198 }
199 } else {
200 qemu_log_mask(LOG_UNIMP,
201 "aclint-mtimer: invalid timecmp write: %08x",
202 (uint32_t)addr);
203 }
204 return;
205 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) {
206 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq);
207
208 if (addr == mtimer->time_base) {
209 if (size == 4) {
210 /* time_lo for RV32/RV64 */
211 mtimer->time_delta = ((rtc_r & ~0xFFFFFFFFULL) | value) - rtc_r;
212 } else {
213 /* time for RV64 */
214 mtimer->time_delta = value - rtc_r;
215 }
216 } else {
217 if (size == 4) {
218 /* time_hi for RV32/RV64 */
219 mtimer->time_delta = (value << 32 | (rtc_r & 0xFFFFFFFF)) - rtc_r;
220 } else {
221 qemu_log_mask(LOG_GUEST_ERROR,
222 "aclint-mtimer: invalid time_hi write: %08x",
223 (uint32_t)addr);
224 return;
225 }
226 }
227
228 /* Check if timer interrupt is triggered for each hart. */
229 for (i = 0; i < mtimer->num_harts; i++) {
230 CPUState *cpu = qemu_get_cpu(mtimer->hartid_base + i);
231 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
232 if (!env) {
233 continue;
234 }
235 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu),
236 i, env->timecmp);
237 }
238 return;
239 }
240
241 qemu_log_mask(LOG_UNIMP,
242 "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
243 }
244
245 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
246 .read = riscv_aclint_mtimer_read,
247 .write = riscv_aclint_mtimer_write,
248 .endianness = DEVICE_LITTLE_ENDIAN,
249 .valid = {
250 .min_access_size = 4,
251 .max_access_size = 8
252 },
253 .impl = {
254 .min_access_size = 4,
255 .max_access_size = 8,
256 }
257 };
258
259 static Property riscv_aclint_mtimer_properties[] = {
260 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
261 hartid_base, 0),
262 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
263 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
264 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
265 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
266 time_base, RISCV_ACLINT_DEFAULT_MTIME),
267 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
268 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
269 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
270 timebase_freq, 0),
271 DEFINE_PROP_END_OF_LIST(),
272 };
273
274 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
275 {
276 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
277 int i;
278
279 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
280 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
281 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
282
283 s->timer_irqs = g_new(qemu_irq, s->num_harts);
284 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
285
286 /* Claim timer interrupt bits */
287 for (i = 0; i < s->num_harts; i++) {
288 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
289 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
290 error_report("MTIP already claimed");
291 exit(1);
292 }
293 }
294 }
295
296 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
297 {
298 DeviceClass *dc = DEVICE_CLASS(klass);
299 dc->realize = riscv_aclint_mtimer_realize;
300 device_class_set_props(dc, riscv_aclint_mtimer_properties);
301 }
302
303 static const TypeInfo riscv_aclint_mtimer_info = {
304 .name = TYPE_RISCV_ACLINT_MTIMER,
305 .parent = TYPE_SYS_BUS_DEVICE,
306 .instance_size = sizeof(RISCVAclintMTimerState),
307 .class_init = riscv_aclint_mtimer_class_init,
308 };
309
310 /*
311 * Create ACLINT MTIMER device.
