]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive_kvm.c
sysemu: Let VMChangeStateHandler take boolean 'running' argument
[mirror_qemu.git] / hw / intc / spapr_xive_kvm.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23 #include "trace.h"
24
25 #include <sys/ioctl.h>
26
27 /*
28 * Helpers for CPU hotplug
29 *
30 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
31 */
32 typedef struct KVMEnabledCPU {
33 unsigned long vcpu_id;
34 QLIST_ENTRY(KVMEnabledCPU) node;
35 } KVMEnabledCPU;
36
37 static QLIST_HEAD(, KVMEnabledCPU)
38 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
39
40 static bool kvm_cpu_is_enabled(CPUState *cs)
41 {
42 KVMEnabledCPU *enabled_cpu;
43 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
44
45 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
46 if (enabled_cpu->vcpu_id == vcpu_id) {
47 return true;
48 }
49 }
50 return false;
51 }
52
53 static void kvm_cpu_enable(CPUState *cs)
54 {
55 KVMEnabledCPU *enabled_cpu;
56 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
57
58 enabled_cpu = g_malloc(sizeof(*enabled_cpu));
59 enabled_cpu->vcpu_id = vcpu_id;
60 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
61 }
62
63 static void kvm_cpu_disable_all(void)
64 {
65 KVMEnabledCPU *enabled_cpu, *next;
66
67 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
68 QLIST_REMOVE(enabled_cpu, node);
69 g_free(enabled_cpu);
70 }
71 }
72
73 /*
74 * XIVE Thread Interrupt Management context (KVM)
75 */
76
77 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
78 {
79 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
80 uint64_t state[2];
81 int ret;
82
83 assert(xive->fd != -1);
84
85 /* word0 and word1 of the OS ring. */
86 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
87
88 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
89 if (ret != 0) {
90 error_setg_errno(errp, -ret,
91 "XIVE: could not restore KVM state of CPU %ld",
92 kvm_arch_vcpu_id(tctx->cs));
93 return ret;
94 }
95
96 return 0;
97 }
98
99 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
100 {
101 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
102 uint64_t state[2] = { 0 };
103 int ret;
104
105 assert(xive->fd != -1);
106
107 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
108 if (ret != 0) {
109 error_setg_errno(errp, -ret,
110 "XIVE: could not capture KVM state of CPU %ld",
111 kvm_arch_vcpu_id(tctx->cs));
112 return ret;
113 }
114
115 /* word0 and word1 of the OS ring. */
116 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
117
118 return 0;
119 }
120
121 typedef struct {
122 XiveTCTX *tctx;
123 Error **errp;
124 int ret;
125 } XiveCpuGetState;
126
127 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
128 run_on_cpu_data arg)
129 {
130 XiveCpuGetState *s = arg.host_ptr;
131
132 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
133 }
134
135 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
136 {
137 XiveCpuGetState s = {
138 .tctx = tctx,
139 .errp = errp,
140 };
141
142 /*
143 * Kick the vCPU to make sure they are available for the KVM ioctl.
144 */
145 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
146 RUN_ON_CPU_HOST_PTR(&s));
147
148 return s.ret;
149 }
150
151 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
152 {
153 ERRP_GUARD();
154 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
155 unsigned long vcpu_id;
156 int ret;
157
158 assert(xive->fd != -1);
159
160 /* Check if CPU was hot unplugged and replugged. */
161 if (kvm_cpu_is_enabled(tctx->cs)) {
162 return 0;
163 }
164
165 vcpu_id = kvm_arch_vcpu_id(tctx->cs);
166
167 trace_kvm_xive_cpu_connect(vcpu_id);
168
169 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
170 vcpu_id, 0);
171 if (ret < 0) {
172 error_setg_errno(errp, -ret,
173 "XIVE: unable to connect CPU%ld to KVM device",
174 vcpu_id);
175 if (ret == -ENOSPC) {
176 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
177 MACHINE(qdev_get_machine())->smp.max_cpus);
178 }
179 return ret;
180 }
181
182 kvm_cpu_enable(tctx->cs);
183 return 0;
184 }
185
186 /*
187 * XIVE Interrupt Source (KVM)
188 */
189
190 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
191 Error **errp)
192 {
193 uint32_t end_idx;
194 uint32_t end_blk;
195 uint8_t priority;
196 uint32_t server;
197 bool masked;
198 uint32_t eisn;
199 uint64_t kvm_src;
200
201 assert(xive_eas_is_valid(eas));
202
203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
205 eisn = xive_get_field64(EAS_END_DATA, eas->w);
206 masked = xive_eas_is_masked(eas);
207
208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
209
210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
211 KVM_XIVE_SOURCE_PRIORITY_MASK;
212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
213 KVM_XIVE_SOURCE_SERVER_MASK;
214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
215 KVM_XIVE_SOURCE_MASKED_MASK;
216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
217 KVM_XIVE_SOURCE_EISN_MASK;
218
219 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
220 &kvm_src, true, errp);
221 }
222
223 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
224 {
225 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
226 NULL, true, errp);
227 }
228
229 /*
230 * At reset, the interrupt sources are simply created and MASKED. We
231 * only need to inform the KVM XIVE device about their type: LSI or
232 * MSI.
