]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive.c
spapr/xive: add migration support for KVM
[mirror_qemu.git] / hw / intc / spapr_xive.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive_regs.h"
23
24 /*
25 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
26 * use for the ESB pages and the TIMA pages
27 */
28 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
29 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
30
31 /*
32 * The allocation of VP blocks is a complex operation in OPAL and the
33 * VP identifiers have a relation with the number of HW chips, the
34 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
35 * controller model does not have the same constraints and can use a
36 * simple mapping scheme of the CPU vcpu_id
37 *
38 * These identifiers are never returned to the OS.
39 */
40
41 #define SPAPR_XIVE_NVT_BASE 0x400
42
43 /*
44 * sPAPR NVT and END indexing helpers
45 */
46 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
47 {
48 return nvt_idx - SPAPR_XIVE_NVT_BASE;
49 }
50
51 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
52 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
53 {
54 assert(cpu);
55
56 if (out_nvt_blk) {
57 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
58 }
59
60 if (out_nvt_blk) {
61 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
62 }
63 }
64
65 static int spapr_xive_target_to_nvt(uint32_t target,
66 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
67 {
68 PowerPCCPU *cpu = spapr_find_cpu(target);
69
70 if (!cpu) {
71 return -1;
72 }
73
74 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
75 return 0;
76 }
77
78 /*
79 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
80 * priorities per CPU
81 */
82 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
83 uint32_t *out_server, uint8_t *out_prio)
84 {
85
86 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
87
88 if (out_server) {
89 *out_server = end_idx >> 3;
90 }
91
92 if (out_prio) {
93 *out_prio = end_idx & 0x7;
94 }
95 return 0;
96 }
97
98 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
99 uint8_t *out_end_blk, uint32_t *out_end_idx)
100 {
101 assert(cpu);
102
103 if (out_end_blk) {
104 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
105 }
106
107 if (out_end_idx) {
108 *out_end_idx = (cpu->vcpu_id << 3) + prio;
109 }
110 }
111
112 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
113 uint8_t *out_end_blk, uint32_t *out_end_idx)
114 {
115 PowerPCCPU *cpu = spapr_find_cpu(target);
116
117 if (!cpu) {
118 return -1;
119 }
120
121 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
122 return 0;
123 }
124
125 /*
126 * On sPAPR machines, use a simplified output for the XIVE END
127 * structure dumping only the information related to the OS EQ.
128 */
129 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
130 Monitor *mon)
131 {
132 uint64_t qaddr_base = xive_end_qaddr(end);
133 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
134 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
135 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
136 uint32_t qentries = 1 << (qsize + 10);
137 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
138 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
139
140 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
141 spapr_xive_nvt_to_target(0, nvt),
142 priority, qindex, qentries, qaddr_base, qgen);
143
144 xive_end_queue_pic_print_info(end, 6, mon);
145 monitor_printf(mon, "]");
146 }
147
148 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
149 {
150 XiveSource *xsrc = &xive->source;
151 int i;
152
153 if (kvm_irqchip_in_kernel()) {
154 Error *local_err = NULL;
155
156 kvmppc_xive_synchronize_state(xive, &local_err);
157 if (local_err) {
158 error_report_err(local_err);
159 return;
160 }
161 }
162
163 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
164
165 for (i = 0; i < xive->nr_irqs; i++) {
166 uint8_t pq = xive_source_esb_get(xsrc, i);
167 XiveEAS *eas = &xive->eat[i];
168
169 if (!xive_eas_is_valid(eas)) {
170 continue;
171 }
172
173 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
174 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
175 pq & XIVE_ESB_VAL_P ? 'P' : '-',
176 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
177 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
178 xive_eas_is_masked(eas) ? "M" : " ",
179 (int) xive_get_field64(EAS_END_DATA, eas->w));
180
181 if (!xive_eas_is_masked(eas)) {
182 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
183 XiveEND *end;
184
185 assert(end_idx < xive->nr_ends);
186 end = &xive->endt[end_idx];
187
188 if (xive_end_is_valid(end)) {
189 spapr_xive_end_pic_print_info(xive, end, mon);
190 }
191 }
192 monitor_printf(mon, "\n");
193 }
194 }
195
196 void spapr_xive_map_mmio(SpaprXive *xive)
197 {
198 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
199 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
200 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
201 }
202
203 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
204 {
205 memory_region_set_enabled(&xive->source.esb_mmio, enable);
206 memory_region_set_enabled(&xive->tm_mmio, enable);
207
208 /* Disable the END ESBs until a guest OS makes use of them */
209 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
210 }
211
212 /*
213 * When a Virtual Processor is scheduled to run on a HW thread, the
214 * hypervisor pushes its identifier in the OS CAM line. Emulate the
215 * same behavior under QEMU.
