]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/slavio_intctl.c
817e02617e59072e7878642e2c3932ee714a947c
[mirror_qemu.git] / hw / intc / slavio_intctl.c
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "monitor/monitor.h"
27 #include "hw/sysbus.h"
28 #include "hw/intc/intc.h"
29 #include "trace.h"
30
31 //#define DEBUG_IRQ_COUNT
32
33 /*
34 * Registers of interrupt controller in sun4m.
35 *
36 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
37 * produced as NCR89C105. See
38 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
39 *
40 * There is a system master controller and one for each cpu.
41 *
42 */
43
44 #define MAX_CPUS 16
45 #define MAX_PILS 16
46
47 struct SLAVIO_INTCTLState;
48
49 typedef struct SLAVIO_CPUINTCTLState {
50 MemoryRegion iomem;
51 struct SLAVIO_INTCTLState *master;
52 uint32_t intreg_pending;
53 uint32_t cpu;
54 uint32_t irl_out;
55 } SLAVIO_CPUINTCTLState;
56
57 #define TYPE_SLAVIO_INTCTL "slavio_intctl"
58 #define SLAVIO_INTCTL(obj) \
59 OBJECT_CHECK(SLAVIO_INTCTLState, (obj), TYPE_SLAVIO_INTCTL)
60
61 typedef struct SLAVIO_INTCTLState {
62 SysBusDevice parent_obj;
63
64 MemoryRegion iomem;
65 #ifdef DEBUG_IRQ_COUNT
66 uint64_t irq_count[32];
67 #endif
68 qemu_irq cpu_irqs[MAX_CPUS][MAX_PILS];
69 SLAVIO_CPUINTCTLState slaves[MAX_CPUS];
70 uint32_t intregm_pending;
71 uint32_t intregm_disabled;
72 uint32_t target_cpu;
73 } SLAVIO_INTCTLState;
74
75 #define INTCTL_MAXADDR 0xf
76 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
77 #define INTCTLM_SIZE 0x14
78 #define MASTER_IRQ_MASK ~0x0fa2007f
79 #define MASTER_DISABLE 0x80000000
80 #define CPU_SOFTIRQ_MASK 0xfffe0000
81 #define CPU_IRQ_INT15_IN (1 << 15)
82 #define CPU_IRQ_TIMER_IN (1 << 14)
83
84 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs);
85
86 // per-cpu interrupt controller
87 static uint64_t slavio_intctl_mem_readl(void *opaque, hwaddr addr,
88 unsigned size)
89 {
90 SLAVIO_CPUINTCTLState *s = opaque;
91 uint32_t saddr, ret;
92
93 saddr = addr >> 2;
94 switch (saddr) {
95 case 0:
96 ret = s->intreg_pending;
97 break;
98 default:
99 ret = 0;
100 break;
101 }
102 trace_slavio_intctl_mem_readl(s->cpu, addr, ret);
103
104 return ret;
105 }
106
107 static void slavio_intctl_mem_writel(void *opaque, hwaddr addr,
108 uint64_t val, unsigned size)
109 {
110 SLAVIO_CPUINTCTLState *s = opaque;
111 uint32_t saddr;
112
113 saddr = addr >> 2;
114 trace_slavio_intctl_mem_writel(s->cpu, addr, val);
115 switch (saddr) {
116 case 1: // clear pending softints
117 val &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN;
118 s->intreg_pending &= ~val;
119 slavio_check_interrupts(s->master, 1);
120 trace_slavio_intctl_mem_writel_clear(s->cpu, val, s->intreg_pending);
121 break;
122 case 2: // set softint
123 val &= CPU_SOFTIRQ_MASK;
124 s->intreg_pending |= val;
125 slavio_check_interrupts(s->master, 1);
126 trace_slavio_intctl_mem_writel_set(s->cpu, val, s->intreg_pending);
127 break;
128 default:
129 break;
130 }
131 }
132
133 static const MemoryRegionOps slavio_intctl_mem_ops = {
134 .read = slavio_intctl_mem_readl,
135 .write = slavio_intctl_mem_writel,
136 .endianness = DEVICE_NATIVE_ENDIAN,
137 .valid = {
138 .min_access_size = 4,
139 .max_access_size = 4,
140 },
141 };
142
143 // master system interrupt controller
144 static uint64_t slavio_intctlm_mem_readl(void *opaque, hwaddr addr,
145 unsigned size)
146 {
147 SLAVIO_INTCTLState *s = opaque;
