]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive_kvm.c
configure / meson: Move check for linux/btrfs.h to meson.build
[mirror_qemu.git] / hw / intc / spapr_xive_kvm.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23
24 #include <sys/ioctl.h>
25
26 /*
27 * Helpers for CPU hotplug
28 *
29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
30 */
31 typedef struct KVMEnabledCPU {
32 unsigned long vcpu_id;
33 QLIST_ENTRY(KVMEnabledCPU) node;
34 } KVMEnabledCPU;
35
36 static QLIST_HEAD(, KVMEnabledCPU)
37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
38
39 static bool kvm_cpu_is_enabled(CPUState *cs)
40 {
41 KVMEnabledCPU *enabled_cpu;
42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
43
44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
45 if (enabled_cpu->vcpu_id == vcpu_id) {
46 return true;
47 }
48 }
49 return false;
50 }
51
52 static void kvm_cpu_enable(CPUState *cs)
53 {
54 KVMEnabledCPU *enabled_cpu;
55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
56
57 enabled_cpu = g_malloc(sizeof(*enabled_cpu));
58 enabled_cpu->vcpu_id = vcpu_id;
59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
60 }
61
62 static void kvm_cpu_disable_all(void)
63 {
64 KVMEnabledCPU *enabled_cpu, *next;
65
66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
67 QLIST_REMOVE(enabled_cpu, node);
68 g_free(enabled_cpu);
69 }
70 }
71
72 /*
73 * XIVE Thread Interrupt Management context (KVM)
74 */
75
76 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
77 {
78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
79 uint64_t state[2];
80 int ret;
81
82 assert(xive->fd != -1);
83
84 /* word0 and word1 of the OS ring. */
85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
86
87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
88 if (ret != 0) {
89 error_setg_errno(errp, -ret,
90 "XIVE: could not restore KVM state of CPU %ld",
91 kvm_arch_vcpu_id(tctx->cs));
92 return ret;
93 }
94
95 return 0;
96 }
97
98 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
99 {
100 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
101 uint64_t state[2] = { 0 };
102 int ret;
103
104 assert(xive->fd != -1);
105
106 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
107 if (ret != 0) {
108 error_setg_errno(errp, -ret,
109 "XIVE: could not capture KVM state of CPU %ld",
110 kvm_arch_vcpu_id(tctx->cs));
111 return ret;
112 }
113
114 /* word0 and word1 of the OS ring. */
115 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
116
117 return 0;
118 }
119
120 typedef struct {
121 XiveTCTX *tctx;
122 Error **errp;
123 int ret;
124 } XiveCpuGetState;
125
126 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
127 run_on_cpu_data arg)
128 {
129 XiveCpuGetState *s = arg.host_ptr;
130
131 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
132 }
133
134 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
135 {
136 XiveCpuGetState s = {
137 .tctx = tctx,
138 .errp = errp,
139 };
140
141 /*
142 * Kick the vCPU to make sure they are available for the KVM ioctl.
143 */
144 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
145 RUN_ON_CPU_HOST_PTR(&s));
146
147 return s.ret;
148 }
149
150 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
151 {
152 ERRP_GUARD();
153 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
154 unsigned long vcpu_id;
155 int ret;
156
157 assert(xive->fd != -1);
158
159 /* Check if CPU was hot unplugged and replugged. */
160 if (kvm_cpu_is_enabled(tctx->cs)) {
161 return 0;
162 }
163
164 vcpu_id = kvm_arch_vcpu_id(tctx->cs);
165
166 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
167 vcpu_id, 0);
168 if (ret < 0) {
169 error_setg_errno(errp, -ret,
170 "XIVE: unable to connect CPU%ld to KVM device",
171 vcpu_id);
172 if (ret == -ENOSPC) {
173 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
174 MACHINE(qdev_get_machine())->smp.max_cpus);
175 }
176 return ret;
177 }
178
179 kvm_cpu_enable(tctx->cs);
180 return 0;
181 }
182
183 /*
184 * XIVE Interrupt Source (KVM)
185 */
186
187 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
188 Error **errp)
189 {
190 uint32_t end_idx;
191 uint32_t end_blk;
192 uint8_t priority;
193 uint32_t server;
194 bool masked;
195 uint32_t eisn;
196 uint64_t kvm_src;
197
198 assert(xive_eas_is_valid(eas));
199
200 end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
201 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
202 eisn = xive_get_field64(EAS_END_DATA, eas->w);
203 masked = xive_eas_is_masked(eas);
204
205 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
206
207 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
208 KVM_XIVE_SOURCE_PRIORITY_MASK;
209 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
210 KVM_XIVE_SOURCE_SERVER_MASK;
211 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
212 KVM_XIVE_SOURCE_MASKED_MASK;
213 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
214 KVM_XIVE_SOURCE_EISN_MASK;
215
216 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
217 &kvm_src, true, errp);
218 }
219
220 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
221 {
222 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
223 NULL, true, errp);
224 }
225
226 /*
227 * At reset, the interrupt sources are simply created and MASKED. We
228 * only need to inform the KVM XIVE device about their type: LSI or
229 * MSI.
