]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive.c
Include hw/qdev-properties.h less
[mirror_qemu.git] / hw / intc / spapr_xive.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27
28 /*
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
31 */
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
34
35 /*
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
41 *
42 * These identifiers are never returned to the OS.
43 */
44
45 #define SPAPR_XIVE_NVT_BASE 0x400
46
47 /*
48 * sPAPR NVT and END indexing helpers
49 */
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
51 {
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
53 }
54
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
57 {
58 assert(cpu);
59
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
62 }
63
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
66 }
67 }
68
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
71 {
72 PowerPCCPU *cpu = spapr_find_cpu(target);
73
74 if (!cpu) {
75 return -1;
76 }
77
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
80 }
81
82 /*
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
85 */
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
88 {
89
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
91
92 if (out_server) {
93 *out_server = end_idx >> 3;
94 }
95
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
98 }
99 return 0;
100 }
101
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
104 {
105 assert(cpu);
106
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
109 }
110
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
113 }
114 }
115
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
118 {
119 PowerPCCPU *cpu = spapr_find_cpu(target);
120
121 if (!cpu) {
122 return -1;
123 }
124
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
127 }
128
129 /*
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
132 */
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
135 {
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
143
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
147
148 xive_end_queue_pic_print_info(end, 6, mon);
149 monitor_printf(mon, "]");
150 }
151
152 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
153 {
154 XiveSource *xsrc = &xive->source;
155 int i;
156
157 if (kvm_irqchip_in_kernel()) {
158 Error *local_err = NULL;
159
160 kvmppc_xive_synchronize_state(xive, &local_err);
161 if (local_err) {
162 error_report_err(local_err);
163 return;
164 }
165 }
166
167 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
168
169 for (i = 0; i < xive->nr_irqs; i++) {
170 uint8_t pq = xive_source_esb_get(xsrc, i);
171 XiveEAS *eas = &xive->eat[i];
172
173 if (!xive_eas_is_valid(eas)) {
174 continue;
175 }
176
177 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
178 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
179 pq & XIVE_ESB_VAL_P ? 'P' : '-',
180 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
181 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
182 xive_eas_is_masked(eas) ? "M" : " ",
183 (int) xive_get_field64(EAS_END_DATA, eas->w));
184
185 if (!xive_eas_is_masked(eas)) {
186 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
187 XiveEND *end;
188
189 assert(end_idx < xive->nr_ends);
190 end = &xive->endt[end_idx];
191
192 if (xive_end_is_valid(end)) {
193 spapr_xive_end_pic_print_info(xive, end, mon);
194 }
195 }
196 monitor_printf(mon, "\n");
197 }
198 }
199
200 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
201 {
202 memory_region_set_enabled(&xive->source.esb_mmio, enable);
203 memory_region_set_enabled(&xive->tm_mmio, enable);
204
205 /* Disable the END ESBs until a guest OS makes use of them */
206 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
207 }
208
209 /*
210 * When a Virtual Processor is scheduled to run on a HW thread, the
211 * hypervisor pushes its identifier in the OS CAM line. Emulate the
212 * same behavior under QEMU.
213 */
214 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
215 {
216 uint8_t nvt_blk;
217 uint32_t nvt_idx;
218 uint32_t nvt_cam;
219
220 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
221
222 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
223 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
224 }
225
226 static void spapr_xive_end_reset(XiveEND *end)
227 {
228 memset(end, 0, sizeof(*end));
229
230 /* switch off the escalation and notification ESBs */
231 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
232 }
233
234 static void spapr_xive_reset(void *dev)
235 {
236 SpaprXive *xive = SPAPR_XIVE(dev);
237 int i;
238
239 /*
240 * The XiveSource has its own reset handler, which mask off all
241 * IRQs (!P|Q)
242 */
243
244 /* Mask all valid EASs in the IRQ number space. */
245 for (i = 0; i < xive->nr_irqs; i++) {
246 XiveEAS *eas = &xive->eat[i];
247 if (xive_eas_is_valid(eas)) {
248 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
249 } else {
250 eas->w = 0;
251 }
252 }
253
254 /* Clear all ENDs */
255 for (i = 0; i < xive->nr_ends; i++) {
256 spapr_xive_end_reset(&xive->endt[i]);
257 }
258 }
259
260 static void spapr_xive_instance_init(Object *obj)
261 {
262 SpaprXive *xive = SPAPR_XIVE(obj);
263
264 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
265 TYPE_XIVE_SOURCE, &error_abort, NULL);
266
267 object_initialize_child(obj, "end_source", &xive->end_source,
268 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
269 &error_abort, NULL);
270
271 /* Not connected to the KVM XIVE device */
272 xive->fd = -1;
273 }
274
275 static void spapr_xive_realize(DeviceState *dev, Error **errp)
276 {
277 SpaprXive *xive = SPAPR_XIVE(dev);
278 XiveSource *xsrc = &xive->source;
279 XiveENDSource *end_xsrc = &xive->end_source;
280 Error *local_err = NULL;
281
282 if (!xive->nr_irqs) {
283 error_setg(errp, "Number of interrupt needs to be greater 0");
284 return;
285 }
286
287 if (!xive->nr_ends) {
288 error_setg(errp, "Number of interrupt needs to be greater 0");
289 return;
290 }
291
292 /*
293 * Initialize the internal sources, for IPIs and virtual devices.
