]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive_kvm.c
spapr/xive: Add source status helpers
[mirror_qemu.git] / hw / intc / spapr_xive_kvm.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23 #include "trace.h"
24
25 #include <sys/ioctl.h>
26
27 /*
28 * Helpers for CPU hotplug
29 *
30 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
31 */
32 typedef struct KVMEnabledCPU {
33 unsigned long vcpu_id;
34 QLIST_ENTRY(KVMEnabledCPU) node;
35 } KVMEnabledCPU;
36
37 static QLIST_HEAD(, KVMEnabledCPU)
38 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
39
40 static bool kvm_cpu_is_enabled(CPUState *cs)
41 {
42 KVMEnabledCPU *enabled_cpu;
43 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
44
45 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
46 if (enabled_cpu->vcpu_id == vcpu_id) {
47 return true;
48 }
49 }
50 return false;
51 }
52
53 static void kvm_cpu_enable(CPUState *cs)
54 {
55 KVMEnabledCPU *enabled_cpu;
56 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
57
58 enabled_cpu = g_malloc(sizeof(*enabled_cpu));
59 enabled_cpu->vcpu_id = vcpu_id;
60 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
61 }
62
63 static void kvm_cpu_disable_all(void)
64 {
65 KVMEnabledCPU *enabled_cpu, *next;
66
67 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
68 QLIST_REMOVE(enabled_cpu, node);
69 g_free(enabled_cpu);
70 }
71 }
72
73 /*
74 * XIVE Thread Interrupt Management context (KVM)
75 */
76
77 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
78 {
79 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
80 uint64_t state[2];
81 int ret;
82
83 assert(xive->fd != -1);
84
85 /* word0 and word1 of the OS ring. */
86 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
87
88 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
89 if (ret != 0) {
90 error_setg_errno(errp, -ret,
91 "XIVE: could not restore KVM state of CPU %ld",
92 kvm_arch_vcpu_id(tctx->cs));
93 return ret;
94 }
95
96 return 0;
97 }
98
99 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
100 {
101 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
102 uint64_t state[2] = { 0 };
103 int ret;
104
105 assert(xive->fd != -1);
106
107 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
108 if (ret != 0) {
109 error_setg_errno(errp, -ret,
110 "XIVE: could not capture KVM state of CPU %ld",
111 kvm_arch_vcpu_id(tctx->cs));
112 return ret;
113 }
114
115 /* word0 and word1 of the OS ring. */
116 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
117
118 return 0;
119 }
120
121 typedef struct {
122 XiveTCTX *tctx;
123 Error **errp;
124 int ret;
125 } XiveCpuGetState;
126
127 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
128 run_on_cpu_data arg)
129 {
130 XiveCpuGetState *s = arg.host_ptr;
131
132 s->ret = kvmppc_xive_cpu_get_state(s->tctx, s->errp);
133 }
134
135 int kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
136 {
137 XiveCpuGetState s = {
138 .tctx = tctx,
139 .errp = errp,
140 };
141
142 /*
143 * Kick the vCPU to make sure they are available for the KVM ioctl.
144 */
145 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
146 RUN_ON_CPU_HOST_PTR(&s));
147
148 return s.ret;
149 }
150
151 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
152 {
153 ERRP_GUARD();
154 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
155 unsigned long vcpu_id;
156 int ret;
157
158 assert(xive->fd != -1);
159
160 /* Check if CPU was hot unplugged and replugged. */
161 if (kvm_cpu_is_enabled(tctx->cs)) {
162 return 0;
163 }
164
165 vcpu_id = kvm_arch_vcpu_id(tctx->cs);
166
167 trace_kvm_xive_cpu_connect(vcpu_id);
168
169 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
170 vcpu_id, 0);
171 if (ret < 0) {
172 error_setg_errno(errp, -ret,
173 "XIVE: unable to connect CPU%ld to KVM device",
174 vcpu_id);
175 if (ret == -ENOSPC) {
176 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
177 MACHINE(qdev_get_machine())->smp.max_cpus);
178 }
179 return ret;
180 }
181
182 kvm_cpu_enable(tctx->cs);
183 return 0;
184 }
185
186 /*
187 * XIVE Interrupt Source (KVM)
188 */
189
190 int kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
191 Error **errp)
192 {
193 uint32_t end_idx;
194 uint32_t end_blk;
195 uint8_t priority;
196 uint32_t server;
197 bool masked;
198 uint32_t eisn;
199 uint64_t kvm_src;
200
201 assert(xive_eas_is_valid(eas));
202
203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
205 eisn = xive_get_field64(EAS_END_DATA, eas->w);
206 masked = xive_eas_is_masked(eas);
207
208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
209
210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
211 KVM_XIVE_SOURCE_PRIORITY_MASK;
212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
213 KVM_XIVE_SOURCE_SERVER_MASK;
214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
215 KVM_XIVE_SOURCE_MASKED_MASK;
216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
217 KVM_XIVE_SOURCE_EISN_MASK;
218
219 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
220 &kvm_src, true, errp);
221 }
222
223 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
224 {
225 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
226 NULL, true, errp);
227 }
228
229 /*
230 * At reset, the interrupt sources are simply created and MASKED. We
231 * only need to inform the KVM XIVE device about their type: LSI or
232 * MSI.