233 */
234 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
235 {
236 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
237 uint64_t state = 0;
238
239 assert(xive->fd != -1);
240
241 if (xive_source_irq_is_lsi(xsrc, srcno)) {
242 state |= KVM_XIVE_LEVEL_SENSITIVE;
243 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
244 state |= KVM_XIVE_LEVEL_ASSERTED;
245 }
246 }
247
248 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
249 true, errp);
250 }
251
252 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
253 {
254 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
255 int i;
256
257 for (i = 0; i < xsrc->nr_irqs; i++) {
258 int ret;
259
260 if (!xive_eas_is_valid(&xive->eat[i])) {
261 continue;
262 }
263
264 ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
265 if (ret < 0) {
266 return ret;
267 }
268 }
269
270 return 0;
271 }
272
273 /*
274 * This is used to perform the magic loads on the ESB pages, described
275 * in xive.h.
276 *
277 * Memory barriers should not be needed for loads (no store for now).
278 */
279 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
280 uint64_t data, bool write)
281 {
282 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
283 offset;
284
285 if (write) {
286 *addr = cpu_to_be64(data);
287 return -1;
288 } else {
289 /* Prevent the compiler from optimizing away the load */
290 volatile uint64_t value = be64_to_cpu(*addr);
291 return value;
292 }
293 }
294
295 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
296 {
297 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
298 }
299
300 static void xive_esb_trigger(XiveSource *xsrc, int srcno)
301 {
302 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
303
304 *addr = 0x0;
305 }
306
307 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
308 uint64_t data, bool write)
309 {
310 if (write) {
311 return xive_esb_rw(xsrc, srcno, offset, data, 1);
312 }
313
314 trace_kvm_xive_source_reset(srcno);
315
316 /*
317 * Special Load EOI handling for LSI sources. Q bit is never set
318 * and the interrupt should be re-triggered if the level is still
319 * asserted.
320 */
321 if (xive_source_irq_is_lsi(xsrc, srcno) &&
322 offset == XIVE_ESB_LOAD_EOI) {
323 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
324 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
325 xive_esb_trigger(xsrc, srcno);
326 }
327 return 0;
328 } else {
329 return xive_esb_rw(xsrc, srcno, offset, 0, 0);
330 }
331 }
332
333 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
334 {
335 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
336 int i;
337
338 for (i = 0; i < xsrc->nr_irqs; i++) {
339 uint8_t pq;
340
341 if (!xive_eas_is_valid(&xive->eat[i])) {
342 continue;
343 }
344
345 /* Perform a load without side effect to retrieve the PQ bits */
346 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
347
348 /* and save PQ locally */
349 xive_source_esb_set(xsrc, i, pq);
350 }
351 }
352
353 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
354 {
355 XiveSource *xsrc = opaque;
356
357 if (!xive_source_irq_is_lsi(xsrc, srcno)) {
358 if (!val) {
359 return;
360 }
361 } else {
362 if (val) {
363 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
364 } else {
365 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
366 }
367 }
368
369 xive_esb_trigger(xsrc, srcno);
370 }
371
372 /*
373 * sPAPR XIVE interrupt controller (KVM)
374 */
375 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
376 uint32_t end_idx, XiveEND *end,
377 Error **errp)
378 {
379 struct kvm_ppc_xive_eq kvm_eq = { 0 };
380 uint64_t kvm_eq_idx;
381 uint8_t priority;
382 uint32_t server;
383 int ret;
384
385 assert(xive_end_is_valid(end));
386
387 /* Encode the tuple (server, prio) as a KVM EQ index */
388 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
389
390 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
391 KVM_XIVE_EQ_PRIORITY_MASK;
392 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
393 KVM_XIVE_EQ_SERVER_MASK;
394
395 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
396 &kvm_eq, false, errp);
397 if (ret < 0) {
398 return ret;
399 }
400
401 /*
402 * The EQ index and toggle bit are updated by HW. These are the
403 * only fields from KVM we want to update QEMU with. The other END
404 * fields should already be in the QEMU END table.