294 */
295 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
296 &error_fatal);
297 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
298 &error_fatal);
299 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
300 if (local_err) {
301 error_propagate(errp, local_err);
302 return;
303 }
304 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
305
306 /*
307 * Initialize the END ESB source
308 */
309 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
310 &error_fatal);
311 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
312 &error_fatal);
313 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
314 if (local_err) {
315 error_propagate(errp, local_err);
316 return;
317 }
318 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
319
320 /* Set the mapping address of the END ESB pages after the source ESBs */
321 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
322
323 /*
324 * Allocate the routing tables
325 */
326 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
327 xive->endt = g_new0(XiveEND, xive->nr_ends);
328
329 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
330 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
331
332 qemu_register_reset(spapr_xive_reset, dev);
333
334 /* TIMA initialization */
335 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
336 "xive.tima", 4ull << TM_SHIFT);
337 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
338
339 /*
340 * Map all regions. These will be enabled or disabled at reset and
341 * can also be overridden by KVM memory regions if active
342 */
343 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
344 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
345 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
346 }
347
348 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
349 uint32_t eas_idx, XiveEAS *eas)
350 {
351 SpaprXive *xive = SPAPR_XIVE(xrtr);
352
353 if (eas_idx >= xive->nr_irqs) {
354 return -1;
355 }
356
357 *eas = xive->eat[eas_idx];
358 return 0;
359 }
360
361 static int spapr_xive_get_end(XiveRouter *xrtr,
362 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
363 {
364 SpaprXive *xive = SPAPR_XIVE(xrtr);
365
366 if (end_idx >= xive->nr_ends) {
367 return -1;
368 }
369
370 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
371 return 0;
372 }
373
374 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
375 uint32_t end_idx, XiveEND *end,
376 uint8_t word_number)
377 {
378 SpaprXive *xive = SPAPR_XIVE(xrtr);
379
380 if (end_idx >= xive->nr_ends) {
381 return -1;
382 }
383
384 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
385 return 0;
386 }
387
388 static int spapr_xive_get_nvt(XiveRouter *xrtr,
389 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
390 {
391 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
392 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
393
394 if (!cpu) {
395 /* TODO: should we assert() if we can find a NVT ? */
396 return -1;
397 }
398
399 /*
400 * sPAPR does not maintain a NVT table. Return that the NVT is
401 * valid if we have found a matching CPU
402 */
403 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
404 return 0;
405 }
406
407 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
408 uint32_t nvt_idx, XiveNVT *nvt,
409 uint8_t word_number)
410 {
411 /*
412 * We don't need to write back to the NVTs because the sPAPR
413 * machine should never hit a non-scheduled NVT. It should never
414 * get called.
415 */
416 g_assert_not_reached();
417 }
418
419 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
420 {
421 PowerPCCPU *cpu = POWERPC_CPU(cs);
422
423 return spapr_cpu_state(cpu)->tctx;
424 }
425
426 static const VMStateDescription vmstate_spapr_xive_end = {
427 .name = TYPE_SPAPR_XIVE "/end",
428 .version_id = 1,
429 .minimum_version_id = 1,
430 .fields = (VMStateField []) {
431 VMSTATE_UINT32(w0, XiveEND),
432 VMSTATE_UINT32(w1, XiveEND),
433 VMSTATE_UINT32(w2, XiveEND),
434 VMSTATE_UINT32(w3, XiveEND),
435 VMSTATE_UINT32(w4, XiveEND),
436 VMSTATE_UINT32(w5, XiveEND),
437 VMSTATE_UINT32(w6, XiveEND),
438 VMSTATE_UINT32(w7, XiveEND),
439 VMSTATE_END_OF_LIST()
440 },
441 };
442
443 static const VMStateDescription vmstate_spapr_xive_eas = {
444 .name = TYPE_SPAPR_XIVE "/eas",
445 .version_id = 1,
446 .minimum_version_id = 1,
447 .fields = (VMStateField []) {
448 VMSTATE_UINT64(w, XiveEAS),
449 VMSTATE_END_OF_LIST()
450 },
451 };
452
453 static int vmstate_spapr_xive_pre_save(void *opaque)
454 {
455 if (kvm_irqchip_in_kernel()) {
456 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
457 }
458
459 return 0;
460 }
461
462 /*
463 * Called by the sPAPR IRQ backend 'post_load' method at the machine
464 * level.