312 */
313 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
314 uint32_t hartid_base, uint32_t num_harts,
315 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
316 bool provide_rdtime)
317 {
318 int i;
319 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
320
321 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
322 assert(!(addr & 0x7));
323 assert(!(timecmp_base & 0x7));
324 assert(!(time_base & 0x7));
325
326 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
327 qdev_prop_set_uint32(dev, "num-harts", num_harts);
328 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
329 qdev_prop_set_uint32(dev, "time-base", time_base);
330 qdev_prop_set_uint32(dev, "aperture-size", size);
331 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
332 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
333 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
334
335 for (i = 0; i < num_harts; i++) {
336 CPUState *cpu = qemu_get_cpu(hartid_base + i);
337 RISCVCPU *rvcpu = RISCV_CPU(cpu);
338 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
339 riscv_aclint_mtimer_callback *cb =
340 g_new0(riscv_aclint_mtimer_callback, 1);
341
342 if (!env) {
343 g_free(cb);
344 continue;
345 }
346 if (provide_rdtime) {
347 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev);
348 }
349
350 cb->s = RISCV_ACLINT_MTIMER(dev);
351 cb->num = i;
352 env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
353 &riscv_aclint_mtimer_cb, cb);
354 env->timecmp = 0;
355
356 qdev_connect_gpio_out(dev, i,
357 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
358 }
359
360 return dev;
361 }
362
363 /* CPU read [M|S]SWI register */
364 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
365 unsigned size)
366 {
367 RISCVAclintSwiState *swi = opaque;
368
369 if (addr < (swi->num_harts << 2)) {
370 size_t hartid = swi->hartid_base + (addr >> 2);
371 CPUState *cpu = qemu_get_cpu(hartid);
372 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
373 if (!env) {
374 qemu_log_mask(LOG_GUEST_ERROR,
375 "aclint-swi: invalid hartid: %zu", hartid);
376 } else if ((addr & 0x3) == 0) {
377 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
378 }
379 }
380
381 qemu_log_mask(LOG_UNIMP,
382 "aclint-swi: invalid read: %08x", (uint32_t)addr);
383 return 0;
384 }
385
386 /* CPU write [M|S]SWI register */
387 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
388 unsigned size)
389 {
390 RISCVAclintSwiState *swi = opaque;
391
392 if (addr < (swi->num_harts << 2)) {
393 size_t hartid = swi->hartid_base + (addr >> 2);
394 CPUState *cpu = qemu_get_cpu(hartid);
395 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
396 if (!env) {
397 qemu_log_mask(LOG_GUEST_ERROR,
398 "aclint-swi: invalid hartid: %zu", hartid);
399 } else if ((addr & 0x3) == 0) {
400 if (value & 0x1) {
401 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
402 } else {
403 if (!swi->sswi) {
404 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
405 }
406 }
407 return;
408 }
409 }
410
411 qemu_log_mask(LOG_UNIMP,
412 "aclint-swi: invalid write: %08x", (uint32_t)addr);
413 }
414
415 static const MemoryRegionOps riscv_aclint_swi_ops = {
416 .read = riscv_aclint_swi_read,
417 .write = riscv_aclint_swi_write,
418 .endianness = DEVICE_LITTLE_ENDIAN,
419 .valid = {
420 .min_access_size = 4,
421 .max_access_size = 4
422 }
423 };
424
425 static Property riscv_aclint_swi_properties[] = {
426 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
427 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
428 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
429 DEFINE_PROP_END_OF_LIST(),
430 };
431
432 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
433 {
434 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
435 int i;
436
437 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
438 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
439 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
440
441 swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
442 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
443
444 /* Claim software interrupt bits */
445 for (i = 0; i < swi->num_harts; i++) {
446 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
447 /* We don't claim mip.SSIP because it is writeable by software */
448 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
449 error_report("MSIP already claimed");
450 exit(1);
451 }
452 }
453 }
454
455 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
456 {
457 DeviceClass *dc = DEVICE_CLASS(klass);
458 dc->realize = riscv_aclint_swi_realize;
459 device_class_set_props(dc, riscv_aclint_swi_properties);
460 }
461
462 static const TypeInfo riscv_aclint_swi_info = {
463 .name = TYPE_RISCV_ACLINT_SWI,
464 .parent = TYPE_SYS_BUS_DEVICE,
465 .instance_size = sizeof(RISCVAclintSwiState),
466 .class_init = riscv_aclint_swi_class_init,
467 };
468
469 /*
470 * Create ACLINT [M|S]SWI device.
471 */
472 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
473 uint32_t num_harts, bool sswi)
474 {
475 int i;
476 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
477
478 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
479 assert(!(addr & 0x3));
480
481 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
482 qdev_prop_set_uint32(dev, "num-harts", num_harts);
483 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
484 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
485 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
486
487 for (i = 0; i < num_harts; i++) {
488 CPUState *cpu = qemu_get_cpu(hartid_base + i);
489 RISCVCPU *rvcpu = RISCV_CPU(cpu);
490
491 qdev_connect_gpio_out(dev, i,
492 qdev_get_gpio_in(DEVICE(rvcpu),
493 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
494 }
495
496 return dev;
497 }
498
499 static void riscv_aclint_register_types(void)
500 {
501 type_register_static(&riscv_aclint_mtimer_info);
502 type_register_static(&riscv_aclint_swi_info);
503 }
504
505 type_init(riscv_aclint_register_types)