230 */
231 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
232 {
233 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
234 uint64_t state = 0;
235
236 assert(xive->fd != -1);
237
238 if (xive_source_irq_is_lsi(xsrc, srcno)) {
239 state |= KVM_XIVE_LEVEL_SENSITIVE;
240 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
241 state |= KVM_XIVE_LEVEL_ASSERTED;
242 }
243 }
244
245 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
246 true, errp);
247 }
248
249 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
250 {
251 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
252 int i;
253
254 for (i = 0; i < xsrc->nr_irqs; i++) {
255 int ret;
256
257 if (!xive_eas_is_valid(&xive->eat[i])) {
258 continue;
259 }
260
261 ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
262 if (ret < 0) {
263 return ret;
264 }
265 }
266
267 return 0;
268 }
269
270 /*
271 * This is used to perform the magic loads on the ESB pages, described
272 * in xive.h.
273 *
274 * Memory barriers should not be needed for loads (no store for now).
275 */
276 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
277 uint64_t data, bool write)
278 {
279 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
280 offset;
281
282 if (write) {
283 *addr = cpu_to_be64(data);
284 return -1;
285 } else {
286 /* Prevent the compiler from optimizing away the load */
287 volatile uint64_t value = be64_to_cpu(*addr);
288 return value;
289 }
290 }
291
292 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
293 {
294 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
295 }
296
297 static void xive_esb_trigger(XiveSource *xsrc, int srcno)
298 {
299 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
300
301 *addr = 0x0;
302 }
303
304 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
305 uint64_t data, bool write)
306 {
307 if (write) {
308 return xive_esb_rw(xsrc, srcno, offset, data, 1);
309 }
310
311 /*
312 * Special Load EOI handling for LSI sources. Q bit is never set
313 * and the interrupt should be re-triggered if the level is still
314 * asserted.
315 */
316 if (xive_source_irq_is_lsi(xsrc, srcno) &&
317 offset == XIVE_ESB_LOAD_EOI) {
318 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
319 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
320 xive_esb_trigger(xsrc, srcno);
321 }
322 return 0;
323 } else {
324 return xive_esb_rw(xsrc, srcno, offset, 0, 0);
325 }
326 }
327
328 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
329 {
330 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
331 int i;
332
333 for (i = 0; i < xsrc->nr_irqs; i++) {
334 uint8_t pq;
335
336 if (!xive_eas_is_valid(&xive->eat[i])) {
337 continue;
338 }
339
340 /* Perform a load without side effect to retrieve the PQ bits */
341 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
342
343 /* and save PQ locally */
344 xive_source_esb_set(xsrc, i, pq);
345 }
346 }
347
348 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
349 {
350 XiveSource *xsrc = opaque;
351
352 if (!xive_source_irq_is_lsi(xsrc, srcno)) {
353 if (!val) {
354 return;
355 }
356 } else {
357 if (val) {
358 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
359 } else {
360 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
361 }
362 }
363
364 xive_esb_trigger(xsrc, srcno);
365 }
366
367 /*
368 * sPAPR XIVE interrupt controller (KVM)
369 */
370 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
371 uint32_t end_idx, XiveEND *end,
372 Error **errp)
373 {
374 struct kvm_ppc_xive_eq kvm_eq = { 0 };
375 uint64_t kvm_eq_idx;
376 uint8_t priority;
377 uint32_t server;
378 int ret;
379
380 assert(xive_end_is_valid(end));
381
382 /* Encode the tuple (server, prio) as a KVM EQ index */
383 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
384
385 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
386 KVM_XIVE_EQ_PRIORITY_MASK;
387 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
388 KVM_XIVE_EQ_SERVER_MASK;
389
390 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
391 &kvm_eq, false, errp);
392 if (ret < 0) {
393 return ret;
394 }
395
396 /*
397 * The EQ index and toggle bit are updated by HW. These are the
398 * only fields from KVM we want to update QEMU with. The other END
399 * fields should already be in the QEMU END table.
