]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive.c
spapr, xics, xive: Move set_irq from SpaprIrq to SpaprInterruptController
[mirror_qemu.git] / hw / intc / spapr_xive.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27
28 /*
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
31 */
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
34
35 /*
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
41 *
42 * These identifiers are never returned to the OS.
43 */
44
45 #define SPAPR_XIVE_NVT_BASE 0x400
46
47 /*
48 * sPAPR NVT and END indexing helpers
49 */
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
51 {
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
53 }
54
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
57 {
58 assert(cpu);
59
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
62 }
63
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
66 }
67 }
68
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
71 {
72 PowerPCCPU *cpu = spapr_find_cpu(target);
73
74 if (!cpu) {
75 return -1;
76 }
77
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
80 }
81
82 /*
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
85 */
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
88 {
89
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
91
92 if (out_server) {
93 *out_server = end_idx >> 3;
94 }
95
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
98 }
99 return 0;
100 }
101
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
104 {
105 assert(cpu);
106
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
109 }
110
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
113 }
114 }
115
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
118 {
119 PowerPCCPU *cpu = spapr_find_cpu(target);
120
121 if (!cpu) {
122 return -1;
123 }
124
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
127 }
128
129 /*
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
132 */
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
135 {
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
143
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
147
148 xive_end_queue_pic_print_info(end, 6, mon);
149 }
150
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
152 {
153 XiveSource *xsrc = &xive->source;
154 int i;
155
156 if (kvm_irqchip_in_kernel()) {
157 Error *local_err = NULL;
158
159 kvmppc_xive_synchronize_state(xive, &local_err);
160 if (local_err) {
161 error_report_err(local_err);
162 return;
163 }
164 }
165
166 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
167
168 for (i = 0; i < xive->nr_irqs; i++) {
169 uint8_t pq = xive_source_esb_get(xsrc, i);
170 XiveEAS *eas = &xive->eat[i];
171
172 if (!xive_eas_is_valid(eas)) {
173 continue;
174 }
175
176 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
177 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178 pq & XIVE_ESB_VAL_P ? 'P' : '-',
179 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181 xive_eas_is_masked(eas) ? "M" : " ",
182 (int) xive_get_field64(EAS_END_DATA, eas->w));
183
184 if (!xive_eas_is_masked(eas)) {
185 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186 XiveEND *end;
187
188 assert(end_idx < xive->nr_ends);
189 end = &xive->endt[end_idx];
190
191 if (xive_end_is_valid(end)) {
192 spapr_xive_end_pic_print_info(xive, end, mon);
193 }
194 }
195 monitor_printf(mon, "\n");
196 }
197 }
198
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
200 {
201 memory_region_set_enabled(&xive->source.esb_mmio, enable);
202 memory_region_set_enabled(&xive->tm_mmio, enable);
203
204 /* Disable the END ESBs until a guest OS makes use of them */
205 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
206 }
207
208 /*
209 * When a Virtual Processor is scheduled to run on a HW thread, the
210 * hypervisor pushes its identifier in the OS CAM line. Emulate the
211 * same behavior under QEMU.
212 */
213 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
214 {
215 uint8_t nvt_blk;
216 uint32_t nvt_idx;
217 uint32_t nvt_cam;
218
219 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
220
221 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
222 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
223 }
224
225 static void spapr_xive_end_reset(XiveEND *end)
226 {
227 memset(end, 0, sizeof(*end));
228
229 /* switch off the escalation and notification ESBs */
230 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
231 }
232
233 static void spapr_xive_reset(void *dev)
234 {
235 SpaprXive *xive = SPAPR_XIVE(dev);
236 int i;
237
238 /*
239 * The XiveSource has its own reset handler, which mask off all
240 * IRQs (!P|Q)
241 */
242
243 /* Mask all valid EASs in the IRQ number space. */
244 for (i = 0; i < xive->nr_irqs; i++) {
245 XiveEAS *eas = &xive->eat[i];
246 if (xive_eas_is_valid(eas)) {
247 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
248 } else {
249 eas->w = 0;
250 }
251 }
252
253 /* Clear all ENDs */
254 for (i = 0; i < xive->nr_ends; i++) {
255 spapr_xive_end_reset(&xive->endt[i]);
256 }
257 }
258
259 static void spapr_xive_instance_init(Object *obj)
260 {
261 SpaprXive *xive = SPAPR_XIVE(obj);
262
263 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
264 TYPE_XIVE_SOURCE, &error_abort, NULL);
265
266 object_initialize_child(obj, "end_source", &xive->end_source,
267 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
268 &error_abort, NULL);
269
270 /* Not connected to the KVM XIVE device */
271 xive->fd = -1;
272 }
273
274 static void spapr_xive_realize(DeviceState *dev, Error **errp)
275 {
276 SpaprXive *xive = SPAPR_XIVE(dev);
277 XiveSource *xsrc = &xive->source;
278 XiveENDSource *end_xsrc = &xive->end_source;
279 Error *local_err = NULL;
280
281 if (!xive->nr_irqs) {
282 error_setg(errp, "Number of interrupt needs to be greater 0");
283 return;
284 }
285
286 if (!xive->nr_ends) {
287 error_setg(errp, "Number of interrupt needs to be greater 0");
288 return;
289 }
290
291 /*
292 * Initialize the internal sources, for IPIs and virtual devices.