216 */
217 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
218 {
219 uint8_t nvt_blk;
220 uint32_t nvt_idx;
221 uint32_t nvt_cam;
222
223 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
224
225 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
226 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
227 }
228
229 static void spapr_xive_end_reset(XiveEND *end)
230 {
231 memset(end, 0, sizeof(*end));
232
233 /* switch off the escalation and notification ESBs */
234 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
235 }
236
237 static void spapr_xive_reset(void *dev)
238 {
239 SpaprXive *xive = SPAPR_XIVE(dev);
240 int i;
241
242 /*
243 * The XiveSource has its own reset handler, which mask off all
244 * IRQs (!P|Q)
245 */
246
247 /* Mask all valid EASs in the IRQ number space. */
248 for (i = 0; i < xive->nr_irqs; i++) {
249 XiveEAS *eas = &xive->eat[i];
250 if (xive_eas_is_valid(eas)) {
251 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
252 } else {
253 eas->w = 0;
254 }
255 }
256
257 /* Clear all ENDs */
258 for (i = 0; i < xive->nr_ends; i++) {
259 spapr_xive_end_reset(&xive->endt[i]);
260 }
261 }
262
263 static void spapr_xive_instance_init(Object *obj)
264 {
265 SpaprXive *xive = SPAPR_XIVE(obj);
266
267 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
268 TYPE_XIVE_SOURCE, &error_abort, NULL);
269
270 object_initialize_child(obj, "end_source", &xive->end_source,
271 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
272 &error_abort, NULL);
273
274 /* Not connected to the KVM XIVE device */
275 xive->fd = -1;
276 }
277
278 static void spapr_xive_realize(DeviceState *dev, Error **errp)
279 {
280 SpaprXive *xive = SPAPR_XIVE(dev);
281 XiveSource *xsrc = &xive->source;
282 XiveENDSource *end_xsrc = &xive->end_source;
283 Error *local_err = NULL;
284 MachineState *machine = MACHINE(qdev_get_machine());
285
286 if (!xive->nr_irqs) {
287 error_setg(errp, "Number of interrupt needs to be greater 0");
288 return;
289 }
290
291 if (!xive->nr_ends) {
292 error_setg(errp, "Number of interrupt needs to be greater 0");
293 return;
294 }
295
296 /*
297 * Initialize the internal sources, for IPIs and virtual devices.
298 */
299 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
300 &error_fatal);
301 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
302 &error_fatal);
303 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
304 if (local_err) {
305 error_propagate(errp, local_err);
306 return;
307 }
308
309 /*
310 * Initialize the END ESB source
311 */
312 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
313 &error_fatal);
314 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
315 &error_fatal);
316 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
317 if (local_err) {
318 error_propagate(errp, local_err);
319 return;
320 }
321
322 /* Set the mapping address of the END ESB pages after the source ESBs */
323 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
324
325 /*
326 * Allocate the routing tables
327 */
328 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
329 xive->endt = g_new0(XiveEND, xive->nr_ends);
330
331 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
332 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
333
334 qemu_register_reset(spapr_xive_reset, dev);
335
336 if (kvm_enabled() && machine_kernel_irqchip_allowed(machine)) {
337 kvmppc_xive_connect(xive, &local_err);
338 if (local_err && machine_kernel_irqchip_required(machine)) {
339 error_prepend(&local_err,
340 "kernel_irqchip requested but unavailable: ");
341 error_propagate(errp, local_err);
342 return;
343 }
344
345 if (!local_err) {
346 return;
347 }
348
349 /*
350 * We failed to initialize the XIVE KVM device, fallback to
351 * emulated mode
352 */
353 error_prepend(&local_err, "kernel_irqchip allowed but unavailable: ");
354 warn_report_err(local_err);
355 }
356
357 /* TIMA initialization */
358 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
359 "xive.tima", 4ull << TM_SHIFT);
360
361 /* Define all XIVE MMIO regions on SysBus */
362 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
363 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
364 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
365
366 /* Map all regions */
367 spapr_xive_map_mmio(xive);
368 }
369
370 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
371 uint32_t eas_idx, XiveEAS *eas)
372 {
373 SpaprXive *xive = SPAPR_XIVE(xrtr);
374
375 if (eas_idx >= xive->nr_irqs) {
376 return -1;
377 }
378
379 *eas = xive->eat[eas_idx];
380 return 0;
381 }
382
383 static int spapr_xive_get_end(XiveRouter *xrtr,
384 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
385 {
386 SpaprXive *xive = SPAPR_XIVE(xrtr);
387
388 if (end_idx >= xive->nr_ends) {
389 return -1;
390 }
391
392 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
393 return 0;
394 }
395
396 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
397 uint32_t end_idx, XiveEND *end,
398 uint8_t word_number)
399 {
400 SpaprXive *xive = SPAPR_XIVE(xrtr);
401
402 if (end_idx >= xive->nr_ends) {
403 return -1;
404 }
405
406 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
407 return 0;
408 }
409
410 static int spapr_xive_get_nvt(XiveRouter *xrtr,
411 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
412 {
413 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
414 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
415
416 if (!cpu) {
417 /* TODO: should we assert() if we can find a NVT ? */
418 return -1;
419 }
420
421 /*
422 * sPAPR does not maintain a NVT table. Return that the NVT is
423 * valid if we have found a matching CPU
424 */
425 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
426 return 0;
427 }
428
429 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
430 uint32_t nvt_idx, XiveNVT *nvt,
431 uint8_t word_number)
432 {
433 /*
434 * We don't need to write back to the NVTs because the sPAPR
435 * machine should never hit a non-scheduled NVT. It should never
436 * get called.