400 */
401 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
402 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
403
404 return 0;
405 }
406
407 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
408 uint32_t end_idx, XiveEND *end,
409 Error **errp)
410 {
411 struct kvm_ppc_xive_eq kvm_eq = { 0 };
412 uint64_t kvm_eq_idx;
413 uint8_t priority;
414 uint32_t server;
415
416 /*
417 * Build the KVM state from the local END structure.
418 */
419
420 kvm_eq.flags = 0;
421 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
422 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
423 }
424
425 /*
426 * If the hcall is disabling the EQ, set the size and page address
427 * to zero. When migrating, only valid ENDs are taken into
428 * account.
429 */
430 if (xive_end_is_valid(end)) {
431 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
432 kvm_eq.qaddr = xive_end_qaddr(end);
433 /*
434 * The EQ toggle bit and index should only be relevant when
435 * restoring the EQ state
436 */
437 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
438 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
439 } else {
440 kvm_eq.qshift = 0;
441 kvm_eq.qaddr = 0;
442 }
443
444 /* Encode the tuple (server, prio) as a KVM EQ index */
445 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
446
447 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
448 KVM_XIVE_EQ_PRIORITY_MASK;
449 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
450 KVM_XIVE_EQ_SERVER_MASK;
451
452 return
453 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
454 &kvm_eq, true, errp);
455 }
456
457 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
458 {
459 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
460 NULL, true, errp);
461 }
462
463 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
464 {
465 int i;
466 int ret;
467
468 for (i = 0; i < xive->nr_ends; i++) {
469 if (!xive_end_is_valid(&xive->endt[i])) {
470 continue;
471 }
472
473 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
474 &xive->endt[i], errp);
475 if (ret < 0) {
476 return ret;
477 }
478 }
479
480 return 0;
481 }
482
483 /*
484 * The primary goal of the XIVE VM change handler is to mark the EQ
485 * pages dirty when all XIVE event notifications have stopped.
486 *
487 * Whenever the VM is stopped, the VM change handler sets the source
488 * PQs to PENDING to stop the flow of events and to possibly catch a
489 * triggered interrupt occuring while the VM is stopped. The previous
490 * state is saved in anticipation of a migration. The XIVE controller
491 * is then synced through KVM to flush any in-flight event
492 * notification and stabilize the EQs.
493 *
494 * At this stage, we can mark the EQ page dirty and let a migration
495 * sequence transfer the EQ pages to the destination, which is done
496 * just after the stop state.
497 *
498 * The previous configuration of the sources is restored when the VM
499 * runs again. If an interrupt was queued while the VM was stopped,
500 * simply generate a trigger.
501 */
502 static void kvmppc_xive_change_state_handler(void *opaque, int running,
503 RunState state)
504 {
505 SpaprXive *xive = opaque;
506 XiveSource *xsrc = &xive->source;
507 Error *local_err = NULL;
508 int i;
509
510 /*
511 * Restore the sources to their initial state. This is called when
512 * the VM resumes after a stop or a migration.
513 */
514 if (running) {
515 for (i = 0; i < xsrc->nr_irqs; i++) {
516 uint8_t pq;
517 uint8_t old_pq;
518
519 if (!xive_eas_is_valid(&xive->eat[i])) {
520 continue;
521 }
522
523 pq = xive_source_esb_get(xsrc, i);
524 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
525
526 /*
527 * An interrupt was queued while the VM was stopped,
528 * generate a trigger.
529 */
530 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
531 xive_esb_trigger(xsrc, i);
532 }
533 }
534
535 return;
536 }
537
538 /*
539 * Mask the sources, to stop the flow of event notifications, and
540 * save the PQs locally in the XiveSource object. The XiveSource
541 * state will be collected later on by its vmstate handler if a
542 * migration is in progress.
543 */
544 for (i = 0; i < xsrc->nr_irqs; i++) {
545 uint8_t pq;
546
547 if (!xive_eas_is_valid(&xive->eat[i])) {
548 continue;
549 }
550
551 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
552
553 /*
554 * PQ is set to PENDING to possibly catch a triggered
555 * interrupt occuring while the VM is stopped (hotplug event
556 * for instance) .