293 */
294 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
295 &error_fatal);
296 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
297 &error_fatal);
298 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
299 if (local_err) {
300 error_propagate(errp, local_err);
301 return;
302 }
303 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
304
305 /*
306 * Initialize the END ESB source
307 */
308 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
309 &error_fatal);
310 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
311 &error_fatal);
312 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
313 if (local_err) {
314 error_propagate(errp, local_err);
315 return;
316 }
317 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
318
319 /* Set the mapping address of the END ESB pages after the source ESBs */
320 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
321
322 /*
323 * Allocate the routing tables
324 */
325 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
326 xive->endt = g_new0(XiveEND, xive->nr_ends);
327
328 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
329 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
330
331 qemu_register_reset(spapr_xive_reset, dev);
332
333 /* TIMA initialization */
334 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
335 "xive.tima", 4ull << TM_SHIFT);
336 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
337
338 /*
339 * Map all regions. These will be enabled or disabled at reset and
340 * can also be overridden by KVM memory regions if active
341 */
342 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
343 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
344 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
345 }
346
347 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
348 uint32_t eas_idx, XiveEAS *eas)
349 {
350 SpaprXive *xive = SPAPR_XIVE(xrtr);
351
352 if (eas_idx >= xive->nr_irqs) {
353 return -1;
354 }
355
356 *eas = xive->eat[eas_idx];
357 return 0;
358 }
359
360 static int spapr_xive_get_end(XiveRouter *xrtr,
361 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
362 {
363 SpaprXive *xive = SPAPR_XIVE(xrtr);
364
365 if (end_idx >= xive->nr_ends) {
366 return -1;
367 }
368
369 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
370 return 0;
371 }
372
373 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
374 uint32_t end_idx, XiveEND *end,
375 uint8_t word_number)
376 {
377 SpaprXive *xive = SPAPR_XIVE(xrtr);
378
379 if (end_idx >= xive->nr_ends) {
380 return -1;
381 }
382
383 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
384 return 0;
385 }
386
387 static int spapr_xive_get_nvt(XiveRouter *xrtr,
388 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
389 {
390 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
391 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
392
393 if (!cpu) {
394 /* TODO: should we assert() if we can find a NVT ? */
395 return -1;
396 }
397
398 /*
399 * sPAPR does not maintain a NVT table. Return that the NVT is
400 * valid if we have found a matching CPU
401 */
402 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
403 return 0;
404 }
405
406 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
407 uint32_t nvt_idx, XiveNVT *nvt,
408 uint8_t word_number)
409 {
410 /*
411 * We don't need to write back to the NVTs because the sPAPR
412 * machine should never hit a non-scheduled NVT. It should never
413 * get called.
414 */
415 g_assert_not_reached();
416 }
417
418 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
419 {
420 PowerPCCPU *cpu = POWERPC_CPU(cs);
421
422 return spapr_cpu_state(cpu)->tctx;
423 }
424
425 static const VMStateDescription vmstate_spapr_xive_end = {
426 .name = TYPE_SPAPR_XIVE "/end",
427 .version_id = 1,
428 .minimum_version_id = 1,
429 .fields = (VMStateField []) {
430 VMSTATE_UINT32(w0, XiveEND),
431 VMSTATE_UINT32(w1, XiveEND),
432 VMSTATE_UINT32(w2, XiveEND),
433 VMSTATE_UINT32(w3, XiveEND),
434 VMSTATE_UINT32(w4, XiveEND),
435 VMSTATE_UINT32(w5, XiveEND),
436 VMSTATE_UINT32(w6, XiveEND),
437 VMSTATE_UINT32(w7, XiveEND),
438 VMSTATE_END_OF_LIST()
439 },
440 };
441
442 static const VMStateDescription vmstate_spapr_xive_eas = {
443 .name = TYPE_SPAPR_XIVE "/eas",
444 .version_id = 1,
445 .minimum_version_id = 1,
446 .fields = (VMStateField []) {
447 VMSTATE_UINT64(w, XiveEAS),
448 VMSTATE_END_OF_LIST()
449 },
450 };
451
452 static int vmstate_spapr_xive_pre_save(void *opaque)
453 {
454 if (kvm_irqchip_in_kernel()) {
455 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
456 }
457
458 return 0;
459 }
460
461 /*
462 * Called by the sPAPR IRQ backend 'post_load' method at the machine
463 * level.