437 */
438 g_assert_not_reached();
439 }
440
441 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
442 {
443 PowerPCCPU *cpu = POWERPC_CPU(cs);
444
445 return spapr_cpu_state(cpu)->tctx;
446 }
447
448 static const VMStateDescription vmstate_spapr_xive_end = {
449 .name = TYPE_SPAPR_XIVE "/end",
450 .version_id = 1,
451 .minimum_version_id = 1,
452 .fields = (VMStateField []) {
453 VMSTATE_UINT32(w0, XiveEND),
454 VMSTATE_UINT32(w1, XiveEND),
455 VMSTATE_UINT32(w2, XiveEND),
456 VMSTATE_UINT32(w3, XiveEND),
457 VMSTATE_UINT32(w4, XiveEND),
458 VMSTATE_UINT32(w5, XiveEND),
459 VMSTATE_UINT32(w6, XiveEND),
460 VMSTATE_UINT32(w7, XiveEND),
461 VMSTATE_END_OF_LIST()
462 },
463 };
464
465 static const VMStateDescription vmstate_spapr_xive_eas = {
466 .name = TYPE_SPAPR_XIVE "/eas",
467 .version_id = 1,
468 .minimum_version_id = 1,
469 .fields = (VMStateField []) {
470 VMSTATE_UINT64(w, XiveEAS),
471 VMSTATE_END_OF_LIST()
472 },
473 };
474
475 static int vmstate_spapr_xive_pre_save(void *opaque)
476 {
477 if (kvm_irqchip_in_kernel()) {
478 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
479 }
480
481 return 0;
482 }
483
484 /*
485 * Called by the sPAPR IRQ backend 'post_load' method at the machine
486 * level.
487 */
488 int spapr_xive_post_load(SpaprXive *xive, int version_id)
489 {
490 if (kvm_irqchip_in_kernel()) {
491 return kvmppc_xive_post_load(xive, version_id);
492 }
493
494 return 0;
495 }
496
497 static const VMStateDescription vmstate_spapr_xive = {
498 .name = TYPE_SPAPR_XIVE,
499 .version_id = 1,
500 .minimum_version_id = 1,
501 .pre_save = vmstate_spapr_xive_pre_save,
502 .post_load = NULL, /* handled at the machine level */
503 .fields = (VMStateField[]) {
504 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
505 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
506 vmstate_spapr_xive_eas, XiveEAS),
507 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
508 vmstate_spapr_xive_end, XiveEND),
509 VMSTATE_END_OF_LIST()
510 },
511 };
512
513 static Property spapr_xive_properties[] = {
514 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
515 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
516 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
517 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
518 DEFINE_PROP_END_OF_LIST(),
519 };
520
521 static void spapr_xive_class_init(ObjectClass *klass, void *data)
522 {
523 DeviceClass *dc = DEVICE_CLASS(klass);
524 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
525
526 dc->desc = "sPAPR XIVE Interrupt Controller";
527 dc->props = spapr_xive_properties;
528 dc->realize = spapr_xive_realize;
529 dc->vmsd = &vmstate_spapr_xive;
530
531 xrc->get_eas = spapr_xive_get_eas;
532 xrc->get_end = spapr_xive_get_end;
533 xrc->write_end = spapr_xive_write_end;
534 xrc->get_nvt = spapr_xive_get_nvt;
535 xrc->write_nvt = spapr_xive_write_nvt;
536 xrc->get_tctx = spapr_xive_get_tctx;
537 }
538
539 static const TypeInfo spapr_xive_info = {
540 .name = TYPE_SPAPR_XIVE,
541 .parent = TYPE_XIVE_ROUTER,
542 .instance_init = spapr_xive_instance_init,
543 .instance_size = sizeof(SpaprXive),
544 .class_init = spapr_xive_class_init,
545 };
546
547 static void spapr_xive_register_types(void)
548 {
549 type_register_static(&spapr_xive_info);
550 }
551
552 type_init(spapr_xive_register_types)
553
554 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
555 {
556 XiveSource *xsrc = &xive->source;
557
558 if (lisn >= xive->nr_irqs) {
559 return false;
560 }
561
562 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
563 if (lsi) {
564 xive_source_irq_set_lsi(xsrc, lisn);
565 }
566
567 if (kvm_irqchip_in_kernel()) {
568 Error *local_err = NULL;
569
570 kvmppc_xive_source_reset_one(xsrc, lisn, &local_err);
571 if (local_err) {
572 error_report_err(local_err);
573 return false;
574 }
575 }
576
577 return true;
578 }
579
580 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
581 {
582 if (lisn >= xive->nr_irqs) {
583 return false;
584 }
585
586 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
587 return true;
588 }
589
590 /*
591 * XIVE hcalls
592 *
593 * The terminology used by the XIVE hcalls is the following :
594 *
595 * TARGET vCPU number
596 * EQ Event Queue assigned by OS to receive event data
597 * ESB page for source interrupt management
598 * LISN Logical Interrupt Source Number identifying a source in the
599 * machine
600 * EISN Effective Interrupt Source Number used by guest OS to
601 * identify source in the guest
602 *
603 * The EAS, END, NVT structures are not exposed.
604 */
605
606 /*
607 * Linux hosts under OPAL reserve priority 7 for their own escalation
608 * interrupts (DD2.X POWER9). So we only allow the guest to use
609 * priorities [0..6].
610 */
611 static bool spapr_xive_priority_is_reserved(uint8_t priority)
612 {
613 switch (priority) {
614 case 0 ... 6:
615 return false;
616 case 7: /* OPAL escalation queue */
617 default:
618 return true;
619 }
620 }
621
622 /*
623 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
624 * real address of the MMIO page through which the Event State Buffer
625 * entry associated with the value of the "lisn" parameter is managed.