405 */
406 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
407 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
408
409 return 0;
410 }
411
412 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
413 uint32_t end_idx, XiveEND *end,
414 Error **errp)
415 {
416 struct kvm_ppc_xive_eq kvm_eq = { 0 };
417 uint64_t kvm_eq_idx;
418 uint8_t priority;
419 uint32_t server;
420
421 /*
422 * Build the KVM state from the local END structure.
423 */
424
425 kvm_eq.flags = 0;
426 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
427 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
428 }
429
430 /*
431 * If the hcall is disabling the EQ, set the size and page address
432 * to zero. When migrating, only valid ENDs are taken into
433 * account.
434 */
435 if (xive_end_is_valid(end)) {
436 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
437 kvm_eq.qaddr = xive_end_qaddr(end);
438 /*
439 * The EQ toggle bit and index should only be relevant when
440 * restoring the EQ state
441 */
442 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
443 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
444 } else {
445 kvm_eq.qshift = 0;
446 kvm_eq.qaddr = 0;
447 }
448
449 /* Encode the tuple (server, prio) as a KVM EQ index */
450 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
451
452 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
453 KVM_XIVE_EQ_PRIORITY_MASK;
454 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
455 KVM_XIVE_EQ_SERVER_MASK;
456
457 return
458 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
459 &kvm_eq, true, errp);
460 }
461
462 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
463 {
464 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
465 NULL, true, errp);
466 }
467
468 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
469 {
470 int i;
471 int ret;
472
473 for (i = 0; i < xive->nr_ends; i++) {
474 if (!xive_end_is_valid(&xive->endt[i])) {
475 continue;
476 }
477
478 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
479 &xive->endt[i], errp);
480 if (ret < 0) {
481 return ret;
482 }
483 }
484
485 return 0;
486 }
487
488 /*
489 * The primary goal of the XIVE VM change handler is to mark the EQ
490 * pages dirty when all XIVE event notifications have stopped.
491 *
492 * Whenever the VM is stopped, the VM change handler sets the source
493 * PQs to PENDING to stop the flow of events and to possibly catch a
494 * triggered interrupt occuring while the VM is stopped. The previous
495 * state is saved in anticipation of a migration. The XIVE controller
496 * is then synced through KVM to flush any in-flight event
497 * notification and stabilize the EQs.
498 *
499 * At this stage, we can mark the EQ page dirty and let a migration
500 * sequence transfer the EQ pages to the destination, which is done
501 * just after the stop state.
502 *
503 * The previous configuration of the sources is restored when the VM
504 * runs again. If an interrupt was queued while the VM was stopped,
505 * simply generate a trigger.
506 */
507 static void kvmppc_xive_change_state_handler(void *opaque, bool running,
508 RunState state)
509 {
510 SpaprXive *xive = opaque;
511 XiveSource *xsrc = &xive->source;
512 Error *local_err = NULL;
513 int i;
514
515 /*
516 * Restore the sources to their initial state. This is called when
517 * the VM resumes after a stop or a migration.
518 */
519 if (running) {
520 for (i = 0; i < xsrc->nr_irqs; i++) {
521 uint8_t pq;
522 uint8_t old_pq;
523
524 if (!xive_eas_is_valid(&xive->eat[i])) {
525 continue;
526 }
527
528 pq = xive_source_esb_get(xsrc, i);
529 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
530
531 /*
532 * An interrupt was queued while the VM was stopped,
533 * generate a trigger.
534 */
535 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
536 xive_esb_trigger(xsrc, i);
537 }
538 }
539
540 return;
541 }
542
543 /*
544 * Mask the sources, to stop the flow of event notifications, and
545 * save the PQs locally in the XiveSource object. The XiveSource
546 * state will be collected later on by its vmstate handler if a
547 * migration is in progress.