464 */
465 int spapr_xive_post_load(SpaprXive *xive, int version_id)
466 {
467 if (kvm_irqchip_in_kernel()) {
468 return kvmppc_xive_post_load(xive, version_id);
469 }
470
471 return 0;
472 }
473
474 static const VMStateDescription vmstate_spapr_xive = {
475 .name = TYPE_SPAPR_XIVE,
476 .version_id = 1,
477 .minimum_version_id = 1,
478 .pre_save = vmstate_spapr_xive_pre_save,
479 .post_load = NULL, /* handled at the machine level */
480 .fields = (VMStateField[]) {
481 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
482 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
483 vmstate_spapr_xive_eas, XiveEAS),
484 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
485 vmstate_spapr_xive_end, XiveEND),
486 VMSTATE_END_OF_LIST()
487 },
488 };
489
490 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
491 bool lsi, Error **errp)
492 {
493 SpaprXive *xive = SPAPR_XIVE(intc);
494 XiveSource *xsrc = &xive->source;
495
496 assert(lisn < xive->nr_irqs);
497
498 if (xive_eas_is_valid(&xive->eat[lisn])) {
499 error_setg(errp, "IRQ %d is not free", lisn);
500 return -EBUSY;
501 }
502
503 /*
504 * Set default values when allocating an IRQ number
505 */
506 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
507 if (lsi) {
508 xive_source_irq_set_lsi(xsrc, lisn);
509 }
510
511 if (kvm_irqchip_in_kernel()) {
512 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
513 }
514
515 return 0;
516 }
517
518 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
519 {
520 SpaprXive *xive = SPAPR_XIVE(intc);
521 assert(lisn < xive->nr_irqs);
522
523 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
524 }
525
526 static Property spapr_xive_properties[] = {
527 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
528 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
529 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
530 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
531 DEFINE_PROP_END_OF_LIST(),
532 };
533
534 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
535 PowerPCCPU *cpu, Error **errp)
536 {
537 SpaprXive *xive = SPAPR_XIVE(intc);
538 Object *obj;
539 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
540
541 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(xive), errp);
542 if (!obj) {
543 return -1;
544 }
545
546 spapr_cpu->tctx = XIVE_TCTX(obj);
547
548 /*
549 * (TCG) Early setting the OS CAM line for hotplugged CPUs as they
550 * don't beneficiate from the reset of the XIVE IRQ backend
551 */
552 spapr_xive_set_tctx_os_cam(spapr_cpu->tctx);
553 return 0;
554 }
555
556 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
557 {
558 SpaprXive *xive = SPAPR_XIVE(intc);
559
560 if (kvm_irqchip_in_kernel()) {
561 kvmppc_xive_source_set_irq(&xive->source, irq, val);
562 } else {
563 xive_source_set_irq(&xive->source, irq, val);
564 }
565 }
566
567 static void spapr_xive_class_init(ObjectClass *klass, void *data)
568 {
569 DeviceClass *dc = DEVICE_CLASS(klass);
570 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
571 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
572
573 dc->desc = "sPAPR XIVE Interrupt Controller";
574 dc->props = spapr_xive_properties;
575 dc->realize = spapr_xive_realize;
576 dc->vmsd = &vmstate_spapr_xive;
577
578 xrc->get_eas = spapr_xive_get_eas;
579 xrc->get_end = spapr_xive_get_end;
580 xrc->write_end = spapr_xive_write_end;
581 xrc->get_nvt = spapr_xive_get_nvt;
582 xrc->write_nvt = spapr_xive_write_nvt;
583 xrc->get_tctx = spapr_xive_get_tctx;
584
585 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
586 sicc->claim_irq = spapr_xive_claim_irq;
587 sicc->free_irq = spapr_xive_free_irq;
588 sicc->set_irq = spapr_xive_set_irq;
589 }
590
591 static const TypeInfo spapr_xive_info = {
592 .name = TYPE_SPAPR_XIVE,
593 .parent = TYPE_XIVE_ROUTER,
594 .instance_init = spapr_xive_instance_init,
595 .instance_size = sizeof(SpaprXive),
596 .class_init = spapr_xive_class_init,
597 .interfaces = (InterfaceInfo[]) {
598 { TYPE_SPAPR_INTC },
599 { }
600 },
601 };
602
603 static void spapr_xive_register_types(void)
604 {
605 type_register_static(&spapr_xive_info);
606 }
607
608 type_init(spapr_xive_register_types)
609
610 /*
611 * XIVE hcalls
612 *
613 * The terminology used by the XIVE hcalls is the following :
614 *
615 * TARGET vCPU number
616 * EQ Event Queue assigned by OS to receive event data
617 * ESB page for source interrupt management
618 * LISN Logical Interrupt Source Number identifying a source in the
619 * machine
620 * EISN Effective Interrupt Source Number used by guest OS to
621 * identify source in the guest
622 *
623 * The EAS, END, NVT structures are not exposed.
624 */
625
626 /*
627 * Linux hosts under OPAL reserve priority 7 for their own escalation
628 * interrupts (DD2.X POWER9). So we only allow the guest to use
629 * priorities [0..6].
630 */
631 static bool spapr_xive_priority_is_reserved(uint8_t priority)
632 {
633 switch (priority) {
634 case 0 ... 6:
635 return false;
636 case 7: /* OPAL escalation queue */
637 default:
638 return true;
639 }
640 }
641
642 /*
643 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
644 * real address of the MMIO page through which the Event State Buffer
645 * entry associated with the value of the "lisn" parameter is managed.
646 *
647 * Parameters:
648 * Input
649 * - R4: "flags"
650 * Bits 0-63 reserved
651 * - R5: "lisn" is per "interrupts", "interrupt-map", or
652 * "ibm,xive-lisn-ranges" properties, or as returned by the
653 * ibm,query-interrupt-source-number RTAS call, or as returned
654 * by the H_ALLOCATE_VAS_WINDOW hcall
655 *
656 * Output
657 * - R4: "flags"
658 * Bits 0-59: Reserved
659 * Bit 60: H_INT_ESB must be used for Event State Buffer
660 * management
661 * Bit 61: 1 == LSI 0 == MSI
662 * Bit 62: the full function page supports trigger
663 * Bit 63: Store EOI Supported
664 * - R5: Logical Real address of full function Event State Buffer
665 * management page, -1 if H_INT_ESB hcall flag is set to 1.