465 */
466 int spapr_xive_post_load(SpaprXive *xive, int version_id)
467 {
468 if (kvm_irqchip_in_kernel()) {
469 return kvmppc_xive_post_load(xive, version_id);
470 }
471
472 return 0;
473 }
474
475 static const VMStateDescription vmstate_spapr_xive = {
476 .name = TYPE_SPAPR_XIVE,
477 .version_id = 1,
478 .minimum_version_id = 1,
479 .pre_save = vmstate_spapr_xive_pre_save,
480 .post_load = NULL, /* handled at the machine level */
481 .fields = (VMStateField[]) {
482 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
483 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
484 vmstate_spapr_xive_eas, XiveEAS),
485 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
486 vmstate_spapr_xive_end, XiveEND),
487 VMSTATE_END_OF_LIST()
488 },
489 };
490
491 static Property spapr_xive_properties[] = {
492 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
493 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
494 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
495 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
496 DEFINE_PROP_END_OF_LIST(),
497 };
498
499 static void spapr_xive_class_init(ObjectClass *klass, void *data)
500 {
501 DeviceClass *dc = DEVICE_CLASS(klass);
502 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
503
504 dc->desc = "sPAPR XIVE Interrupt Controller";
505 dc->props = spapr_xive_properties;
506 dc->realize = spapr_xive_realize;
507 dc->vmsd = &vmstate_spapr_xive;
508
509 xrc->get_eas = spapr_xive_get_eas;
510 xrc->get_end = spapr_xive_get_end;
511 xrc->write_end = spapr_xive_write_end;
512 xrc->get_nvt = spapr_xive_get_nvt;
513 xrc->write_nvt = spapr_xive_write_nvt;
514 xrc->get_tctx = spapr_xive_get_tctx;
515 }
516
517 static const TypeInfo spapr_xive_info = {
518 .name = TYPE_SPAPR_XIVE,
519 .parent = TYPE_XIVE_ROUTER,
520 .instance_init = spapr_xive_instance_init,
521 .instance_size = sizeof(SpaprXive),
522 .class_init = spapr_xive_class_init,
523 };
524
525 static void spapr_xive_register_types(void)
526 {
527 type_register_static(&spapr_xive_info);
528 }
529
530 type_init(spapr_xive_register_types)
531
532 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
533 {
534 XiveSource *xsrc = &xive->source;
535
536 if (lisn >= xive->nr_irqs) {
537 return false;
538 }
539
540 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
541 if (lsi) {
542 xive_source_irq_set_lsi(xsrc, lisn);
543 }
544
545 if (kvm_irqchip_in_kernel()) {
546 Error *local_err = NULL;
547
548 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err);
549 if (local_err) {
550 error_report_err(local_err);
551 return false;
552 }
553 }
554
555 return true;
556 }
557
558 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
559 {
560 if (lisn >= xive->nr_irqs) {
561 return false;
562 }
563
564 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
565 return true;
566 }
567
568 /*
569 * XIVE hcalls
570 *
571 * The terminology used by the XIVE hcalls is the following :
572 *
573 * TARGET vCPU number
574 * EQ Event Queue assigned by OS to receive event data
575 * ESB page for source interrupt management
576 * LISN Logical Interrupt Source Number identifying a source in the
577 * machine
578 * EISN Effective Interrupt Source Number used by guest OS to
579 * identify source in the guest
580 *
581 * The EAS, END, NVT structures are not exposed.
582 */
583
584 /*
585 * Linux hosts under OPAL reserve priority 7 for their own escalation
586 * interrupts (DD2.X POWER9). So we only allow the guest to use
587 * priorities [0..6].
588 */
589 static bool spapr_xive_priority_is_reserved(uint8_t priority)
590 {
591 switch (priority) {
592 case 0 ... 6:
593 return false;
594 case 7: /* OPAL escalation queue */
595 default:
596 return true;
597 }
598 }
599
600 /*
601 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
602 * real address of the MMIO page through which the Event State Buffer
603 * entry associated with the value of the "lisn" parameter is managed.
604 *
605 * Parameters:
606 * Input
607 * - R4: "flags"
608 * Bits 0-63 reserved
609 * - R5: "lisn" is per "interrupts", "interrupt-map", or
610 * "ibm,xive-lisn-ranges" properties, or as returned by the
611 * ibm,query-interrupt-source-number RTAS call, or as returned
612 * by the H_ALLOCATE_VAS_WINDOW hcall
613 *
614 * Output
615 * - R4: "flags"
616 * Bits 0-59: Reserved
617 * Bit 60: H_INT_ESB must be used for Event State Buffer
618 * management
619 * Bit 61: 1 == LSI 0 == MSI
620 * Bit 62: the full function page supports trigger
621 * Bit 63: Store EOI Supported
622 * - R5: Logical Real address of full function Event State Buffer
623 * management page, -1 if H_INT_ESB hcall flag is set to 1.
624 * - R6: Logical Real Address of trigger only Event State Buffer
625 * management page or -1.
626 * - R7: Power of 2 page size for the ESB management pages returned in
627 * R5 and R6.
628 */
629
630 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
631 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
632 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
633 on same page */
634 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
635
636 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
637 SpaprMachineState *spapr,
638 target_ulong opcode,
639 target_ulong *args)
640 {
641 SpaprXive *xive = spapr->xive;
642 XiveSource *xsrc = &xive->source;
643 target_ulong flags = args[0];
644 target_ulong lisn = args[1];
645
646 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
647 return H_FUNCTION;
648 }
649
650 if (flags) {
651 return H_PARAMETER;
652 }
653
654 if (lisn >= xive->nr_irqs) {
655 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
656 lisn);
657 return H_P2;
658 }
659
660 if (!xive_eas_is_valid(&xive->eat[lisn])) {
661 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
662 lisn);
663 return H_P2;
664 }
665
666 /*
667 * All sources are emulated under the main XIVE object and share
668 * the same characteristics.