148 uint32_t saddr, ret;
149
150 saddr = addr >> 2;
151 switch (saddr) {
152 case 0:
153 ret = s->intregm_pending & ~MASTER_DISABLE;
154 break;
155 case 1:
156 ret = s->intregm_disabled & MASTER_IRQ_MASK;
157 break;
158 case 4:
159 ret = s->target_cpu;
160 break;
161 default:
162 ret = 0;
163 break;
164 }
165 trace_slavio_intctlm_mem_readl(addr, ret);
166
167 return ret;
168 }
169
170 static void slavio_intctlm_mem_writel(void *opaque, hwaddr addr,
171 uint64_t val, unsigned size)
172 {
173 SLAVIO_INTCTLState *s = opaque;
174 uint32_t saddr;
175
176 saddr = addr >> 2;
177 trace_slavio_intctlm_mem_writel(addr, val);
178 switch (saddr) {
179 case 2: // clear (enable)
180 // Force clear unused bits
181 val &= MASTER_IRQ_MASK;
182 s->intregm_disabled &= ~val;
183 trace_slavio_intctlm_mem_writel_enable(val, s->intregm_disabled);
184 slavio_check_interrupts(s, 1);
185 break;
186 case 3: // set (disable; doesn't affect pending)
187 // Force clear unused bits
188 val &= MASTER_IRQ_MASK;
189 s->intregm_disabled |= val;
190 slavio_check_interrupts(s, 1);
191 trace_slavio_intctlm_mem_writel_disable(val, s->intregm_disabled);
192 break;
193 case 4:
194 s->target_cpu = val & (MAX_CPUS - 1);
195 slavio_check_interrupts(s, 1);
196 trace_slavio_intctlm_mem_writel_target(s->target_cpu);
197 break;
198 default:
199 break;
200 }
201 }
202
203 static const MemoryRegionOps slavio_intctlm_mem_ops = {
204 .read = slavio_intctlm_mem_readl,
205 .write = slavio_intctlm_mem_writel,
206 .endianness = DEVICE_NATIVE_ENDIAN,
207 .valid = {
208 .min_access_size = 4,
209 .max_access_size = 4,
210 },
211 };
212
213 static const uint32_t intbit_to_level[] = {
214 2, 3, 5, 7, 9, 11, 13, 2, 3, 5, 7, 9, 11, 13, 12, 12,
215 6, 13, 4, 10, 8, 9, 11, 0, 0, 0, 0, 15, 15, 15, 15, 0,
216 };
217
218 static void slavio_check_interrupts(SLAVIO_INTCTLState *s, int set_irqs)
219 {
220 uint32_t pending = s->intregm_pending, pil_pending;
221 unsigned int i, j;
222
223 pending &= ~s->intregm_disabled;
224
225 trace_slavio_check_interrupts(pending, s->intregm_disabled);
226 for (i = 0; i < MAX_CPUS; i++) {
227 pil_pending = 0;
228
229 /* If we are the current interrupt target, get hard interrupts */
230 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
231 (i == s->target_cpu)) {
232 for (j = 0; j < 32; j++) {
233 if ((pending & (1 << j)) && intbit_to_level[j]) {
234 pil_pending |= 1 << intbit_to_level[j];
235 }
236 }
237 }
238
239 /* Calculate current pending hard interrupts for display */
240 s->slaves[i].intreg_pending &= CPU_SOFTIRQ_MASK | CPU_IRQ_INT15_IN |
241 CPU_IRQ_TIMER_IN;
242 if (i == s->target_cpu) {
243 for (j = 0; j < 32; j++) {
244 if ((s->intregm_pending & (1U << j)) && intbit_to_level[j]) {
245 s->slaves[i].intreg_pending |= 1 << intbit_to_level[j];
246 }
247 }
248 }
249
250 /* Level 15 and CPU timer interrupts are only masked when
251 the MASTER_DISABLE bit is set */
252 if (!(s->intregm_disabled & MASTER_DISABLE)) {
253 pil_pending |= s->slaves[i].intreg_pending &
254 (CPU_IRQ_INT15_IN | CPU_IRQ_TIMER_IN);
255 }
256
257 /* Add soft interrupts */
258 pil_pending |= (s->slaves[i].intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
259
260 if (set_irqs) {
261 /* Since there is not really an interrupt 0 (and pil_pending
262 * and irl_out bit zero are thus always zero) there is no need
263 * to do anything with cpu_irqs[i][0] and it is OK not to do
264 * the j=0 iteration of this loop.