666 * - R6: Logical Real Address of trigger only Event State Buffer
667 * management page or -1.
668 * - R7: Power of 2 page size for the ESB management pages returned in
669 * R5 and R6.
670 */
671
672 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
673 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
674 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
675 on same page */
676 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
677
678 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
679 SpaprMachineState *spapr,
680 target_ulong opcode,
681 target_ulong *args)
682 {
683 SpaprXive *xive = spapr->xive;
684 XiveSource *xsrc = &xive->source;
685 target_ulong flags = args[0];
686 target_ulong lisn = args[1];
687
688 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
689 return H_FUNCTION;
690 }
691
692 if (flags) {
693 return H_PARAMETER;
694 }
695
696 if (lisn >= xive->nr_irqs) {
697 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
698 lisn);
699 return H_P2;
700 }
701
702 if (!xive_eas_is_valid(&xive->eat[lisn])) {
703 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
704 lisn);
705 return H_P2;
706 }
707
708 /*
709 * All sources are emulated under the main XIVE object and share
710 * the same characteristics.
711 */
712 args[0] = 0;
713 if (!xive_source_esb_has_2page(xsrc)) {
714 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
715 }
716 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
717 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
718 }
719
720 /*
721 * Force the use of the H_INT_ESB hcall in case of an LSI
722 * interrupt. This is necessary under KVM to re-trigger the
723 * interrupt if the level is still asserted
724 */
725 if (xive_source_irq_is_lsi(xsrc, lisn)) {
726 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
727 }
728
729 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
730 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
731 } else {
732 args[1] = -1;
733 }
734
735 if (xive_source_esb_has_2page(xsrc) &&
736 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
737 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
738 } else {
739 args[2] = -1;
740 }
741
742 if (xive_source_esb_has_2page(xsrc)) {
743 args[3] = xsrc->esb_shift - 1;
744 } else {
745 args[3] = xsrc->esb_shift;
746 }
747
748 return H_SUCCESS;
749 }
750
751 /*
752 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
753 * Interrupt Source to a target. The Logical Interrupt Source is
754 * designated with the "lisn" parameter and the target is designated
755 * with the "target" and "priority" parameters. Upon return from the
756 * hcall(), no additional interrupts will be directed to the old EQ.
757 *
758 * Parameters:
759 * Input:
760 * - R4: "flags"
761 * Bits 0-61: Reserved
762 * Bit 62: set the "eisn" in the EAS
763 * Bit 63: masks the interrupt source in the hardware interrupt
764 * control structure. An interrupt masked by this mechanism will
765 * be dropped, but it's source state bits will still be
766 * set. There is no race-free way of unmasking and restoring the
767 * source. Thus this should only be used in interrupts that are
768 * also masked at the source, and only in cases where the
769 * interrupt is not meant to be used for a large amount of time
770 * because no valid target exists for it for example
771 * - R5: "lisn" is per "interrupts", "interrupt-map", or
772 * "ibm,xive-lisn-ranges" properties, or as returned by the
773 * ibm,query-interrupt-source-number RTAS call, or as returned by
774 * the H_ALLOCATE_VAS_WINDOW hcall
775 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
776 * "ibm,ppc-interrupt-gserver#s"
777 * - R7: "priority" is a valid priority not in
778 * "ibm,plat-res-int-priorities"
779 * - R8: "eisn" is the guest EISN associated with the "lisn"
780 *
781 * Output:
782 * - None
783 */
784
785 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
786 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
787
788 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
789 SpaprMachineState *spapr,
790 target_ulong opcode,
791 target_ulong *args)
792 {
793 SpaprXive *xive = spapr->xive;
794 XiveEAS eas, new_eas;
795 target_ulong flags = args[0];
796 target_ulong lisn = args[1];
797 target_ulong target = args[2];
798 target_ulong priority = args[3];
799 target_ulong eisn = args[4];
800 uint8_t end_blk;
801 uint32_t end_idx;
802
803 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
804 return H_FUNCTION;
805 }
806
807 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
808 return H_PARAMETER;
809 }
810
811 if (lisn >= xive->nr_irqs) {
812 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
813 lisn);
814 return H_P2;
815 }
816
817 eas = xive->eat[lisn];
818 if (!xive_eas_is_valid(&eas)) {
819 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
820 lisn);
821 return H_P2;
822 }
823
824 /* priority 0xff is used to reset the EAS */
825 if (priority == 0xff) {
826 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
827 goto out;
828 }
829
830 if (flags & SPAPR_XIVE_SRC_MASK) {
831 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
832 } else {
833 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
834 }
835
836 if (spapr_xive_priority_is_reserved(priority)) {
837 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
838 " is reserved\n", priority);
839 return H_P4;
840 }
841
842 /*
843 * Validate that "target" is part of the list of threads allocated
844 * to the partition. For that, find the END corresponding to the
845 * target.