626 *
627 * Parameters:
628 * Input
629 * - R4: "flags"
630 * Bits 0-63 reserved
631 * - R5: "lisn" is per "interrupts", "interrupt-map", or
632 * "ibm,xive-lisn-ranges" properties, or as returned by the
633 * ibm,query-interrupt-source-number RTAS call, or as returned
634 * by the H_ALLOCATE_VAS_WINDOW hcall
635 *
636 * Output
637 * - R4: "flags"
638 * Bits 0-59: Reserved
639 * Bit 60: H_INT_ESB must be used for Event State Buffer
640 * management
641 * Bit 61: 1 == LSI 0 == MSI
642 * Bit 62: the full function page supports trigger
643 * Bit 63: Store EOI Supported
644 * - R5: Logical Real address of full function Event State Buffer
645 * management page, -1 if H_INT_ESB hcall flag is set to 1.
646 * - R6: Logical Real Address of trigger only Event State Buffer
647 * management page or -1.
648 * - R7: Power of 2 page size for the ESB management pages returned in
649 * R5 and R6.
650 */
651
652 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
653 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
654 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
655 on same page */
656 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
657
658 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
659 SpaprMachineState *spapr,
660 target_ulong opcode,
661 target_ulong *args)
662 {
663 SpaprXive *xive = spapr->xive;
664 XiveSource *xsrc = &xive->source;
665 target_ulong flags = args[0];
666 target_ulong lisn = args[1];
667
668 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
669 return H_FUNCTION;
670 }
671
672 if (flags) {
673 return H_PARAMETER;
674 }
675
676 if (lisn >= xive->nr_irqs) {
677 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
678 lisn);
679 return H_P2;
680 }
681
682 if (!xive_eas_is_valid(&xive->eat[lisn])) {
683 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
684 lisn);
685 return H_P2;
686 }
687
688 /*
689 * All sources are emulated under the main XIVE object and share
690 * the same characteristics.
691 */
692 args[0] = 0;
693 if (!xive_source_esb_has_2page(xsrc)) {
694 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
695 }
696 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
697 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
698 }
699
700 /*
701 * Force the use of the H_INT_ESB hcall in case of an LSI
702 * interrupt. This is necessary under KVM to re-trigger the
703 * interrupt if the level is still asserted
704 */
705 if (xive_source_irq_is_lsi(xsrc, lisn)) {
706 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
707 }
708
709 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
710 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
711 } else {
712 args[1] = -1;
713 }
714
715 if (xive_source_esb_has_2page(xsrc) &&
716 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
717 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
718 } else {
719 args[2] = -1;
720 }
721
722 if (xive_source_esb_has_2page(xsrc)) {
723 args[3] = xsrc->esb_shift - 1;
724 } else {
725 args[3] = xsrc->esb_shift;
726 }
727
728 return H_SUCCESS;
729 }
730
731 /*
732 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
733 * Interrupt Source to a target. The Logical Interrupt Source is
734 * designated with the "lisn" parameter and the target is designated
735 * with the "target" and "priority" parameters. Upon return from the
736 * hcall(), no additional interrupts will be directed to the old EQ.
737 *
738 * Parameters:
739 * Input:
740 * - R4: "flags"
741 * Bits 0-61: Reserved
742 * Bit 62: set the "eisn" in the EAS
743 * Bit 63: masks the interrupt source in the hardware interrupt
744 * control structure. An interrupt masked by this mechanism will
745 * be dropped, but it's source state bits will still be
746 * set. There is no race-free way of unmasking and restoring the
747 * source. Thus this should only be used in interrupts that are
748 * also masked at the source, and only in cases where the
749 * interrupt is not meant to be used for a large amount of time
750 * because no valid target exists for it for example
751 * - R5: "lisn" is per "interrupts", "interrupt-map", or
752 * "ibm,xive-lisn-ranges" properties, or as returned by the
753 * ibm,query-interrupt-source-number RTAS call, or as returned by
754 * the H_ALLOCATE_VAS_WINDOW hcall
755 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
756 * "ibm,ppc-interrupt-gserver#s"
757 * - R7: "priority" is a valid priority not in
758 * "ibm,plat-res-int-priorities"
759 * - R8: "eisn" is the guest EISN associated with the "lisn"
760 *
761 * Output:
762 * - None
763 */
764
765 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
766 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
767
768 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
769 SpaprMachineState *spapr,
770 target_ulong opcode,
771 target_ulong *args)
772 {
773 SpaprXive *xive = spapr->xive;
774 XiveEAS eas, new_eas;
775 target_ulong flags = args[0];
776 target_ulong lisn = args[1];
777 target_ulong target = args[2];
778 target_ulong priority = args[3];
779 target_ulong eisn = args[4];
780 uint8_t end_blk;
781 uint32_t end_idx;
782
783 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
784 return H_FUNCTION;
785 }
786
787 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
788 return H_PARAMETER;
789 }
790
791 if (lisn >= xive->nr_irqs) {
792 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
793 lisn);
794 return H_P2;
795 }
796
797 eas = xive->eat[lisn];
798 if (!xive_eas_is_valid(&eas)) {
799 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
800 lisn);
801 return H_P2;
802 }
803
804 /* priority 0xff is used to reset the EAS */
805 if (priority == 0xff) {
806 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
807 goto out;
808 }
809
810 if (flags & SPAPR_XIVE_SRC_MASK) {
811 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
812 } else {
813 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
814 }
815
816 if (spapr_xive_priority_is_reserved(priority)) {
817 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
818 " is reserved\n", priority);
819 return H_P4;
820 }
821
822 /*
823 * Validate that "target" is part of the list of threads allocated
824 * to the partition. For that, find the END corresponding to the
825 * target.