669 */
670 args[0] = 0;
671 if (!xive_source_esb_has_2page(xsrc)) {
672 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
673 }
674 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
675 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
676 }
677
678 /*
679 * Force the use of the H_INT_ESB hcall in case of an LSI
680 * interrupt. This is necessary under KVM to re-trigger the
681 * interrupt if the level is still asserted
682 */
683 if (xive_source_irq_is_lsi(xsrc, lisn)) {
684 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
685 }
686
687 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
688 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
689 } else {
690 args[1] = -1;
691 }
692
693 if (xive_source_esb_has_2page(xsrc) &&
694 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
695 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
696 } else {
697 args[2] = -1;
698 }
699
700 if (xive_source_esb_has_2page(xsrc)) {
701 args[3] = xsrc->esb_shift - 1;
702 } else {
703 args[3] = xsrc->esb_shift;
704 }
705
706 return H_SUCCESS;
707 }
708
709 /*
710 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
711 * Interrupt Source to a target. The Logical Interrupt Source is
712 * designated with the "lisn" parameter and the target is designated
713 * with the "target" and "priority" parameters. Upon return from the
714 * hcall(), no additional interrupts will be directed to the old EQ.
715 *
716 * Parameters:
717 * Input:
718 * - R4: "flags"
719 * Bits 0-61: Reserved
720 * Bit 62: set the "eisn" in the EAS
721 * Bit 63: masks the interrupt source in the hardware interrupt
722 * control structure. An interrupt masked by this mechanism will
723 * be dropped, but it's source state bits will still be
724 * set. There is no race-free way of unmasking and restoring the
725 * source. Thus this should only be used in interrupts that are
726 * also masked at the source, and only in cases where the
727 * interrupt is not meant to be used for a large amount of time
728 * because no valid target exists for it for example
729 * - R5: "lisn" is per "interrupts", "interrupt-map", or
730 * "ibm,xive-lisn-ranges" properties, or as returned by the
731 * ibm,query-interrupt-source-number RTAS call, or as returned by
732 * the H_ALLOCATE_VAS_WINDOW hcall
733 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
734 * "ibm,ppc-interrupt-gserver#s"
735 * - R7: "priority" is a valid priority not in
736 * "ibm,plat-res-int-priorities"
737 * - R8: "eisn" is the guest EISN associated with the "lisn"
738 *
739 * Output:
740 * - None
741 */
742
743 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
744 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
745
746 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
747 SpaprMachineState *spapr,
748 target_ulong opcode,
749 target_ulong *args)
750 {
751 SpaprXive *xive = spapr->xive;
752 XiveEAS eas, new_eas;
753 target_ulong flags = args[0];
754 target_ulong lisn = args[1];
755 target_ulong target = args[2];
756 target_ulong priority = args[3];
757 target_ulong eisn = args[4];
758 uint8_t end_blk;
759 uint32_t end_idx;
760
761 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
762 return H_FUNCTION;
763 }
764
765 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
766 return H_PARAMETER;
767 }
768
769 if (lisn >= xive->nr_irqs) {
770 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
771 lisn);
772 return H_P2;
773 }
774
775 eas = xive->eat[lisn];
776 if (!xive_eas_is_valid(&eas)) {
777 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
778 lisn);
779 return H_P2;
780 }
781
782 /* priority 0xff is used to reset the EAS */
783 if (priority == 0xff) {
784 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
785 goto out;
786 }
787
788 if (flags & SPAPR_XIVE_SRC_MASK) {
789 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
790 } else {
791 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
792 }
793
794 if (spapr_xive_priority_is_reserved(priority)) {
795 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
796 " is reserved\n", priority);
797 return H_P4;
798 }
799
800 /*
801 * Validate that "target" is part of the list of threads allocated
802 * to the partition. For that, find the END corresponding to the
803 * target.
804 */
805 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
806 return H_P3;
807 }
808
809 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
810 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
811
812 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
813 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
814 }
815
816 if (kvm_irqchip_in_kernel()) {
817 Error *local_err = NULL;
818
819 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
820 if (local_err) {
821 error_report_err(local_err);
822 return H_HARDWARE;
823 }
824 }
825
826 out:
827 xive->eat[lisn] = new_eas;
828 return H_SUCCESS;
829 }
830
831 /*
832 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
833 * target/priority pair is assigned to the specified Logical Interrupt
834 * Source.