846 */
847 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
848 return H_P3;
849 }
850
851 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
852 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
853
854 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
855 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
856 }
857
858 if (kvm_irqchip_in_kernel()) {
859 Error *local_err = NULL;
860
861 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
862 if (local_err) {
863 error_report_err(local_err);
864 return H_HARDWARE;
865 }
866 }
867
868 out:
869 xive->eat[lisn] = new_eas;
870 return H_SUCCESS;
871 }
872
873 /*
874 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
875 * target/priority pair is assigned to the specified Logical Interrupt
876 * Source.
877 *
878 * Parameters:
879 * Input:
880 * - R4: "flags"
881 * Bits 0-63 Reserved
882 * - R5: "lisn" is per "interrupts", "interrupt-map", or
883 * "ibm,xive-lisn-ranges" properties, or as returned by the
884 * ibm,query-interrupt-source-number RTAS call, or as
885 * returned by the H_ALLOCATE_VAS_WINDOW hcall
886 *
887 * Output:
888 * - R4: Target to which the specified Logical Interrupt Source is
889 * assigned
890 * - R5: Priority to which the specified Logical Interrupt Source is
891 * assigned
892 * - R6: EISN for the specified Logical Interrupt Source (this will be
893 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
894 */
895 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
896 SpaprMachineState *spapr,
897 target_ulong opcode,
898 target_ulong *args)
899 {
900 SpaprXive *xive = spapr->xive;
901 target_ulong flags = args[0];
902 target_ulong lisn = args[1];
903 XiveEAS eas;
904 XiveEND *end;
905 uint8_t nvt_blk;
906 uint32_t end_idx, nvt_idx;
907
908 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
909 return H_FUNCTION;
910 }
911
912 if (flags) {
913 return H_PARAMETER;
914 }
915
916 if (lisn >= xive->nr_irqs) {
917 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
918 lisn);
919 return H_P2;
920 }
921
922 eas = xive->eat[lisn];
923 if (!xive_eas_is_valid(&eas)) {
924 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
925 lisn);
926 return H_P2;
927 }
928
929 /* EAS_END_BLOCK is unused on sPAPR */
930 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
931
932 assert(end_idx < xive->nr_ends);
933 end = &xive->endt[end_idx];
934
935 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
936 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
937 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
938
939 if (xive_eas_is_masked(&eas)) {
940 args[1] = 0xff;
941 } else {
942 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
943 }
944
945 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
946
947 return H_SUCCESS;
948 }
949
950 /*
951 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
952 * address of the notification management page associated with the
953 * specified target and priority.
954 *
955 * Parameters:
956 * Input:
957 * - R4: "flags"
958 * Bits 0-63 Reserved
959 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
960 * "ibm,ppc-interrupt-gserver#s"
961 * - R6: "priority" is a valid priority not in
962 * "ibm,plat-res-int-priorities"
963 *
964 * Output:
965 * - R4: Logical real address of notification page
966 * - R5: Power of 2 page size of the notification page
967 */
968 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
969 SpaprMachineState *spapr,
970 target_ulong opcode,
971 target_ulong *args)
972 {
973 SpaprXive *xive = spapr->xive;
974 XiveENDSource *end_xsrc = &xive->end_source;
975 target_ulong flags = args[0];
976 target_ulong target = args[1];
977 target_ulong priority = args[2];
978 XiveEND *end;
979 uint8_t end_blk;
980 uint32_t end_idx;
981
982 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
983 return H_FUNCTION;
984 }
985
986 if (flags) {
987 return H_PARAMETER;
988 }
989
990 /*
991 * H_STATE should be returned if a H_INT_RESET is in progress.
992 * This is not needed when running the emulation under QEMU
993 */
994
995 if (spapr_xive_priority_is_reserved(priority)) {
996 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
997 " is reserved\n", priority);
998 return H_P3;
999 }
1000
1001 /*
1002 * Validate that "target" is part of the list of threads allocated
1003 * to the partition. For that, find the END corresponding to the
1004 * target.
1005 */
1006 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1007 return H_P2;
1008 }
1009
1010 assert(end_idx < xive->nr_ends);
1011 end = &xive->endt[end_idx];
1012
1013 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1014 if (xive_end_is_enqueue(end)) {
1015 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1016 } else {
1017 args[1] = 0;
1018 }
1019
1020 return H_SUCCESS;
1021 }
1022
1023 /*
1024 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1025 * a given "target" and "priority". It is also used to set the
1026 * notification config associated with the EQ. An EQ size of 0 is
1027 * used to reset the EQ config for a given target and priority. If
1028 * resetting the EQ config, the END associated with the given "target"
1029 * and "priority" will be changed to disable queueing.
1030 *
1031 * Upon return from the hcall(), no additional interrupts will be
1032 * directed to the old EQ (if one was set). The old EQ (if one was
1033 * set) should be investigated for interrupts that occurred prior to
1034 * or during the hcall().