826 */
827 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
828 return H_P3;
829 }
830
831 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
832 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
833
834 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
835 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
836 }
837
838 if (kvm_irqchip_in_kernel()) {
839 Error *local_err = NULL;
840
841 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
842 if (local_err) {
843 error_report_err(local_err);
844 return H_HARDWARE;
845 }
846 }
847
848 out:
849 xive->eat[lisn] = new_eas;
850 return H_SUCCESS;
851 }
852
853 /*
854 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
855 * target/priority pair is assigned to the specified Logical Interrupt
856 * Source.
857 *
858 * Parameters:
859 * Input:
860 * - R4: "flags"
861 * Bits 0-63 Reserved
862 * - R5: "lisn" is per "interrupts", "interrupt-map", or
863 * "ibm,xive-lisn-ranges" properties, or as returned by the
864 * ibm,query-interrupt-source-number RTAS call, or as
865 * returned by the H_ALLOCATE_VAS_WINDOW hcall
866 *
867 * Output:
868 * - R4: Target to which the specified Logical Interrupt Source is
869 * assigned
870 * - R5: Priority to which the specified Logical Interrupt Source is
871 * assigned
872 * - R6: EISN for the specified Logical Interrupt Source (this will be
873 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
874 */
875 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
876 SpaprMachineState *spapr,
877 target_ulong opcode,
878 target_ulong *args)
879 {
880 SpaprXive *xive = spapr->xive;
881 target_ulong flags = args[0];
882 target_ulong lisn = args[1];
883 XiveEAS eas;
884 XiveEND *end;
885 uint8_t nvt_blk;
886 uint32_t end_idx, nvt_idx;
887
888 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
889 return H_FUNCTION;
890 }
891
892 if (flags) {
893 return H_PARAMETER;
894 }
895
896 if (lisn >= xive->nr_irqs) {
897 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
898 lisn);
899 return H_P2;
900 }
901
902 eas = xive->eat[lisn];
903 if (!xive_eas_is_valid(&eas)) {
904 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
905 lisn);
906 return H_P2;
907 }
908
909 /* EAS_END_BLOCK is unused on sPAPR */
910 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
911
912 assert(end_idx < xive->nr_ends);
913 end = &xive->endt[end_idx];
914
915 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
916 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
917 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
918
919 if (xive_eas_is_masked(&eas)) {
920 args[1] = 0xff;
921 } else {
922 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
923 }
924
925 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
926
927 return H_SUCCESS;
928 }
929
930 /*
931 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
932 * address of the notification management page associated with the
933 * specified target and priority.
934 *
935 * Parameters:
936 * Input:
937 * - R4: "flags"
938 * Bits 0-63 Reserved
939 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
940 * "ibm,ppc-interrupt-gserver#s"
941 * - R6: "priority" is a valid priority not in
942 * "ibm,plat-res-int-priorities"
943 *
944 * Output:
945 * - R4: Logical real address of notification page
946 * - R5: Power of 2 page size of the notification page
947 */
948 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
949 SpaprMachineState *spapr,
950 target_ulong opcode,
951 target_ulong *args)
952 {
953 SpaprXive *xive = spapr->xive;
954 XiveENDSource *end_xsrc = &xive->end_source;
955 target_ulong flags = args[0];
956 target_ulong target = args[1];
957 target_ulong priority = args[2];
958 XiveEND *end;
959 uint8_t end_blk;
960 uint32_t end_idx;
961
962 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
963 return H_FUNCTION;
964 }
965
966 if (flags) {
967 return H_PARAMETER;
968 }
969
970 /*
971 * H_STATE should be returned if a H_INT_RESET is in progress.
972 * This is not needed when running the emulation under QEMU
973 */
974
975 if (spapr_xive_priority_is_reserved(priority)) {
976 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
977 " is reserved\n", priority);
978 return H_P3;
979 }
980
981 /*
982 * Validate that "target" is part of the list of threads allocated
983 * to the partition. For that, find the END corresponding to the
984 * target.
985 */
986 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
987 return H_P2;
988 }
989
990 assert(end_idx < xive->nr_ends);
991 end = &xive->endt[end_idx];
992
993 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
994 if (xive_end_is_enqueue(end)) {
995 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
996 } else {
997 args[1] = 0;
998 }
999
1000 return H_SUCCESS;
1001 }
1002
1003 /*
1004 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1005 * a given "target" and "priority". It is also used to set the
1006 * notification config associated with the EQ. An EQ size of 0 is
1007 * used to reset the EQ config for a given target and priority. If
1008 * resetting the EQ config, the END associated with the given "target"
1009 * and "priority" will be changed to disable queueing.
1010 *
1011 * Upon return from the hcall(), no additional interrupts will be
1012 * directed to the old EQ (if one was set). The old EQ (if one was
1013 * set) should be investigated for interrupts that occurred prior to
1014 * or during the hcall().