233 */
234 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
235 {
236 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
237 uint64_t state = 0;
238
239 trace_kvm_xive_source_reset(srcno);
240
241 assert(xive->fd != -1);
242
243 if (xive_source_irq_is_lsi(xsrc, srcno)) {
244 state |= KVM_XIVE_LEVEL_SENSITIVE;
245 if (xive_source_is_asserted(xsrc, srcno)) {
246 state |= KVM_XIVE_LEVEL_ASSERTED;
247 }
248 }
249
250 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
251 true, errp);
252 }
253
254 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
255 {
256 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
257 int i;
258
259 for (i = 0; i < xsrc->nr_irqs; i++) {
260 int ret;
261
262 if (!xive_eas_is_valid(&xive->eat[i])) {
263 continue;
264 }
265
266 ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
267 if (ret < 0) {
268 return ret;
269 }
270 }
271
272 return 0;
273 }
274
275 /*
276 * This is used to perform the magic loads on the ESB pages, described
277 * in xive.h.
278 *
279 * Memory barriers should not be needed for loads (no store for now).
280 */
281 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
282 uint64_t data, bool write)
283 {
284 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
285 offset;
286
287 if (write) {
288 *addr = cpu_to_be64(data);
289 return -1;
290 } else {
291 /* Prevent the compiler from optimizing away the load */
292 volatile uint64_t value = be64_to_cpu(*addr);
293 return value;
294 }
295 }
296
297 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
298 {
299 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
300 }
301
302 static void kvmppc_xive_esb_trigger(XiveSource *xsrc, int srcno)
303 {
304 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
305
306 *addr = 0x0;
307 }
308
309 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
310 uint64_t data, bool write)
311 {
312 if (write) {
313 return xive_esb_rw(xsrc, srcno, offset, data, 1);
314 }
315
316 /*
317 * Special Load EOI handling for LSI sources. Q bit is never set
318 * and the interrupt should be re-triggered if the level is still
319 * asserted.
320 */
321 if (xive_source_irq_is_lsi(xsrc, srcno) &&
322 offset == XIVE_ESB_LOAD_EOI) {
323 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
324 if (xive_source_is_asserted(xsrc, srcno)) {
325 kvmppc_xive_esb_trigger(xsrc, srcno);
326 }
327 return 0;
328 } else {
329 return xive_esb_rw(xsrc, srcno, offset, 0, 0);
330 }
331 }
332
333 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
334 {
335 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
336 int i;
337
338 for (i = 0; i < xsrc->nr_irqs; i++) {
339 uint8_t pq;
340
341 if (!xive_eas_is_valid(&xive->eat[i])) {
342 continue;
343 }
344
345 /* Perform a load without side effect to retrieve the PQ bits */
346 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
347
348 /* and save PQ locally */
349 xive_source_esb_set(xsrc, i, pq);
350 }
351 }
352
353 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
354 {
355 XiveSource *xsrc = opaque;
356
357 if (!xive_source_irq_is_lsi(xsrc, srcno)) {
358 if (!val) {
359 return;
360 }
361 } else {
362 xive_source_set_asserted(xsrc, srcno, val);
363 }
364
365 kvmppc_xive_esb_trigger(xsrc, srcno);
366 }
367
368 /*
369 * sPAPR XIVE interrupt controller (KVM)
370 */
371 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
372 uint32_t end_idx, XiveEND *end,
373 Error **errp)
374 {
375 struct kvm_ppc_xive_eq kvm_eq = { 0 };
376 uint64_t kvm_eq_idx;
377 uint8_t priority;
378 uint32_t server;
379 int ret;
380
381 assert(xive_end_is_valid(end));
382
383 /* Encode the tuple (server, prio) as a KVM EQ index */
384 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
385
386 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
387 KVM_XIVE_EQ_PRIORITY_MASK;
388 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
389 KVM_XIVE_EQ_SERVER_MASK;
390
391 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
392 &kvm_eq, false, errp);
393 if (ret < 0) {
394 return ret;
395 }
396
397 /*
398 * The EQ index and toggle bit are updated by HW. These are the
399 * only fields from KVM we want to update QEMU with. The other END
400 * fields should already be in the QEMU END table.