1035 *
1036 * Parameters:
1037 * Input:
1038 * - R4: "flags"
1039 * Bits 0-62: Reserved
1040 * Bit 63: Unconditional Notify (n) per the XIVE spec
1041 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1042 * "ibm,ppc-interrupt-gserver#s"
1043 * - R6: "priority" is a valid priority not in
1044 * "ibm,plat-res-int-priorities"
1045 * - R7: "eventQueue": The logical real address of the start of the EQ
1046 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1047 *
1048 * Output:
1049 * - None
1050 */
1051
1052 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1053
1054 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1055 SpaprMachineState *spapr,
1056 target_ulong opcode,
1057 target_ulong *args)
1058 {
1059 SpaprXive *xive = spapr->xive;
1060 target_ulong flags = args[0];
1061 target_ulong target = args[1];
1062 target_ulong priority = args[2];
1063 target_ulong qpage = args[3];
1064 target_ulong qsize = args[4];
1065 XiveEND end;
1066 uint8_t end_blk, nvt_blk;
1067 uint32_t end_idx, nvt_idx;
1068
1069 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1070 return H_FUNCTION;
1071 }
1072
1073 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1074 return H_PARAMETER;
1075 }
1076
1077 /*
1078 * H_STATE should be returned if a H_INT_RESET is in progress.
1079 * This is not needed when running the emulation under QEMU
1080 */
1081
1082 if (spapr_xive_priority_is_reserved(priority)) {
1083 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1084 " is reserved\n", priority);
1085 return H_P3;
1086 }
1087
1088 /*
1089 * Validate that "target" is part of the list of threads allocated
1090 * to the partition. For that, find the END corresponding to the
1091 * target.
1092 */
1093
1094 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1095 return H_P2;
1096 }
1097
1098 assert(end_idx < xive->nr_ends);
1099 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1100
1101 switch (qsize) {
1102 case 12:
1103 case 16:
1104 case 21:
1105 case 24:
1106 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1107 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1108 " is not naturally aligned with %" HWADDR_PRIx "\n",
1109 qpage, (hwaddr)1 << qsize);
1110 return H_P4;
1111 }
1112 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1113 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1114 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1115 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1116 break;
1117 case 0:
1118 /* reset queue and disable queueing */
1119 spapr_xive_end_reset(&end);
1120 goto out;
1121
1122 default:
1123 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1124 qsize);
1125 return H_P5;
1126 }
1127
1128 if (qsize) {
1129 hwaddr plen = 1 << qsize;
1130 void *eq;
1131
1132 /*
1133 * Validate the guest EQ. We should also check that the queue
1134 * has been zeroed by the OS.
1135 */
1136 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1137 MEMTXATTRS_UNSPECIFIED);
1138 if (plen != 1 << qsize) {
1139 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1140 HWADDR_PRIx "\n", qpage);
1141 return H_P4;
1142 }
1143 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1144 }
1145
1146 /* "target" should have been validated above */
1147 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1148 g_assert_not_reached();
1149 }
1150
1151 /*
1152 * Ensure the priority and target are correctly set (they will not
1153 * be right after allocation)
1154 */
1155 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1156 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1157 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1158
1159 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1160 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1161 } else {
1162 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1163 }
1164
1165 /*
1166 * The generation bit for the END starts at 1 and The END page
1167 * offset counter starts at 0.
1168 */
1169 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1170 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1171 end.w0 |= cpu_to_be32(END_W0_VALID);
1172
1173 /*
1174 * TODO: issue syncs required to ensure all in-flight interrupts
1175 * are complete on the old END
1176 */
1177
1178 out:
1179 if (kvm_irqchip_in_kernel()) {
1180 Error *local_err = NULL;
1181
1182 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1183 if (local_err) {
1184 error_report_err(local_err);
1185 return H_HARDWARE;
1186 }
1187 }
1188
1189 /* Update END */
1190 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1191 return H_SUCCESS;
1192 }
1193
1194 /*
1195 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1196 * target and priority.
1197 *
1198 * Parameters:
1199 * Input:
1200 * - R4: "flags"
1201 * Bits 0-62: Reserved
1202 * Bit 63: Debug: Return debug data
1203 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1204 * "ibm,ppc-interrupt-gserver#s"
1205 * - R6: "priority" is a valid priority not in
1206 * "ibm,plat-res-int-priorities"
1207 *
1208 * Output:
1209 * - R4: "flags":
1210 * Bits 0-61: Reserved
1211 * Bit 62: The value of Event Queue Generation Number (g) per
1212 * the XIVE spec if "Debug" = 1
1213 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1214 * - R5: The logical real address of the start of the EQ
1215 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1216 * - R7: The value of Event Queue Offset Counter per XIVE spec
1217 * if "Debug" = 1, else 0
1218 *
1219 */
1220
1221 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1222
1223 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1224 SpaprMachineState *spapr,
1225 target_ulong opcode,
1226 target_ulong *args)
1227 {
1228 SpaprXive *xive = spapr->xive;
1229 target_ulong flags = args[0];
1230 target_ulong target = args[1];
1231 target_ulong priority = args[2];
1232 XiveEND *end;
1233 uint8_t end_blk;
1234 uint32_t end_idx;
1235
1236 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1237 return H_FUNCTION;
1238 }
1239
1240 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1241 return H_PARAMETER;
1242 }
1243
1244 /*
1245 * H_STATE should be returned if a H_INT_RESET is in progress.
1246 * This is not needed when running the emulation under QEMU
1247 */
1248
1249 if (spapr_xive_priority_is_reserved(priority)) {
1250 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1251 " is reserved\n", priority);
1252 return H_P3;
1253 }
1254
1255 /*
1256 * Validate that "target" is part of the list of threads allocated
1257 * to the partition. For that, find the END corresponding to the
1258 * target.