1015 *
1016 * Parameters:
1017 * Input:
1018 * - R4: "flags"
1019 * Bits 0-62: Reserved
1020 * Bit 63: Unconditional Notify (n) per the XIVE spec
1021 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1022 * "ibm,ppc-interrupt-gserver#s"
1023 * - R6: "priority" is a valid priority not in
1024 * "ibm,plat-res-int-priorities"
1025 * - R7: "eventQueue": The logical real address of the start of the EQ
1026 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1027 *
1028 * Output:
1029 * - None
1030 */
1031
1032 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1033
1034 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1035 SpaprMachineState *spapr,
1036 target_ulong opcode,
1037 target_ulong *args)
1038 {
1039 SpaprXive *xive = spapr->xive;
1040 target_ulong flags = args[0];
1041 target_ulong target = args[1];
1042 target_ulong priority = args[2];
1043 target_ulong qpage = args[3];
1044 target_ulong qsize = args[4];
1045 XiveEND end;
1046 uint8_t end_blk, nvt_blk;
1047 uint32_t end_idx, nvt_idx;
1048
1049 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1050 return H_FUNCTION;
1051 }
1052
1053 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1054 return H_PARAMETER;
1055 }
1056
1057 /*
1058 * H_STATE should be returned if a H_INT_RESET is in progress.
1059 * This is not needed when running the emulation under QEMU
1060 */
1061
1062 if (spapr_xive_priority_is_reserved(priority)) {
1063 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1064 " is reserved\n", priority);
1065 return H_P3;
1066 }
1067
1068 /*
1069 * Validate that "target" is part of the list of threads allocated
1070 * to the partition. For that, find the END corresponding to the
1071 * target.
1072 */
1073
1074 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1075 return H_P2;
1076 }
1077
1078 assert(end_idx < xive->nr_ends);
1079 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1080
1081 switch (qsize) {
1082 case 12:
1083 case 16:
1084 case 21:
1085 case 24:
1086 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1087 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1088 " is not naturally aligned with %" HWADDR_PRIx "\n",
1089 qpage, (hwaddr)1 << qsize);
1090 return H_P4;
1091 }
1092 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1093 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1094 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1095 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1096 break;
1097 case 0:
1098 /* reset queue and disable queueing */
1099 spapr_xive_end_reset(&end);
1100 goto out;
1101
1102 default:
1103 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1104 qsize);
1105 return H_P5;
1106 }
1107
1108 if (qsize) {
1109 hwaddr plen = 1 << qsize;
1110 void *eq;
1111
1112 /*
1113 * Validate the guest EQ. We should also check that the queue
1114 * has been zeroed by the OS.
1115 */
1116 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1117 MEMTXATTRS_UNSPECIFIED);
1118 if (plen != 1 << qsize) {
1119 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1120 HWADDR_PRIx "\n", qpage);
1121 return H_P4;
1122 }
1123 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1124 }
1125
1126 /* "target" should have been validated above */
1127 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1128 g_assert_not_reached();
1129 }
1130
1131 /*
1132 * Ensure the priority and target are correctly set (they will not
1133 * be right after allocation)
1134 */
1135 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1136 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1137 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1138
1139 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1140 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1141 } else {
1142 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1143 }
1144
1145 /*
1146 * The generation bit for the END starts at 1 and The END page
1147 * offset counter starts at 0.
1148 */
1149 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1150 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1151 end.w0 |= cpu_to_be32(END_W0_VALID);
1152
1153 /*
1154 * TODO: issue syncs required to ensure all in-flight interrupts
1155 * are complete on the old END
1156 */
1157
1158 out:
1159 if (kvm_irqchip_in_kernel()) {
1160 Error *local_err = NULL;
1161
1162 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1163 if (local_err) {
1164 error_report_err(local_err);
1165 return H_HARDWARE;
1166 }
1167 }
1168
1169 /* Update END */
1170 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1171 return H_SUCCESS;
1172 }
1173
1174 /*
1175 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1176 * target and priority.
1177 *
1178 * Parameters:
1179 * Input:
1180 * - R4: "flags"
1181 * Bits 0-62: Reserved
1182 * Bit 63: Debug: Return debug data
1183 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1184 * "ibm,ppc-interrupt-gserver#s"
1185 * - R6: "priority" is a valid priority not in
1186 * "ibm,plat-res-int-priorities"
1187 *
1188 * Output:
1189 * - R4: "flags":
1190 * Bits 0-61: Reserved
1191 * Bit 62: The value of Event Queue Generation Number (g) per
1192 * the XIVE spec if "Debug" = 1
1193 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1194 * - R5: The logical real address of the start of the EQ
1195 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1196 * - R7: The value of Event Queue Offset Counter per XIVE spec
1197 * if "Debug" = 1, else 0
1198 *
1199 */
1200
1201 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1202
1203 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1204 SpaprMachineState *spapr,
1205 target_ulong opcode,
1206 target_ulong *args)
1207 {
1208 SpaprXive *xive = spapr->xive;
1209 target_ulong flags = args[0];
1210 target_ulong target = args[1];
1211 target_ulong priority = args[2];
1212 XiveEND *end;
1213 uint8_t end_blk;
1214 uint32_t end_idx;
1215
1216 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1217 return H_FUNCTION;
1218 }
1219
1220 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1221 return H_PARAMETER;
1222 }
1223
1224 /*
1225 * H_STATE should be returned if a H_INT_RESET is in progress.
1226 * This is not needed when running the emulation under QEMU
1227 */
1228
1229 if (spapr_xive_priority_is_reserved(priority)) {
1230 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1231 " is reserved\n", priority);
1232 return H_P3;
1233 }
1234
1235 /*
1236 * Validate that "target" is part of the list of threads allocated
1237 * to the partition. For that, find the END corresponding to the
1238 * target.