401 */
402 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
403 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
404
405 return 0;
406 }
407
408 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
409 uint32_t end_idx, XiveEND *end,
410 Error **errp)
411 {
412 struct kvm_ppc_xive_eq kvm_eq = { 0 };
413 uint64_t kvm_eq_idx;
414 uint8_t priority;
415 uint32_t server;
416
417 /*
418 * Build the KVM state from the local END structure.
419 */
420
421 kvm_eq.flags = 0;
422 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
423 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
424 }
425
426 /*
427 * If the hcall is disabling the EQ, set the size and page address
428 * to zero. When migrating, only valid ENDs are taken into
429 * account.
430 */
431 if (xive_end_is_valid(end)) {
432 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
433 kvm_eq.qaddr = xive_end_qaddr(end);
434 /*
435 * The EQ toggle bit and index should only be relevant when
436 * restoring the EQ state
437 */
438 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
439 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
440 } else {
441 kvm_eq.qshift = 0;
442 kvm_eq.qaddr = 0;
443 }
444
445 /* Encode the tuple (server, prio) as a KVM EQ index */
446 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
447
448 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
449 KVM_XIVE_EQ_PRIORITY_MASK;
450 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
451 KVM_XIVE_EQ_SERVER_MASK;
452
453 return
454 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
455 &kvm_eq, true, errp);
456 }
457
458 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
459 {
460 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
461 NULL, true, errp);
462 }
463
464 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
465 {
466 int i;
467 int ret;
468
469 for (i = 0; i < xive->nr_ends; i++) {
470 if (!xive_end_is_valid(&xive->endt[i])) {
471 continue;
472 }
473
474 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
475 &xive->endt[i], errp);
476 if (ret < 0) {
477 return ret;
478 }
479 }
480
481 return 0;
482 }
483
484 /*
485 * The primary goal of the XIVE VM change handler is to mark the EQ
486 * pages dirty when all XIVE event notifications have stopped.
487 *
488 * Whenever the VM is stopped, the VM change handler sets the source
489 * PQs to PENDING to stop the flow of events and to possibly catch a
490 * triggered interrupt occuring while the VM is stopped. The previous
491 * state is saved in anticipation of a migration. The XIVE controller
492 * is then synced through KVM to flush any in-flight event
493 * notification and stabilize the EQs.
494 *
495 * At this stage, we can mark the EQ page dirty and let a migration
496 * sequence transfer the EQ pages to the destination, which is done
497 * just after the stop state.
498 *
499 * The previous configuration of the sources is restored when the VM
500 * runs again. If an interrupt was queued while the VM was stopped,
501 * simply generate a trigger.
502 */
503 static void kvmppc_xive_change_state_handler(void *opaque, bool running,
504 RunState state)
505 {
506 SpaprXive *xive = opaque;
507 XiveSource *xsrc = &xive->source;
508 Error *local_err = NULL;
509 int i;
510
511 /*
512 * Restore the sources to their initial state. This is called when
513 * the VM resumes after a stop or a migration.
514 */
515 if (running) {
516 for (i = 0; i < xsrc->nr_irqs; i++) {
517 uint8_t pq;
518 uint8_t old_pq;
519
520 if (!xive_eas_is_valid(&xive->eat[i])) {
521 continue;
522 }
523
524 pq = xive_source_esb_get(xsrc, i);
525 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
526
527 /*
528 * An interrupt was queued while the VM was stopped,
529 * generate a trigger.
530 */
531 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
532 kvmppc_xive_esb_trigger(xsrc, i);
533 }
534 }
535
536 return;
537 }
538
539 /*
540 * Mask the sources, to stop the flow of event notifications, and
541 * save the PQs locally in the XiveSource object. The XiveSource
542 * state will be collected later on by its vmstate handler if a
543 * migration is in progress.