1259 */
1260 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1261 return H_P2;
1262 }
1263
1264 assert(end_idx < xive->nr_ends);
1265 end = &xive->endt[end_idx];
1266
1267 args[0] = 0;
1268 if (xive_end_is_notify(end)) {
1269 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1270 }
1271
1272 if (xive_end_is_enqueue(end)) {
1273 args[1] = xive_end_qaddr(end);
1274 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1275 } else {
1276 args[1] = 0;
1277 args[2] = 0;
1278 }
1279
1280 if (kvm_irqchip_in_kernel()) {
1281 Error *local_err = NULL;
1282
1283 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1284 if (local_err) {
1285 error_report_err(local_err);
1286 return H_HARDWARE;
1287 }
1288 }
1289
1290 /* TODO: do we need any locking on the END ? */
1291 if (flags & SPAPR_XIVE_END_DEBUG) {
1292 /* Load the event queue generation number into the return flags */
1293 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1294
1295 /* Load R7 with the event queue offset counter */
1296 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1297 } else {
1298 args[3] = 0;
1299 }
1300
1301 return H_SUCCESS;
1302 }
1303
1304 /*
1305 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1306 * reporting cache line pair for the calling thread. The reporting
1307 * cache lines will contain the OS interrupt context when the OS
1308 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1309 * interrupt. The reporting cache lines can be reset by inputting -1
1310 * in "reportingLine". Issuing the CI store byte without reporting
1311 * cache lines registered will result in the data not being accessible
1312 * to the OS.
1313 *
1314 * Parameters:
1315 * Input:
1316 * - R4: "flags"
1317 * Bits 0-63: Reserved
1318 * - R5: "reportingLine": The logical real address of the reporting cache
1319 * line pair
1320 *
1321 * Output:
1322 * - None
1323 */
1324 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1325 SpaprMachineState *spapr,
1326 target_ulong opcode,
1327 target_ulong *args)
1328 {
1329 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1330 return H_FUNCTION;
1331 }
1332
1333 /*
1334 * H_STATE should be returned if a H_INT_RESET is in progress.
1335 * This is not needed when running the emulation under QEMU
1336 */
1337
1338 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1339 return H_FUNCTION;
1340 }
1341
1342 /*
1343 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1344 * real address of the reporting cache line pair set for the input
1345 * "target". If no reporting cache line pair has been set, -1 is
1346 * returned.
1347 *
1348 * Parameters:
1349 * Input:
1350 * - R4: "flags"
1351 * Bits 0-63: Reserved
1352 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1353 * "ibm,ppc-interrupt-gserver#s"
1354 * - R6: "reportingLine": The logical real address of the reporting
1355 * cache line pair
1356 *
1357 * Output:
1358 * - R4: The logical real address of the reporting line if set, else -1
1359 */
1360 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1361 SpaprMachineState *spapr,
1362 target_ulong opcode,
1363 target_ulong *args)
1364 {
1365 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1366 return H_FUNCTION;
1367 }
1368
1369 /*
1370 * H_STATE should be returned if a H_INT_RESET is in progress.
1371 * This is not needed when running the emulation under QEMU
1372 */
1373
1374 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1375 return H_FUNCTION;
1376 }
1377
1378 /*
1379 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1380 * page for the input "lisn". This hcall is only supported for LISNs
1381 * that have the ESB hcall flag set to 1 when returned from hcall()
1382 * H_INT_GET_SOURCE_INFO.
1383 *
1384 * Parameters:
1385 * Input:
1386 * - R4: "flags"
1387 * Bits 0-62: Reserved
1388 * bit 63: Store: Store=1, store operation, else load operation
1389 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1390 * "ibm,xive-lisn-ranges" properties, or as returned by the
1391 * ibm,query-interrupt-source-number RTAS call, or as
1392 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1393 * - R6: "esbOffset" is the offset into the ESB page for the load or
1394 * store operation
1395 * - R7: "storeData" is the data to write for a store operation
1396 *
1397 * Output:
1398 * - R4: The value of the load if load operation, else -1
1399 */
1400
1401 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1402
1403 static target_ulong h_int_esb(PowerPCCPU *cpu,
1404 SpaprMachineState *spapr,
1405 target_ulong opcode,
1406 target_ulong *args)
1407 {
1408 SpaprXive *xive = spapr->xive;
1409 XiveEAS eas;
1410 target_ulong flags = args[0];
1411 target_ulong lisn = args[1];
1412 target_ulong offset = args[2];
1413 target_ulong data = args[3];
1414 hwaddr mmio_addr;
1415 XiveSource *xsrc = &xive->source;
1416
1417 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1418 return H_FUNCTION;
1419 }
1420
1421 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1422 return H_PARAMETER;
1423 }
1424
1425 if (lisn >= xive->nr_irqs) {
1426 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1427 lisn);
1428 return H_P2;
1429 }
1430
1431 eas = xive->eat[lisn];
1432 if (!xive_eas_is_valid(&eas)) {
1433 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1434 lisn);
1435 return H_P2;
1436 }
1437
1438 if (offset > (1ull << xsrc->esb_shift)) {
1439 return H_P3;
1440 }
1441
1442 if (kvm_irqchip_in_kernel()) {
1443 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1444 flags & SPAPR_XIVE_ESB_STORE);
1445 } else {
1446 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1447
1448 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1449 (flags & SPAPR_XIVE_ESB_STORE))) {
1450 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1451 HWADDR_PRIx "\n", mmio_addr);
1452 return H_HARDWARE;
1453 }
1454 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1455 }
1456 return H_SUCCESS;
1457 }
1458
1459 /*
1460 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1461 * ensure any in flight events for the input lisn are in the event
1462 * queue.