1239 */
1240 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1241 return H_P2;
1242 }
1243
1244 assert(end_idx < xive->nr_ends);
1245 end = &xive->endt[end_idx];
1246
1247 args[0] = 0;
1248 if (xive_end_is_notify(end)) {
1249 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1250 }
1251
1252 if (xive_end_is_enqueue(end)) {
1253 args[1] = xive_end_qaddr(end);
1254 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1255 } else {
1256 args[1] = 0;
1257 args[2] = 0;
1258 }
1259
1260 if (kvm_irqchip_in_kernel()) {
1261 Error *local_err = NULL;
1262
1263 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1264 if (local_err) {
1265 error_report_err(local_err);
1266 return H_HARDWARE;
1267 }
1268 }
1269
1270 /* TODO: do we need any locking on the END ? */
1271 if (flags & SPAPR_XIVE_END_DEBUG) {
1272 /* Load the event queue generation number into the return flags */
1273 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1274
1275 /* Load R7 with the event queue offset counter */
1276 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1277 } else {
1278 args[3] = 0;
1279 }
1280
1281 return H_SUCCESS;
1282 }
1283
1284 /*
1285 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1286 * reporting cache line pair for the calling thread. The reporting
1287 * cache lines will contain the OS interrupt context when the OS
1288 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1289 * interrupt. The reporting cache lines can be reset by inputting -1
1290 * in "reportingLine". Issuing the CI store byte without reporting
1291 * cache lines registered will result in the data not being accessible
1292 * to the OS.
1293 *
1294 * Parameters:
1295 * Input:
1296 * - R4: "flags"
1297 * Bits 0-63: Reserved
1298 * - R5: "reportingLine": The logical real address of the reporting cache
1299 * line pair
1300 *
1301 * Output:
1302 * - None
1303 */
1304 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1305 SpaprMachineState *spapr,
1306 target_ulong opcode,
1307 target_ulong *args)
1308 {
1309 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1310 return H_FUNCTION;
1311 }
1312
1313 /*
1314 * H_STATE should be returned if a H_INT_RESET is in progress.
1315 * This is not needed when running the emulation under QEMU
1316 */
1317
1318 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1319 return H_FUNCTION;
1320 }
1321
1322 /*
1323 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1324 * real address of the reporting cache line pair set for the input
1325 * "target". If no reporting cache line pair has been set, -1 is
1326 * returned.
1327 *
1328 * Parameters:
1329 * Input:
1330 * - R4: "flags"
1331 * Bits 0-63: Reserved
1332 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1333 * "ibm,ppc-interrupt-gserver#s"
1334 * - R6: "reportingLine": The logical real address of the reporting
1335 * cache line pair
1336 *
1337 * Output:
1338 * - R4: The logical real address of the reporting line if set, else -1
1339 */
1340 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1341 SpaprMachineState *spapr,
1342 target_ulong opcode,
1343 target_ulong *args)
1344 {
1345 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1346 return H_FUNCTION;
1347 }
1348
1349 /*
1350 * H_STATE should be returned if a H_INT_RESET is in progress.
1351 * This is not needed when running the emulation under QEMU
1352 */
1353
1354 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1355 return H_FUNCTION;
1356 }
1357
1358 /*
1359 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1360 * page for the input "lisn". This hcall is only supported for LISNs
1361 * that have the ESB hcall flag set to 1 when returned from hcall()
1362 * H_INT_GET_SOURCE_INFO.
1363 *
1364 * Parameters:
1365 * Input:
1366 * - R4: "flags"
1367 * Bits 0-62: Reserved
1368 * bit 63: Store: Store=1, store operation, else load operation
1369 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1370 * "ibm,xive-lisn-ranges" properties, or as returned by the
1371 * ibm,query-interrupt-source-number RTAS call, or as
1372 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1373 * - R6: "esbOffset" is the offset into the ESB page for the load or
1374 * store operation
1375 * - R7: "storeData" is the data to write for a store operation
1376 *
1377 * Output:
1378 * - R4: The value of the load if load operation, else -1
1379 */
1380
1381 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1382
1383 static target_ulong h_int_esb(PowerPCCPU *cpu,
1384 SpaprMachineState *spapr,
1385 target_ulong opcode,
1386 target_ulong *args)
1387 {
1388 SpaprXive *xive = spapr->xive;
1389 XiveEAS eas;
1390 target_ulong flags = args[0];
1391 target_ulong lisn = args[1];
1392 target_ulong offset = args[2];
1393 target_ulong data = args[3];
1394 hwaddr mmio_addr;
1395 XiveSource *xsrc = &xive->source;
1396
1397 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1398 return H_FUNCTION;
1399 }
1400
1401 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1402 return H_PARAMETER;
1403 }
1404
1405 if (lisn >= xive->nr_irqs) {
1406 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1407 lisn);
1408 return H_P2;
1409 }
1410
1411 eas = xive->eat[lisn];
1412 if (!xive_eas_is_valid(&eas)) {
1413 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1414 lisn);
1415 return H_P2;
1416 }
1417
1418 if (offset > (1ull << xsrc->esb_shift)) {
1419 return H_P3;
1420 }
1421
1422 if (kvm_irqchip_in_kernel()) {
1423 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1424 flags & SPAPR_XIVE_ESB_STORE);
1425 } else {
1426 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1427
1428 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1429 (flags & SPAPR_XIVE_ESB_STORE))) {
1430 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1431 HWADDR_PRIx "\n", mmio_addr);
1432 return H_HARDWARE;
1433 }
1434 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1435 }
1436 return H_SUCCESS;
1437 }
1438
1439 /*
1440 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1441 * ensure any in flight events for the input lisn are in the event
1442 * queue.