544 */
545 for (i = 0; i < xsrc->nr_irqs; i++) {
546 uint8_t pq;
547
548 if (!xive_eas_is_valid(&xive->eat[i])) {
549 continue;
550 }
551
552 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
553
554 /*
555 * PQ is set to PENDING to possibly catch a triggered
556 * interrupt occuring while the VM is stopped (hotplug event
557 * for instance) .
558 */
559 if (pq != XIVE_ESB_OFF) {
560 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
561 }
562 xive_source_esb_set(xsrc, i, pq);
563 }
564
565 /*
566 * Sync the XIVE controller in KVM, to flush in-flight event
567 * notification that should be enqueued in the EQs and mark the
568 * XIVE EQ pages dirty to collect all updates.
569 */
570 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
571 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
572 if (local_err) {
573 error_report_err(local_err);
574 return;
575 }
576 }
577
578 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
579 {
580 assert(xive->fd != -1);
581
582 /*
583 * When the VM is stopped, the sources are masked and the previous
584 * state is saved in anticipation of a migration. We should not
585 * synchronize the source state in that case else we will override
586 * the saved state.
587 */
588 if (runstate_is_running()) {
589 kvmppc_xive_source_get_state(&xive->source);
590 }
591
592 /* EAT: there is no extra state to query from KVM */
593
594 /* ENDT */
595 kvmppc_xive_get_queues(xive, errp);
596 }
597
598 /*
599 * The SpaprXive 'pre_save' method is called by the vmstate handler of
600 * the SpaprXive model, after the XIVE controller is synced in the VM
601 * change handler.
602 */
603 int kvmppc_xive_pre_save(SpaprXive *xive)
604 {
605 Error *local_err = NULL;
606 int ret;
607
608 assert(xive->fd != -1);
609
610 /* EAT: there is no extra state to query from KVM */
611
612 /* ENDT */
613 ret = kvmppc_xive_get_queues(xive, &local_err);
614 if (ret < 0) {
615 error_report_err(local_err);
616 return ret;
617 }
618
619 return 0;
620 }
621
622 /*
623 * The SpaprXive 'post_load' method is not called by a vmstate
624 * handler. It is called at the sPAPR machine level at the end of the
625 * migration sequence by the sPAPR IRQ backend 'post_load' method,
626 * when all XIVE states have been transferred and loaded.
627 */
628 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
629 {
630 Error *local_err = NULL;
631 CPUState *cs;
632 int i;
633 int ret;
634
635 /* The KVM XIVE device should be in use */
636 assert(xive->fd != -1);
637
638 /* Restore the ENDT first. The targetting depends on it. */
639 for (i = 0; i < xive->nr_ends; i++) {
640 if (!xive_end_is_valid(&xive->endt[i])) {
641 continue;
642 }
643
644 ret = kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
645 &xive->endt[i], &local_err);
646 if (ret < 0) {
647 goto fail;
648 }
649 }
650
651 /* Restore the EAT */
652 for (i = 0; i < xive->nr_irqs; i++) {
653 if (!xive_eas_is_valid(&xive->eat[i])) {
654 continue;
655 }
656
657 /*
658 * We can only restore the source config if the source has been
659 * previously set in KVM. Since we don't do that for all interrupts
660 * at reset time anymore, let's do it now.
661 */
662 ret = kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
663 if (ret < 0) {
664 goto fail;
665 }
666
667 ret = kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
668 if (ret < 0) {
669 goto fail;
670 }
671 }
672
673 /*
674 * Restore the thread interrupt contexts of initial CPUs.
675 *
676 * The context of hotplugged CPUs is restored later, by the
677 * 'post_load' handler of the XiveTCTX model because they are not
678 * available at the time the SpaprXive 'post_load' method is
679 * called. We can not restore the context of all CPUs in the
680 * 'post_load' handler of XiveTCTX because the machine is not
681 * necessarily connected to the KVM device at that time.
682 */
683 CPU_FOREACH(cs) {
684 PowerPCCPU *cpu = POWERPC_CPU(cs);
685
686 ret = kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
687 if (ret < 0) {
688 goto fail;
689 }
690 }
691
692 /* The source states will be restored when the machine starts running */
693 return 0;
694
695 fail:
696 error_report_err(local_err);
697 return ret;
698 }
699
700 /* Returns MAP_FAILED on error and sets errno */
701 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
702 Error **errp)
703 {
704 void *addr;
705 uint32_t page_shift = 16; /* TODO: fix page_shift */
706
707 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
708 pgoff << page_shift);
709 if (addr == MAP_FAILED) {
710 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
711 }
712
713 return addr;
714 }
715
716 /*
717 * All the XIVE memory regions are now backed by mappings from the KVM
718 * XIVE device.