1463 *
1464 * Parameters:
1465 * Input:
1466 * - R4: "flags"
1467 * Bits 0-63: Reserved
1468 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1469 * "ibm,xive-lisn-ranges" properties, or as returned by the
1470 * ibm,query-interrupt-source-number RTAS call, or as
1471 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1472 *
1473 * Output:
1474 * - None
1475 */
1476 static target_ulong h_int_sync(PowerPCCPU *cpu,
1477 SpaprMachineState *spapr,
1478 target_ulong opcode,
1479 target_ulong *args)
1480 {
1481 SpaprXive *xive = spapr->xive;
1482 XiveEAS eas;
1483 target_ulong flags = args[0];
1484 target_ulong lisn = args[1];
1485
1486 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1487 return H_FUNCTION;
1488 }
1489
1490 if (flags) {
1491 return H_PARAMETER;
1492 }
1493
1494 if (lisn >= xive->nr_irqs) {
1495 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1496 lisn);
1497 return H_P2;
1498 }
1499
1500 eas = xive->eat[lisn];
1501 if (!xive_eas_is_valid(&eas)) {
1502 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1503 lisn);
1504 return H_P2;
1505 }
1506
1507 /*
1508 * H_STATE should be returned if a H_INT_RESET is in progress.
1509 * This is not needed when running the emulation under QEMU
1510 */
1511
1512 /*
1513 * This is not real hardware. Nothing to be done unless when
1514 * under KVM
1515 */
1516
1517 if (kvm_irqchip_in_kernel()) {
1518 Error *local_err = NULL;
1519
1520 kvmppc_xive_sync_source(xive, lisn, &local_err);
1521 if (local_err) {
1522 error_report_err(local_err);
1523 return H_HARDWARE;
1524 }
1525 }
1526 return H_SUCCESS;
1527 }
1528
1529 /*
1530 * The H_INT_RESET hcall() is used to reset all of the partition's
1531 * interrupt exploitation structures to their initial state. This
1532 * means losing all previously set interrupt state set via
1533 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1534 *
1535 * Parameters:
1536 * Input:
1537 * - R4: "flags"
1538 * Bits 0-63: Reserved
1539 *
1540 * Output:
1541 * - None
1542 */
1543 static target_ulong h_int_reset(PowerPCCPU *cpu,
1544 SpaprMachineState *spapr,
1545 target_ulong opcode,
1546 target_ulong *args)
1547 {
1548 SpaprXive *xive = spapr->xive;
1549 target_ulong flags = args[0];
1550
1551 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1552 return H_FUNCTION;
1553 }
1554
1555 if (flags) {
1556 return H_PARAMETER;
1557 }
1558
1559 device_reset(DEVICE(xive));
1560
1561 if (kvm_irqchip_in_kernel()) {
1562 Error *local_err = NULL;
1563
1564 kvmppc_xive_reset(xive, &local_err);
1565 if (local_err) {
1566 error_report_err(local_err);
1567 return H_HARDWARE;
1568 }
1569 }
1570 return H_SUCCESS;
1571 }
1572
1573 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1574 {
1575 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1576 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1577 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1578 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1579 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1580 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1581 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1582 h_int_set_os_reporting_line);
1583 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1584 h_int_get_os_reporting_line);
1585 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1586 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1587 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1588 }
1589
1590 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1591 uint32_t phandle)
1592 {
1593 SpaprXive *xive = spapr->xive;
1594 int node;
1595 uint64_t timas[2 * 2];
1596 /* Interrupt number ranges for the IPIs */
1597 uint32_t lisn_ranges[] = {
1598 cpu_to_be32(0),
1599 cpu_to_be32(nr_servers),
1600 };
1601 /*
1602 * EQ size - the sizes of pages supported by the system 4K, 64K,
1603 * 2M, 16M. We only advertise 64K for the moment.
1604 */
1605 uint32_t eq_sizes[] = {
1606 cpu_to_be32(16), /* 64K */
1607 };
1608 /*
1609 * The following array is in sync with the reserved priorities
1610 * defined by the 'spapr_xive_priority_is_reserved' routine.
1611 */
1612 uint32_t plat_res_int_priorities[] = {
1613 cpu_to_be32(7), /* start */
1614 cpu_to_be32(0xf8), /* count */
1615 };
1616
1617 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1618 timas[0] = cpu_to_be64(xive->tm_base +
1619 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1620 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1621 timas[2] = cpu_to_be64(xive->tm_base +
1622 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1623 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1624
1625 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1626
1627 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1628 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1629
1630 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1631 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1632 sizeof(eq_sizes)));
1633 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1634 sizeof(lisn_ranges)));
1635
1636 /* For Linux to link the LSIs to the interrupt controller. */
1637 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1638 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1639
1640 /* For SLOF */
1641 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1642 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1643
1644 /*
1645 * The "ibm,plat-res-int-priorities" property defines the priority
1646 * ranges reserved by the hypervisor
1647 */
1648 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1649 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
1650 }