265 */
266 for (j = MAX_PILS-1; j > 0; j--) {
267 if (pil_pending & (1 << j)) {
268 if (!(s->slaves[i].irl_out & (1 << j))) {
269 qemu_irq_raise(s->cpu_irqs[i][j]);
270 }
271 } else {
272 if (s->slaves[i].irl_out & (1 << j)) {
273 qemu_irq_lower(s->cpu_irqs[i][j]);
274 }
275 }
276 }
277 }
278 s->slaves[i].irl_out = pil_pending;
279 }
280 }
281
282 /*
283 * "irq" here is the bit number in the system interrupt register to
284 * separate serial and keyboard interrupts sharing a level.
285 */
286 static void slavio_set_irq(void *opaque, int irq, int level)
287 {
288 SLAVIO_INTCTLState *s = opaque;
289 uint32_t mask = 1 << irq;
290 uint32_t pil = intbit_to_level[irq];
291 unsigned int i;
292
293 trace_slavio_set_irq(s->target_cpu, irq, pil, level);
294 if (pil > 0) {
295 if (level) {
296 #ifdef DEBUG_IRQ_COUNT
297 s->irq_count[pil]++;
298 #endif
299 s->intregm_pending |= mask;
300 if (pil == 15) {
301 for (i = 0; i < MAX_CPUS; i++) {
302 s->slaves[i].intreg_pending |= 1 << pil;
303 }
304 }
305 } else {
306 s->intregm_pending &= ~mask;
307 if (pil == 15) {
308 for (i = 0; i < MAX_CPUS; i++) {
309 s->slaves[i].intreg_pending &= ~(1 << pil);
310 }
311 }
312 }
313 slavio_check_interrupts(s, 1);
314 }
315 }
316
317 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
318 {
319 SLAVIO_INTCTLState *s = opaque;
320
321 trace_slavio_set_timer_irq_cpu(cpu, level);
322
323 if (level) {
324 s->slaves[cpu].intreg_pending |= CPU_IRQ_TIMER_IN;
325 } else {
326 s->slaves[cpu].intreg_pending &= ~CPU_IRQ_TIMER_IN;
327 }
328
329 slavio_check_interrupts(s, 1);
330 }
331
332 static void slavio_set_irq_all(void *opaque, int irq, int level)
333 {
334 if (irq < 32) {
335 slavio_set_irq(opaque, irq, level);
336 } else {
337 slavio_set_timer_irq_cpu(opaque, irq - 32, level);
338 }
339 }
340
341 static int vmstate_intctl_post_load(void *opaque, int version_id)
342 {
343 SLAVIO_INTCTLState *s = opaque;
344
345 slavio_check_interrupts(s, 0);
346 return 0;
347 }
348
349 static const VMStateDescription vmstate_intctl_cpu = {
350 .name ="slavio_intctl_cpu",
351 .version_id = 1,
352 .minimum_version_id = 1,
353 .fields = (VMStateField[]) {
354 VMSTATE_UINT32(intreg_pending, SLAVIO_CPUINTCTLState),
355 VMSTATE_END_OF_LIST()
356 }
357 };
358
359 static const VMStateDescription vmstate_intctl = {
360 .name ="slavio_intctl",
361 .version_id = 1,
362 .minimum_version_id = 1,
363 .post_load = vmstate_intctl_post_load,
364 .fields = (VMStateField[]) {
365 VMSTATE_STRUCT_ARRAY(slaves, SLAVIO_INTCTLState, MAX_CPUS, 1,
366 vmstate_intctl_cpu, SLAVIO_CPUINTCTLState),
367 VMSTATE_UINT32(intregm_pending, SLAVIO_INTCTLState),
368 VMSTATE_UINT32(intregm_disabled, SLAVIO_INTCTLState),
369 VMSTATE_UINT32(target_cpu, SLAVIO_INTCTLState),
370 VMSTATE_END_OF_LIST()
371 }
372 };
373
374 static void slavio_intctl_reset(DeviceState *d)
375 {
376 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(d);