548 */
549 for (i = 0; i < xsrc->nr_irqs; i++) {
550 uint8_t pq;
551
552 if (!xive_eas_is_valid(&xive->eat[i])) {
553 continue;
554 }
555
556 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
557
558 /*
559 * PQ is set to PENDING to possibly catch a triggered
560 * interrupt occuring while the VM is stopped (hotplug event
561 * for instance) .
562 */
563 if (pq != XIVE_ESB_OFF) {
564 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
565 }
566 xive_source_esb_set(xsrc, i, pq);
567 }
568
569 /*
570 * Sync the XIVE controller in KVM, to flush in-flight event
571 * notification that should be enqueued in the EQs and mark the
572 * XIVE EQ pages dirty to collect all updates.
573 */
574 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
575 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
576 if (local_err) {
577 error_report_err(local_err);
578 return;
579 }
580 }
581
582 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
583 {
584 assert(xive->fd != -1);
585
586 /*
587 * When the VM is stopped, the sources are masked and the previous
588 * state is saved in anticipation of a migration. We should not
589 * synchronize the source state in that case else we will override
590 * the saved state.
591 */
592 if (runstate_is_running()) {
593 kvmppc_xive_source_get_state(&xive->source);
594 }
595
596 /* EAT: there is no extra state to query from KVM */
597
598 /* ENDT */
599 kvmppc_xive_get_queues(xive, errp);
600 }
601
602 /*
603 * The SpaprXive 'pre_save' method is called by the vmstate handler of
604 * the SpaprXive model, after the XIVE controller is synced in the VM
605 * change handler.
606 */
607 int kvmppc_xive_pre_save(SpaprXive *xive)
608 {
609 Error *local_err = NULL;
610 int ret;
611
612 assert(xive->fd != -1);
613
614 /* EAT: there is no extra state to query from KVM */
615
616 /* ENDT */
617 ret = kvmppc_xive_get_queues(xive, &local_err);
618 if (ret < 0) {
619 error_report_err(local_err);
620 return ret;
621 }
622
623 return 0;
624 }
625
626 /*
627 * The SpaprXive 'post_load' method is not called by a vmstate
628 * handler. It is called at the sPAPR machine level at the end of the
629 * migration sequence by the sPAPR IRQ backend 'post_load' method,
630 * when all XIVE states have been transferred and loaded.
631 */
632 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
633 {
634 Error *local_err = NULL;
635 CPUState *cs;
636 int i;
637 int ret;
638
639 /* The KVM XIVE device should be in use */
640 assert(xive->fd != -1);
641
642 /* Restore the ENDT first. The targetting depends on it. */
643 for (i = 0; i < xive->nr_ends; i++) {
644 if (!xive_end_is_valid(&xive->endt[i])) {
645 continue;
646 }
647
648 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
649 &xive->endt[i], &local_err);
650 if (ret < 0) {
651 goto fail;
652 }
653 }
654
655 /* Restore the EAT */
656 for (i = 0; i < xive->nr_irqs; i++) {
657 if (!xive_eas_is_valid(&xive->eat[i])) {
658 continue;
659 }
660
661 /*
662 * We can only restore the source config if the source has been
663 * previously set in KVM. Since we don't do that for all interrupts
664 * at reset time anymore, let's do it now.
665 */
666 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
667 if (ret < 0) {
668 goto fail;
669 }
670
671 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
672 if (ret < 0) {
673 goto fail;
674 }
675 }
676
677 /*
678 * Restore the thread interrupt contexts of initial CPUs.
679 *
680 * The context of hotplugged CPUs is restored later, by the
681 * 'post_load' handler of the XiveTCTX model because they are not
682 * available at the time the SpaprXive 'post_load' method is
683 * called. We can not restore the context of all CPUs in the
684 * 'post_load' handler of XiveTCTX because the machine is not
685 * necessarily connected to the KVM device at that time.
686 */
687 CPU_FOREACH(cs) {
688 PowerPCCPU *cpu = POWERPC_CPU(cs);
689
690 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
691 if (ret < 0) {
692 goto fail;
693 }
694 }
695
696 /* The source states will be restored when the machine starts running */
697 return 0;
698
699 fail:
700 error_report_err(local_err);
701 return ret;
702 }
703
704 /* Returns MAP_FAILED on error and sets errno */
705 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
706 Error **errp)
707 {
708 void *addr;
709 uint32_t page_shift = 16; /* TODO: fix page_shift */
710
711 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
712 pgoff << page_shift);
713 if (addr == MAP_FAILED) {
714 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
715 }
716
717 return addr;
718 }
719
720 /*
721 * All the XIVE memory regions are now backed by mappings from the KVM
722 * XIVE device.