719 */
720 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
721 Error **errp)
722 {
723 SpaprXive *xive = SPAPR_XIVE(intc);
724 XiveSource *xsrc = &xive->source;
725 size_t esb_len = xive_source_esb_len(xsrc);
726 size_t tima_len = 4ull << TM_SHIFT;
727 CPUState *cs;
728 int fd;
729 void *addr;
730 int ret;
731
732 /*
733 * The KVM XIVE device already in use. This is the case when
734 * rebooting under the XIVE-only interrupt mode.
735 */
736 if (xive->fd != -1) {
737 return 0;
738 }
739
740 if (!kvmppc_has_cap_xive()) {
741 error_setg(errp, "IRQ_XIVE capability must be present for KVM");
742 return -1;
743 }
744
745 /* First, create the KVM XIVE device */
746 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
747 if (fd < 0) {
748 error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
749 return -1;
750 }
751 xive->fd = fd;
752
753 /* Tell KVM about the # of VCPUs we may have */
754 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
755 KVM_DEV_XIVE_NR_SERVERS)) {
756 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
757 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
758 errp);
759 if (ret < 0) {
760 goto fail;
761 }
762 }
763
764 /*
765 * 1. Source ESB pages - KVM mapping
766 */
767 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len, errp);
768 if (addr == MAP_FAILED) {
769 goto fail;
770 }
771 xsrc->esb_mmap = addr;
772
773 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
774 "xive.esb-kvm", esb_len, xsrc->esb_mmap);
775 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
776 &xsrc->esb_mmio_kvm, 1);
777
778 /*
779 * 2. END ESB pages (No KVM support yet)
780 */
781
782 /*
783 * 3. TIMA pages - KVM mapping
784 */
785 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len, errp);
786 if (addr == MAP_FAILED) {
787 goto fail;
788 }
789 xive->tm_mmap = addr;
790
791 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
792 "xive.tima", tima_len, xive->tm_mmap);
793 memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
794 &xive->tm_mmio_kvm, 1);
795
796 xive->change = qemu_add_vm_change_state_handler(
797 kvmppc_xive_change_state_handler, xive);
798
799 /* Connect the presenters to the initial VCPUs of the machine */
800 CPU_FOREACH(cs) {
801 PowerPCCPU *cpu = POWERPC_CPU(cs);
802
803 ret = kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, errp);
804 if (ret < 0) {
805 goto fail;
806 }
807 }
808
809 /* Update the KVM sources */
810 ret = kvmppc_xive_source_reset(xsrc, errp);
811 if (ret < 0) {
812 goto fail;
813 }
814
815 kvm_kernel_irqchip = true;
816 kvm_msi_via_irqfd_allowed = true;
817 kvm_gsi_direct_mapping = true;
818 return 0;
819
820 fail:
821 kvmppc_xive_disconnect(intc);
822 return -1;
823 }
824
825 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
826 {
827 SpaprXive *xive = SPAPR_XIVE(intc);
828 XiveSource *xsrc;
829 size_t esb_len;
830
831 assert(xive->fd != -1);
832
833 /* Clear the KVM mapping */
834 xsrc = &xive->source;
835 esb_len = xive_source_esb_len(xsrc);
836
837 if (xsrc->esb_mmap) {
838 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
839 object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
840 munmap(xsrc->esb_mmap, esb_len);
841 xsrc->esb_mmap = NULL;
842 }
843
844 if (xive->tm_mmap) {
845 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
846 object_unparent(OBJECT(&xive->tm_mmio_kvm));
847 munmap(xive->tm_mmap, 4ull << TM_SHIFT);
848 xive->tm_mmap = NULL;
849 }
850
851 /*
852 * When the KVM device fd is closed, the KVM device is destroyed
853 * and removed from the list of devices of the VM. The VCPU
854 * presenters are also detached from the device.
855 */
856 close(xive->fd);
857 xive->fd = -1;
858
859 kvm_kernel_irqchip = false;
860 kvm_msi_via_irqfd_allowed = false;
861 kvm_gsi_direct_mapping = false;
862
863 /* Clear the local list of presenter (hotplug) */
864 kvm_cpu_disable_all();
865
866 /* VM Change state handler is not needed anymore */
867 if (xive->change) {
868 qemu_del_vm_change_state_handler(xive->change);
869 xive->change = NULL;
870 }
871 }