835 *
836 * Parameters:
837 * Input:
838 * - R4: "flags"
839 * Bits 0-63 Reserved
840 * - R5: "lisn" is per "interrupts", "interrupt-map", or
841 * "ibm,xive-lisn-ranges" properties, or as returned by the
842 * ibm,query-interrupt-source-number RTAS call, or as
843 * returned by the H_ALLOCATE_VAS_WINDOW hcall
844 *
845 * Output:
846 * - R4: Target to which the specified Logical Interrupt Source is
847 * assigned
848 * - R5: Priority to which the specified Logical Interrupt Source is
849 * assigned
850 * - R6: EISN for the specified Logical Interrupt Source (this will be
851 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
852 */
853 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
854 SpaprMachineState *spapr,
855 target_ulong opcode,
856 target_ulong *args)
857 {
858 SpaprXive *xive = spapr->xive;
859 target_ulong flags = args[0];
860 target_ulong lisn = args[1];
861 XiveEAS eas;
862 XiveEND *end;
863 uint8_t nvt_blk;
864 uint32_t end_idx, nvt_idx;
865
866 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
867 return H_FUNCTION;
868 }
869
870 if (flags) {
871 return H_PARAMETER;
872 }
873
874 if (lisn >= xive->nr_irqs) {
875 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
876 lisn);
877 return H_P2;
878 }
879
880 eas = xive->eat[lisn];
881 if (!xive_eas_is_valid(&eas)) {
882 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
883 lisn);
884 return H_P2;
885 }
886
887 /* EAS_END_BLOCK is unused on sPAPR */
888 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
889
890 assert(end_idx < xive->nr_ends);
891 end = &xive->endt[end_idx];
892
893 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
894 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
895 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
896
897 if (xive_eas_is_masked(&eas)) {
898 args[1] = 0xff;
899 } else {
900 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
901 }
902
903 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
904
905 return H_SUCCESS;
906 }
907
908 /*
909 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
910 * address of the notification management page associated with the
911 * specified target and priority.
912 *
913 * Parameters:
914 * Input:
915 * - R4: "flags"
916 * Bits 0-63 Reserved
917 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
918 * "ibm,ppc-interrupt-gserver#s"
919 * - R6: "priority" is a valid priority not in
920 * "ibm,plat-res-int-priorities"
921 *
922 * Output:
923 * - R4: Logical real address of notification page
924 * - R5: Power of 2 page size of the notification page
925 */
926 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
927 SpaprMachineState *spapr,
928 target_ulong opcode,
929 target_ulong *args)
930 {
931 SpaprXive *xive = spapr->xive;
932 XiveENDSource *end_xsrc = &xive->end_source;
933 target_ulong flags = args[0];
934 target_ulong target = args[1];
935 target_ulong priority = args[2];
936 XiveEND *end;
937 uint8_t end_blk;
938 uint32_t end_idx;
939
940 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
941 return H_FUNCTION;
942 }
943
944 if (flags) {
945 return H_PARAMETER;
946 }
947
948 /*
949 * H_STATE should be returned if a H_INT_RESET is in progress.
950 * This is not needed when running the emulation under QEMU
951 */
952
953 if (spapr_xive_priority_is_reserved(priority)) {
954 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
955 " is reserved\n", priority);
956 return H_P3;
957 }
958
959 /*
960 * Validate that "target" is part of the list of threads allocated
961 * to the partition. For that, find the END corresponding to the
962 * target.
963 */
964 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
965 return H_P2;
966 }
967
968 assert(end_idx < xive->nr_ends);
969 end = &xive->endt[end_idx];
970
971 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
972 if (xive_end_is_enqueue(end)) {
973 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
974 } else {
975 args[1] = 0;
976 }
977
978 return H_SUCCESS;
979 }
980
981 /*
982 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
983 * a given "target" and "priority". It is also used to set the
984 * notification config associated with the EQ. An EQ size of 0 is
985 * used to reset the EQ config for a given target and priority. If
986 * resetting the EQ config, the END associated with the given "target"
987 * and "priority" will be changed to disable queueing.
988 *
989 * Upon return from the hcall(), no additional interrupts will be
990 * directed to the old EQ (if one was set). The old EQ (if one was
991 * set) should be investigated for interrupts that occurred prior to
992 * or during the hcall().
993 *
994 * Parameters:
995 * Input:
996 * - R4: "flags"
997 * Bits 0-62: Reserved
998 * Bit 63: Unconditional Notify (n) per the XIVE spec
999 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1000 * "ibm,ppc-interrupt-gserver#s"
1001 * - R6: "priority" is a valid priority not in
1002 * "ibm,plat-res-int-priorities"
1003 * - R7: "eventQueue": The logical real address of the start of the EQ
1004 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1005 *
1006 * Output:
1007 * - None
1008 */
1009
1010 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1011
1012 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1013 SpaprMachineState *spapr,
1014 target_ulong opcode,
1015 target_ulong *args)
1016 {
1017 SpaprXive *xive = spapr->xive;
1018 target_ulong flags = args[0];
1019 target_ulong target = args[1];
1020 target_ulong priority = args[2];
1021 target_ulong qpage = args[3];
1022 target_ulong qsize = args[4];
1023 XiveEND end;
1024 uint8_t end_blk, nvt_blk;
1025 uint32_t end_idx, nvt_idx;
1026
1027 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1028 return H_FUNCTION;
1029 }
1030
1031 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1032 return H_PARAMETER;
1033 }
1034
1035 /*
1036 * H_STATE should be returned if a H_INT_RESET is in progress.