1443 *
1444 * Parameters:
1445 * Input:
1446 * - R4: "flags"
1447 * Bits 0-63: Reserved
1448 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1449 * "ibm,xive-lisn-ranges" properties, or as returned by the
1450 * ibm,query-interrupt-source-number RTAS call, or as
1451 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1452 *
1453 * Output:
1454 * - None
1455 */
1456 static target_ulong h_int_sync(PowerPCCPU *cpu,
1457 SpaprMachineState *spapr,
1458 target_ulong opcode,
1459 target_ulong *args)
1460 {
1461 SpaprXive *xive = spapr->xive;
1462 XiveEAS eas;
1463 target_ulong flags = args[0];
1464 target_ulong lisn = args[1];
1465
1466 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1467 return H_FUNCTION;
1468 }
1469
1470 if (flags) {
1471 return H_PARAMETER;
1472 }
1473
1474 if (lisn >= xive->nr_irqs) {
1475 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1476 lisn);
1477 return H_P2;
1478 }
1479
1480 eas = xive->eat[lisn];
1481 if (!xive_eas_is_valid(&eas)) {
1482 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1483 lisn);
1484 return H_P2;
1485 }
1486
1487 /*
1488 * H_STATE should be returned if a H_INT_RESET is in progress.
1489 * This is not needed when running the emulation under QEMU
1490 */
1491
1492 /*
1493 * This is not real hardware. Nothing to be done unless when
1494 * under KVM
1495 */
1496
1497 if (kvm_irqchip_in_kernel()) {
1498 Error *local_err = NULL;
1499
1500 kvmppc_xive_sync_source(xive, lisn, &local_err);
1501 if (local_err) {
1502 error_report_err(local_err);
1503 return H_HARDWARE;
1504 }
1505 }
1506 return H_SUCCESS;
1507 }
1508
1509 /*
1510 * The H_INT_RESET hcall() is used to reset all of the partition's
1511 * interrupt exploitation structures to their initial state. This
1512 * means losing all previously set interrupt state set via
1513 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1514 *
1515 * Parameters:
1516 * Input:
1517 * - R4: "flags"
1518 * Bits 0-63: Reserved
1519 *
1520 * Output:
1521 * - None
1522 */
1523 static target_ulong h_int_reset(PowerPCCPU *cpu,
1524 SpaprMachineState *spapr,
1525 target_ulong opcode,
1526 target_ulong *args)
1527 {
1528 SpaprXive *xive = spapr->xive;
1529 target_ulong flags = args[0];
1530
1531 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1532 return H_FUNCTION;
1533 }
1534
1535 if (flags) {
1536 return H_PARAMETER;
1537 }
1538
1539 device_reset(DEVICE(xive));
1540
1541 if (kvm_irqchip_in_kernel()) {
1542 Error *local_err = NULL;
1543
1544 kvmppc_xive_reset(xive, &local_err);
1545 if (local_err) {
1546 error_report_err(local_err);
1547 return H_HARDWARE;
1548 }
1549 }
1550 return H_SUCCESS;
1551 }
1552
1553 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1554 {
1555 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1556 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1557 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1558 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1559 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1560 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1561 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1562 h_int_set_os_reporting_line);
1563 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1564 h_int_get_os_reporting_line);
1565 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1566 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1567 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1568 }
1569
1570 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1571 uint32_t phandle)
1572 {
1573 SpaprXive *xive = spapr->xive;
1574 int node;
1575 uint64_t timas[2 * 2];
1576 /* Interrupt number ranges for the IPIs */
1577 uint32_t lisn_ranges[] = {
1578 cpu_to_be32(0),
1579 cpu_to_be32(nr_servers),
1580 };
1581 /*
1582 * EQ size - the sizes of pages supported by the system 4K, 64K,
1583 * 2M, 16M. We only advertise 64K for the moment.
1584 */
1585 uint32_t eq_sizes[] = {
1586 cpu_to_be32(16), /* 64K */
1587 };
1588 /*
1589 * The following array is in sync with the reserved priorities
1590 * defined by the 'spapr_xive_priority_is_reserved' routine.
1591 */
1592 uint32_t plat_res_int_priorities[] = {
1593 cpu_to_be32(7), /* start */
1594 cpu_to_be32(0xf8), /* count */
1595 };
1596
1597 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1598 timas[0] = cpu_to_be64(xive->tm_base +
1599 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1600 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1601 timas[2] = cpu_to_be64(xive->tm_base +
1602 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1603 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1604
1605 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1606
1607 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1608 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1609
1610 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1611 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1612 sizeof(eq_sizes)));
1613 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1614 sizeof(lisn_ranges)));
1615
1616 /* For Linux to link the LSIs to the interrupt controller. */
1617 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1618 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1619
1620 /* For SLOF */
1621 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1622 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1623
1624 /*
1625 * The "ibm,plat-res-int-priorities" property defines the priority
1626 * ranges reserved by the hypervisor
1627 */
1628 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1629 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1630 }