557 */
558 if (pq != XIVE_ESB_OFF) {
559 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
560 }
561 xive_source_esb_set(xsrc, i, pq);
562 }
563
564 /*
565 * Sync the XIVE controller in KVM, to flush in-flight event
566 * notification that should be enqueued in the EQs and mark the
567 * XIVE EQ pages dirty to collect all updates.
568 */
569 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
570 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
571 if (local_err) {
572 error_report_err(local_err);
573 return;
574 }
575 }
576
577 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
578 {
579 assert(xive->fd != -1);
580
581 /*
582 * When the VM is stopped, the sources are masked and the previous
583 * state is saved in anticipation of a migration. We should not
584 * synchronize the source state in that case else we will override
585 * the saved state.
586 */
587 if (runstate_is_running()) {
588 kvmppc_xive_source_get_state(&xive->source);
589 }
590
591 /* EAT: there is no extra state to query from KVM */
592
593 /* ENDT */
594 kvmppc_xive_get_queues(xive, errp);
595 }
596
597 /*
598 * The SpaprXive 'pre_save' method is called by the vmstate handler of
599 * the SpaprXive model, after the XIVE controller is synced in the VM
600 * change handler.
601 */
602 int kvmppc_xive_pre_save(SpaprXive *xive)
603 {
604 Error *local_err = NULL;
605 int ret;
606
607 assert(xive->fd != -1);
608
609 /* EAT: there is no extra state to query from KVM */
610
611 /* ENDT */
612 ret = kvmppc_xive_get_queues(xive, &local_err);
613 if (ret < 0) {
614 error_report_err(local_err);
615 return ret;
616 }
617
618 return 0;
619 }
620
621 /*
622 * The SpaprXive 'post_load' method is not called by a vmstate
623 * handler. It is called at the sPAPR machine level at the end of the
624 * migration sequence by the sPAPR IRQ backend 'post_load' method,
625 * when all XIVE states have been transferred and loaded.
626 */
627 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
628 {
629 Error *local_err = NULL;
630 CPUState *cs;
631 int i;
632 int ret;
633
634 /* The KVM XIVE device should be in use */
635 assert(xive->fd != -1);
636
637 /* Restore the ENDT first. The targetting depends on it. */
638 for (i = 0; i < xive->nr_ends; i++) {
639 if (!xive_end_is_valid(&xive->endt[i])) {
640 continue;
641 }
642
643 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
644 &xive->endt[i], &local_err);
645 if (ret < 0) {
646 goto fail;
647 }
648 }
649
650 /* Restore the EAT */
651 for (i = 0; i < xive->nr_irqs; i++) {
652 if (!xive_eas_is_valid(&xive->eat[i])) {
653 continue;
654 }
655
656 /*
657 * We can only restore the source config if the source has been
658 * previously set in KVM. Since we don't do that for all interrupts
659 * at reset time anymore, let's do it now.
660 */
661 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
662 if (ret < 0) {
663 goto fail;
664 }
665
666 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
667 if (ret < 0) {
668 goto fail;
669 }
670 }
671
672 /*
673 * Restore the thread interrupt contexts of initial CPUs.
674 *
675 * The context of hotplugged CPUs is restored later, by the
676 * 'post_load' handler of the XiveTCTX model because they are not
677 * available at the time the SpaprXive 'post_load' method is
678 * called. We can not restore the context of all CPUs in the
679 * 'post_load' handler of XiveTCTX because the machine is not
680 * necessarily connected to the KVM device at that time.
681 */
682 CPU_FOREACH(cs) {
683 PowerPCCPU *cpu = POWERPC_CPU(cs);
684
685 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
686 if (ret < 0) {
687 goto fail;
688 }
689 }
690
691 /* The source states will be restored when the machine starts running */
692 return 0;
693
694 fail:
695 error_report_err(local_err);
696 return ret;
697 }
698
699 /* Returns MAP_FAILED on error and sets errno */
700 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
701 Error **errp)
702 {
703 void *addr;
704 uint32_t page_shift = 16; /* TODO: fix page_shift */
705
706 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
707 pgoff << page_shift);
708 if (addr == MAP_FAILED) {
709 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
710 }
711
712 return addr;
713 }
714
715 /*
716 * All the XIVE memory regions are now backed by mappings from the KVM
717 * XIVE device.