1037 * This is not needed when running the emulation under QEMU
1038 */
1039
1040 if (spapr_xive_priority_is_reserved(priority)) {
1041 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1042 " is reserved\n", priority);
1043 return H_P3;
1044 }
1045
1046 /*
1047 * Validate that "target" is part of the list of threads allocated
1048 * to the partition. For that, find the END corresponding to the
1049 * target.
1050 */
1051
1052 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1053 return H_P2;
1054 }
1055
1056 assert(end_idx < xive->nr_ends);
1057 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1058
1059 switch (qsize) {
1060 case 12:
1061 case 16:
1062 case 21:
1063 case 24:
1064 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1065 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1066 " is not naturally aligned with %" HWADDR_PRIx "\n",
1067 qpage, (hwaddr)1 << qsize);
1068 return H_P4;
1069 }
1070 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1071 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1072 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1073 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1074 break;
1075 case 0:
1076 /* reset queue and disable queueing */
1077 spapr_xive_end_reset(&end);
1078 goto out;
1079
1080 default:
1081 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1082 qsize);
1083 return H_P5;
1084 }
1085
1086 if (qsize) {
1087 hwaddr plen = 1 << qsize;
1088 void *eq;
1089
1090 /*
1091 * Validate the guest EQ. We should also check that the queue
1092 * has been zeroed by the OS.
1093 */
1094 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1095 MEMTXATTRS_UNSPECIFIED);
1096 if (plen != 1 << qsize) {
1097 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1098 HWADDR_PRIx "\n", qpage);
1099 return H_P4;
1100 }
1101 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1102 }
1103
1104 /* "target" should have been validated above */
1105 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1106 g_assert_not_reached();
1107 }
1108
1109 /*
1110 * Ensure the priority and target are correctly set (they will not
1111 * be right after allocation)
1112 */
1113 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1114 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1115 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1116
1117 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1118 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1119 } else {
1120 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1121 }
1122
1123 /*
1124 * The generation bit for the END starts at 1 and The END page
1125 * offset counter starts at 0.
1126 */
1127 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1128 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1129 end.w0 |= cpu_to_be32(END_W0_VALID);
1130
1131 /*
1132 * TODO: issue syncs required to ensure all in-flight interrupts
1133 * are complete on the old END
1134 */
1135
1136 out:
1137 if (kvm_irqchip_in_kernel()) {
1138 Error *local_err = NULL;
1139
1140 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1141 if (local_err) {
1142 error_report_err(local_err);
1143 return H_HARDWARE;
1144 }
1145 }
1146
1147 /* Update END */
1148 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1149 return H_SUCCESS;
1150 }
1151
1152 /*
1153 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1154 * target and priority.
1155 *
1156 * Parameters:
1157 * Input:
1158 * - R4: "flags"
1159 * Bits 0-62: Reserved
1160 * Bit 63: Debug: Return debug data
1161 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1162 * "ibm,ppc-interrupt-gserver#s"
1163 * - R6: "priority" is a valid priority not in
1164 * "ibm,plat-res-int-priorities"
1165 *
1166 * Output:
1167 * - R4: "flags":
1168 * Bits 0-61: Reserved
1169 * Bit 62: The value of Event Queue Generation Number (g) per
1170 * the XIVE spec if "Debug" = 1
1171 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1172 * - R5: The logical real address of the start of the EQ
1173 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1174 * - R7: The value of Event Queue Offset Counter per XIVE spec
1175 * if "Debug" = 1, else 0
1176 *
1177 */
1178
1179 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1180
1181 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1182 SpaprMachineState *spapr,
1183 target_ulong opcode,
1184 target_ulong *args)
1185 {
1186 SpaprXive *xive = spapr->xive;
1187 target_ulong flags = args[0];
1188 target_ulong target = args[1];
1189 target_ulong priority = args[2];
1190 XiveEND *end;
1191 uint8_t end_blk;
1192 uint32_t end_idx;
1193
1194 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1195 return H_FUNCTION;
1196 }
1197
1198 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1199 return H_PARAMETER;
1200 }
1201
1202 /*
1203 * H_STATE should be returned if a H_INT_RESET is in progress.
1204 * This is not needed when running the emulation under QEMU
1205 */
1206
1207 if (spapr_xive_priority_is_reserved(priority)) {
1208 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1209 " is reserved\n", priority);
1210 return H_P3;
1211 }
1212
1213 /*
1214 * Validate that "target" is part of the list of threads allocated
1215 * to the partition. For that, find the END corresponding to the
1216 * target.