377 int i;
378
379 for (i = 0; i < MAX_CPUS; i++) {
380 s->slaves[i].intreg_pending = 0;
381 s->slaves[i].irl_out = 0;
382 }
383 s->intregm_disabled = ~MASTER_IRQ_MASK;
384 s->intregm_pending = 0;
385 s->target_cpu = 0;
386 slavio_check_interrupts(s, 0);
387 }
388
389 #ifdef DEBUG_IRQ_COUNT
390 static bool slavio_intctl_get_statistics(InterruptStatsProvider *obj,
391 uint64_t **irq_counts,
392 unsigned int *nb_irqs)
393 {
394 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
395 *irq_counts = s->irq_count;
396 *nb_irqs = ARRAY_SIZE(s->irq_count);
397 return true;
398 }
399 #endif
400
401 static void slavio_intctl_print_info(InterruptStatsProvider *obj, Monitor *mon)
402 {
403 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
404 int i;
405
406 for (i = 0; i < MAX_CPUS; i++) {
407 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
408 s->slaves[i].intreg_pending);
409 }
410 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
411 s->intregm_pending, s->intregm_disabled);
412 }
413
414 static void slavio_intctl_init(Object *obj)
415 {
416 DeviceState *dev = DEVICE(obj);
417 SLAVIO_INTCTLState *s = SLAVIO_INTCTL(obj);
418 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
419 unsigned int i, j;
420 char slave_name[45];
421
422 qdev_init_gpio_in(dev, slavio_set_irq_all, 32 + MAX_CPUS);
423 memory_region_init_io(&s->iomem, obj, &slavio_intctlm_mem_ops, s,
424 "master-interrupt-controller", INTCTLM_SIZE);
425 sysbus_init_mmio(sbd, &s->iomem);
426
427 for (i = 0; i < MAX_CPUS; i++) {
428 snprintf(slave_name, sizeof(slave_name),
429 "slave-interrupt-controller-%i", i);
430 for (j = 0; j < MAX_PILS; j++) {
431 sysbus_init_irq(sbd, &s->cpu_irqs[i][j]);
432 }
433 memory_region_init_io(&s->slaves[i].iomem, OBJECT(s),
434 &slavio_intctl_mem_ops,
435 &s->slaves[i], slave_name, INTCTL_SIZE);
436 sysbus_init_mmio(sbd, &s->slaves[i].iomem);
437 s->slaves[i].cpu = i;
438 s->slaves[i].master = s;
439 }
440 }
441
442 static void slavio_intctl_class_init(ObjectClass *klass, void *data)
443 {
444 DeviceClass *dc = DEVICE_CLASS(klass);
445 InterruptStatsProviderClass *ic = INTERRUPT_STATS_PROVIDER_CLASS(klass);
446
447 dc->reset = slavio_intctl_reset;
448 dc->vmsd = &vmstate_intctl;
449 #ifdef DEBUG_IRQ_COUNT
450 ic->get_statistics = slavio_intctl_get_statistics;
451 #endif
452 ic->print_info = slavio_intctl_print_info;
453 }
454
455 static const TypeInfo slavio_intctl_info = {
456 .name = TYPE_SLAVIO_INTCTL,
457 .parent = TYPE_SYS_BUS_DEVICE,
458 .instance_size = sizeof(SLAVIO_INTCTLState),
459 .instance_init = slavio_intctl_init,
460 .class_init = slavio_intctl_class_init,
461 .interfaces = (InterfaceInfo[]) {
462 { TYPE_INTERRUPT_STATS_PROVIDER },
463 { }
464 },
465 };
466
467 static void slavio_intctl_register_types(void)
468 {
469 type_register_static(&slavio_intctl_info);
470 }
471
472 type_init(slavio_intctl_register_types)