723 */
724 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
725 Error **errp)
726 {
727 SpaprXive *xive = SPAPR_XIVE(intc);
728 XiveSource *xsrc = &xive->source;
729 size_t esb_len = xive_source_esb_len(xsrc);
730 size_t tima_len = 4ull << TM_SHIFT;
731 CPUState *cs;
732 int fd;
733 void *addr;
734 int ret;
735
736 /*
737 * The KVM XIVE device already in use. This is the case when
738 * rebooting under the XIVE-only interrupt mode.
739 */
740 if (xive->fd != -1) {
741 return 0;
742 }
743
744 if (!kvmppc_has_cap_xive()) {
745 error_setg(errp, "IRQ_XIVE capability must be present for KVM");
746 return -1;
747 }
748
749 /* First, create the KVM XIVE device */
750 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
751 if (fd < 0) {
752 error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
753 return -1;
754 }
755 xive->fd = fd;
756
757 /* Tell KVM about the # of VCPUs we may have */
758 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
759 KVM_DEV_XIVE_NR_SERVERS)) {
760 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
761 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
762 errp);
763 if (ret < 0) {
764 goto fail;
765 }
766 }
767
768 /*
769 * 1. Source ESB pages - KVM mapping
770 */
771 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
772 if (addr == MAP_FAILED) {
773 goto fail;
774 }
775 xsrc->esb_mmap = addr;
776
777 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
778 "xive.esb-kvm", esb_len, xsrc->esb_mmap);
779 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
780 &xsrc->esb_mmio_kvm, 1);
781
782 /*
783 * 2. END ESB pages (No KVM support yet)
784 */
785
786 /*
787 * 3. TIMA pages - KVM mapping
788 */
789 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
790 if (addr == MAP_FAILED) {
791 goto fail;
792 }
793 xive->tm_mmap = addr;
794
795 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
796 "xive.tima", tima_len, xive->tm_mmap);
797 memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
798 &xive->tm_mmio_kvm, 1);
799
800 xive->change = qemu_add_vm_change_state_handler(
801 kvmppc_xive_change_state_handler, xive);
802
803 /* Connect the presenters to the initial VCPUs of the machine */
804 CPU_FOREACH(cs) {
805 PowerPCCPU *cpu = POWERPC_CPU(cs);
806
807 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
808 if (ret < 0) {
809 goto fail;
810 }
811 }
812
813 /* Update the KVM sources */
814 ret = kvmppc_xive_source_reset(xsrc, errp);
815 if (ret < 0) {
816 goto fail;
817 }
818
819 kvm_kernel_irqchip = true;
820 kvm_msi_via_irqfd_allowed = true;
821 kvm_gsi_direct_mapping = true;
822 return 0;
823
824 fail:
825 kvmppc_xive_disconnect(intc);
826 return -1;
827 }
828
829 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
830 {
831 SpaprXive *xive = SPAPR_XIVE(intc);
832 XiveSource *xsrc;
833 size_t esb_len;
834
835 assert(xive->fd != -1);
836
837 /* Clear the KVM mapping */
838 xsrc = &xive->source;
839 esb_len = xive_source_esb_len(xsrc);
840
841 if (xsrc->esb_mmap) {
842 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
843 object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
844 munmap(xsrc->esb_mmap, esb_len);
845 xsrc->esb_mmap = NULL;
846 }
847
848 if (xive->tm_mmap) {
849 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
850 object_unparent(OBJECT(&xive->tm_mmio_kvm));
851 munmap(xive->tm_mmap, 4ull << TM_SHIFT);
852 xive->tm_mmap = NULL;
853 }
854
855 /*
856 * When the KVM device fd is closed, the KVM device is destroyed
857 * and removed from the list of devices of the VM. The VCPU
858 * presenters are also detached from the device.
859 */
860 close(xive->fd);
861 xive->fd = -1;
862
863 kvm_kernel_irqchip = false;
864 kvm_msi_via_irqfd_allowed = false;
865 kvm_gsi_direct_mapping = false;
866
867 /* Clear the local list of presenter (hotplug) */
868 kvm_cpu_disable_all();
869
870 /* VM Change state handler is not needed anymore */
871 if (xive->change) {
872 qemu_del_vm_change_state_handler(xive->change);
873 xive->change = NULL;
874 }
875 }