718 */
719 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
720 Error **errp)
721 {
722 SpaprXive *xive = SPAPR_XIVE(intc);
723 XiveSource *xsrc = &xive->source;
724 size_t esb_len = xive_source_esb_len(xsrc);
725 size_t tima_len = 4ull << TM_SHIFT;
726 CPUState *cs;
727 int fd;
728 void *addr;
729 int ret;
730
731 /*
732 * The KVM XIVE device already in use. This is the case when
733 * rebooting under the XIVE-only interrupt mode.
734 */
735 if (xive->fd != -1) {
736 return 0;
737 }
738
739 if (!kvmppc_has_cap_xive()) {
740 error_setg(errp, "IRQ_XIVE capability must be present for KVM");
741 return -1;
742 }
743
744 /* First, create the KVM XIVE device */
745 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
746 if (fd < 0) {
747 error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
748 return -1;
749 }
750 xive->fd = fd;
751
752 /* Tell KVM about the # of VCPUs we may have */
753 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
754 KVM_DEV_XIVE_NR_SERVERS)) {
755 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
756 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
757 errp);
758 if (ret < 0) {
759 goto fail;
760 }
761 }
762
763 /*
764 * 1. Source ESB pages - KVM mapping
765 */
766 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
767 if (addr == MAP_FAILED) {
768 goto fail;
769 }
770 xsrc->esb_mmap = addr;
771
772 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
773 "xive.esb-kvm", esb_len, xsrc->esb_mmap);
774 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
775 &xsrc->esb_mmio_kvm, 1);
776
777 /*
778 * 2. END ESB pages (No KVM support yet)
779 */
780
781 /*
782 * 3. TIMA pages - KVM mapping
783 */
784 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
785 if (addr == MAP_FAILED) {
786 goto fail;
787 }
788 xive->tm_mmap = addr;
789
790 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
791 "xive.tima", tima_len, xive->tm_mmap);
792 memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
793 &xive->tm_mmio_kvm, 1);
794
795 xive->change = qemu_add_vm_change_state_handler(
796 kvmppc_xive_change_state_handler, xive);
797
798 /* Connect the presenters to the initial VCPUs of the machine */
799 CPU_FOREACH(cs) {
800 PowerPCCPU *cpu = POWERPC_CPU(cs);
801
802 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
803 if (ret < 0) {
804 goto fail;
805 }
806 }
807
808 /* Update the KVM sources */
809 ret = kvmppc_xive_source_reset(xsrc, errp);
810 if (ret < 0) {
811 goto fail;
812 }
813
814 kvm_kernel_irqchip = true;
815 kvm_msi_via_irqfd_allowed = true;
816 kvm_gsi_direct_mapping = true;
817 return 0;
818
819 fail:
820 kvmppc_xive_disconnect(intc);
821 return -1;
822 }
823
824 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
825 {
826 SpaprXive *xive = SPAPR_XIVE(intc);
827 XiveSource *xsrc;
828 size_t esb_len;
829
830 assert(xive->fd != -1);
831
832 /* Clear the KVM mapping */
833 xsrc = &xive->source;
834 esb_len = xive_source_esb_len(xsrc);
835
836 if (xsrc->esb_mmap) {
837 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
838 object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
839 munmap(xsrc->esb_mmap, esb_len);
840 xsrc->esb_mmap = NULL;
841 }
842
843 if (xive->tm_mmap) {
844 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
845 object_unparent(OBJECT(&xive->tm_mmio_kvm));
846 munmap(xive->tm_mmap, 4ull << TM_SHIFT);
847 xive->tm_mmap = NULL;
848 }
849
850 /*
851 * When the KVM device fd is closed, the KVM device is destroyed
852 * and removed from the list of devices of the VM. The VCPU
853 * presenters are also detached from the device.
854 */
855 close(xive->fd);
856 xive->fd = -1;
857
858 kvm_kernel_irqchip = false;
859 kvm_msi_via_irqfd_allowed = false;
860 kvm_gsi_direct_mapping = false;
861
862 /* Clear the local list of presenter (hotplug) */
863 kvm_cpu_disable_all();
864
865 /* VM Change state handler is not needed anymore */
866 if (xive->change) {
867 qemu_del_vm_change_state_handler(xive->change);
868 xive->change = NULL;
869 }
870 }