1217 */
1218 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1219 return H_P2;
1220 }
1221
1222 assert(end_idx < xive->nr_ends);
1223 end = &xive->endt[end_idx];
1224
1225 args[0] = 0;
1226 if (xive_end_is_notify(end)) {
1227 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1228 }
1229
1230 if (xive_end_is_enqueue(end)) {
1231 args[1] = xive_end_qaddr(end);
1232 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1233 } else {
1234 args[1] = 0;
1235 args[2] = 0;
1236 }
1237
1238 if (kvm_irqchip_in_kernel()) {
1239 Error *local_err = NULL;
1240
1241 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1242 if (local_err) {
1243 error_report_err(local_err);
1244 return H_HARDWARE;
1245 }
1246 }
1247
1248 /* TODO: do we need any locking on the END ? */
1249 if (flags & SPAPR_XIVE_END_DEBUG) {
1250 /* Load the event queue generation number into the return flags */
1251 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1252
1253 /* Load R7 with the event queue offset counter */
1254 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1255 } else {
1256 args[3] = 0;
1257 }
1258
1259 return H_SUCCESS;
1260 }
1261
1262 /*
1263 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1264 * reporting cache line pair for the calling thread. The reporting
1265 * cache lines will contain the OS interrupt context when the OS
1266 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1267 * interrupt. The reporting cache lines can be reset by inputting -1
1268 * in "reportingLine". Issuing the CI store byte without reporting
1269 * cache lines registered will result in the data not being accessible
1270 * to the OS.
1271 *
1272 * Parameters:
1273 * Input:
1274 * - R4: "flags"
1275 * Bits 0-63: Reserved
1276 * - R5: "reportingLine": The logical real address of the reporting cache
1277 * line pair
1278 *
1279 * Output:
1280 * - None
1281 */
1282 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1283 SpaprMachineState *spapr,
1284 target_ulong opcode,
1285 target_ulong *args)
1286 {
1287 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1288 return H_FUNCTION;
1289 }
1290
1291 /*
1292 * H_STATE should be returned if a H_INT_RESET is in progress.
1293 * This is not needed when running the emulation under QEMU
1294 */
1295
1296 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1297 return H_FUNCTION;
1298 }
1299
1300 /*
1301 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1302 * real address of the reporting cache line pair set for the input
1303 * "target". If no reporting cache line pair has been set, -1 is
1304 * returned.
1305 *
1306 * Parameters:
1307 * Input:
1308 * - R4: "flags"
1309 * Bits 0-63: Reserved
1310 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1311 * "ibm,ppc-interrupt-gserver#s"
1312 * - R6: "reportingLine": The logical real address of the reporting
1313 * cache line pair
1314 *
1315 * Output:
1316 * - R4: The logical real address of the reporting line if set, else -1
1317 */
1318 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1319 SpaprMachineState *spapr,
1320 target_ulong opcode,
1321 target_ulong *args)
1322 {
1323 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1324 return H_FUNCTION;
1325 }
1326
1327 /*
1328 * H_STATE should be returned if a H_INT_RESET is in progress.
1329 * This is not needed when running the emulation under QEMU
1330 */
1331
1332 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1333 return H_FUNCTION;
1334 }
1335
1336 /*
1337 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1338 * page for the input "lisn". This hcall is only supported for LISNs
1339 * that have the ESB hcall flag set to 1 when returned from hcall()
1340 * H_INT_GET_SOURCE_INFO.
1341 *
1342 * Parameters:
1343 * Input:
1344 * - R4: "flags"
1345 * Bits 0-62: Reserved
1346 * bit 63: Store: Store=1, store operation, else load operation
1347 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1348 * "ibm,xive-lisn-ranges" properties, or as returned by the
1349 * ibm,query-interrupt-source-number RTAS call, or as
1350 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1351 * - R6: "esbOffset" is the offset into the ESB page for the load or
1352 * store operation
1353 * - R7: "storeData" is the data to write for a store operation
1354 *
1355 * Output:
1356 * - R4: The value of the load if load operation, else -1
1357 */
1358
1359 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1360
1361 static target_ulong h_int_esb(PowerPCCPU *cpu,
1362 SpaprMachineState *spapr,
1363 target_ulong opcode,
1364 target_ulong *args)
1365 {
1366 SpaprXive *xive = spapr->xive;
1367 XiveEAS eas;
1368 target_ulong flags = args[0];
1369 target_ulong lisn = args[1];
1370 target_ulong offset = args[2];
1371 target_ulong data = args[3];
1372 hwaddr mmio_addr;
1373 XiveSource *xsrc = &xive->source;
1374
1375 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1376 return H_FUNCTION;
1377 }
1378
1379 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1380 return H_PARAMETER;
1381 }
1382
1383 if (lisn >= xive->nr_irqs) {
1384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1385 lisn);
1386 return H_P2;
1387 }
1388
1389 eas = xive->eat[lisn];
1390 if (!xive_eas_is_valid(&eas)) {
1391 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1392 lisn);
1393 return H_P2;
1394 }
1395
1396 if (offset > (1ull << xsrc->esb_shift)) {
1397 return H_P3;
1398 }
1399
1400 if (kvm_irqchip_in_kernel()) {
1401 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1402 flags & SPAPR_XIVE_ESB_STORE);
1403 } else {
1404 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1405
1406 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1407 (flags & SPAPR_XIVE_ESB_STORE))) {
1408 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1409 HWADDR_PRIx "\n", mmio_addr);
1410 return H_HARDWARE;
1411 }
1412 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1413 }
1414 return H_SUCCESS;
1415 }
1416
1417 /*
1418 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1419 * ensure any in flight events for the input lisn are in the event
1420 * queue.
1421 *
1422 * Parameters:
1423 * Input:
1424 * - R4: "flags"
1425 * Bits 0-63: Reserved
1426 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1427 * "ibm,xive-lisn-ranges" properties, or as returned by the
1428 * ibm,query-interrupt-source-number RTAS call, or as
1429 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1430 *
1431 * Output:
1432 * - None
1433 */
1434 static target_ulong h_int_sync(PowerPCCPU *cpu,
1435 SpaprMachineState *spapr,
1436 target_ulong opcode,
1437 target_ulong *args)
1438 {
1439 SpaprXive *xive = spapr->xive;
1440 XiveEAS eas;
1441 target_ulong flags = args[0];
1442 target_ulong lisn = args[1];
1443
1444 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1445 return H_FUNCTION;
1446 }
1447
1448 if (flags) {
1449 return H_PARAMETER;
1450 }
1451
1452 if (lisn >= xive->nr_irqs) {
1453 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1454 lisn);
1455 return H_P2;
1456 }
1457
1458 eas = xive->eat[lisn];
1459 if (!xive_eas_is_valid(&eas)) {
1460 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1461 lisn);
1462 return H_P2;
1463 }
1464
1465 /*
1466 * H_STATE should be returned if a H_INT_RESET is in progress.
1467 * This is not needed when running the emulation under QEMU
1468 */
1469
1470 /*
1471 * This is not real hardware. Nothing to be done unless when
1472 * under KVM
1473 */
1474
1475 if (kvm_irqchip_in_kernel()) {
1476 Error *local_err = NULL;
1477
1478 kvmppc_xive_sync_source(xive, lisn, &local_err);
1479 if (local_err) {
1480 error_report_err(local_err);
1481 return H_HARDWARE;
1482 }
1483 }
1484 return H_SUCCESS;
1485 }
1486
1487 /*
1488 * The H_INT_RESET hcall() is used to reset all of the partition's
1489 * interrupt exploitation structures to their initial state. This
1490 * means losing all previously set interrupt state set via
1491 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1492 *
1493 * Parameters:
1494 * Input:
1495 * - R4: "flags"
1496 * Bits 0-63: Reserved
1497 *
1498 * Output:
1499 * - None
1500 */
1501 static target_ulong h_int_reset(PowerPCCPU *cpu,
1502 SpaprMachineState *spapr,
1503 target_ulong opcode,
1504 target_ulong *args)
1505 {
1506 SpaprXive *xive = spapr->xive;
1507 target_ulong flags = args[0];
1508
1509 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1510 return H_FUNCTION;
1511 }
1512
1513 if (flags) {
1514 return H_PARAMETER;
1515 }
1516
1517 device_reset(DEVICE(xive));
1518
1519 if (kvm_irqchip_in_kernel()) {
1520 Error *local_err = NULL;
1521
1522 kvmppc_xive_reset(xive, &local_err);
1523 if (local_err) {
1524 error_report_err(local_err);
1525 return H_HARDWARE;
1526 }
1527 }
1528 return H_SUCCESS;
1529 }
1530
1531 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1532 {
1533 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1534 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1535 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1536 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1537 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1538 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1539 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1540 h_int_set_os_reporting_line);
1541 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1542 h_int_get_os_reporting_line);
1543 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1544 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1545 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1546 }
1547
1548 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1549 uint32_t phandle)
1550 {
1551 SpaprXive *xive = spapr->xive;
1552 int node;
1553 uint64_t timas[2 * 2];
1554 /* Interrupt number ranges for the IPIs */
1555 uint32_t lisn_ranges[] = {
1556 cpu_to_be32(0),
1557 cpu_to_be32(nr_servers),
1558 };
1559 /*
1560 * EQ size - the sizes of pages supported by the system 4K, 64K,
1561 * 2M, 16M. We only advertise 64K for the moment.
1562 */
1563 uint32_t eq_sizes[] = {
1564 cpu_to_be32(16), /* 64K */
1565 };
1566 /*
1567 * The following array is in sync with the reserved priorities
1568 * defined by the 'spapr_xive_priority_is_reserved' routine.
1569 */
1570 uint32_t plat_res_int_priorities[] = {
1571 cpu_to_be32(7), /* start */
1572 cpu_to_be32(0xf8), /* count */
1573 };
1574
1575 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1576 timas[0] = cpu_to_be64(xive->tm_base +
1577 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1578 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1579 timas[2] = cpu_to_be64(xive->tm_base +
1580 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1581 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1582
1583 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1584
1585 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1586 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1587
1588 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1589 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1590 sizeof(eq_sizes)));
1591 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1592 sizeof(lisn_ranges)));
1593
1594 /* For Linux to link the LSIs to the interrupt controller. */
1595 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1596 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1597
1598 /* For SLOF */
1599 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1600 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1601
1602 /*
1603 * The "ibm,plat-res-int-priorities" property defines the priority
1604 * ranges reserved by the hypervisor
1605 */
1606 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1607 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1608 }