]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/spapr_xive_kvm.c
spapr/xive: Rework error handling in kvmppc_xive_get_queues()
[mirror_qemu.git] / hw / intc / spapr_xive_kvm.c
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2019, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/kvm.h"
17 #include "sysemu/runstate.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "kvm_ppc.h"
23
24 #include <sys/ioctl.h>
25
26 /*
27 * Helpers for CPU hotplug
28 *
29 * TODO: make a common KVMEnabledCPU layer for XICS and XIVE
30 */
31 typedef struct KVMEnabledCPU {
32 unsigned long vcpu_id;
33 QLIST_ENTRY(KVMEnabledCPU) node;
34 } KVMEnabledCPU;
35
36 static QLIST_HEAD(, KVMEnabledCPU)
37 kvm_enabled_cpus = QLIST_HEAD_INITIALIZER(&kvm_enabled_cpus);
38
39 static bool kvm_cpu_is_enabled(CPUState *cs)
40 {
41 KVMEnabledCPU *enabled_cpu;
42 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
43
44 QLIST_FOREACH(enabled_cpu, &kvm_enabled_cpus, node) {
45 if (enabled_cpu->vcpu_id == vcpu_id) {
46 return true;
47 }
48 }
49 return false;
50 }
51
52 static void kvm_cpu_enable(CPUState *cs)
53 {
54 KVMEnabledCPU *enabled_cpu;
55 unsigned long vcpu_id = kvm_arch_vcpu_id(cs);
56
57 enabled_cpu = g_malloc(sizeof(*enabled_cpu));
58 enabled_cpu->vcpu_id = vcpu_id;
59 QLIST_INSERT_HEAD(&kvm_enabled_cpus, enabled_cpu, node);
60 }
61
62 static void kvm_cpu_disable_all(void)
63 {
64 KVMEnabledCPU *enabled_cpu, *next;
65
66 QLIST_FOREACH_SAFE(enabled_cpu, &kvm_enabled_cpus, node, next) {
67 QLIST_REMOVE(enabled_cpu, node);
68 g_free(enabled_cpu);
69 }
70 }
71
72 /*
73 * XIVE Thread Interrupt Management context (KVM)
74 */
75
76 int kvmppc_xive_cpu_set_state(XiveTCTX *tctx, Error **errp)
77 {
78 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
79 uint64_t state[2];
80 int ret;
81
82 assert(xive->fd != -1);
83
84 /* word0 and word1 of the OS ring. */
85 state[0] = *((uint64_t *) &tctx->regs[TM_QW1_OS]);
86
87 ret = kvm_set_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
88 if (ret != 0) {
89 error_setg_errno(errp, -ret,
90 "XIVE: could not restore KVM state of CPU %ld",
91 kvm_arch_vcpu_id(tctx->cs));
92 return ret;
93 }
94
95 return 0;
96 }
97
98 int kvmppc_xive_cpu_get_state(XiveTCTX *tctx, Error **errp)
99 {
100 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
101 uint64_t state[2] = { 0 };
102 int ret;
103
104 assert(xive->fd != -1);
105
106 ret = kvm_get_one_reg(tctx->cs, KVM_REG_PPC_VP_STATE, state);
107 if (ret != 0) {
108 error_setg_errno(errp, -ret,
109 "XIVE: could not capture KVM state of CPU %ld",
110 kvm_arch_vcpu_id(tctx->cs));
111 return ret;
112 }
113
114 /* word0 and word1 of the OS ring. */
115 *((uint64_t *) &tctx->regs[TM_QW1_OS]) = state[0];
116
117 return 0;
118 }
119
120 typedef struct {
121 XiveTCTX *tctx;
122 Error *err;
123 } XiveCpuGetState;
124
125 static void kvmppc_xive_cpu_do_synchronize_state(CPUState *cpu,
126 run_on_cpu_data arg)
127 {
128 XiveCpuGetState *s = arg.host_ptr;
129
130 kvmppc_xive_cpu_get_state(s->tctx, &s->err);
131 }
132
133 void kvmppc_xive_cpu_synchronize_state(XiveTCTX *tctx, Error **errp)
134 {
135 XiveCpuGetState s = {
136 .tctx = tctx,
137 .err = NULL,
138 };
139
140 /*
141 * Kick the vCPU to make sure they are available for the KVM ioctl.
142 */
143 run_on_cpu(tctx->cs, kvmppc_xive_cpu_do_synchronize_state,
144 RUN_ON_CPU_HOST_PTR(&s));
145
146 if (s.err) {
147 error_propagate(errp, s.err);
148 return;
149 }
150 }
151
152 int kvmppc_xive_cpu_connect(XiveTCTX *tctx, Error **errp)
153 {
154 ERRP_GUARD();
155 SpaprXive *xive = SPAPR_XIVE(tctx->xptr);
156 unsigned long vcpu_id;
157 int ret;
158
159 assert(xive->fd != -1);
160
161 /* Check if CPU was hot unplugged and replugged. */
162 if (kvm_cpu_is_enabled(tctx->cs)) {
163 return 0;
164 }
165
166 vcpu_id = kvm_arch_vcpu_id(tctx->cs);
167
168 ret = kvm_vcpu_enable_cap(tctx->cs, KVM_CAP_PPC_IRQ_XIVE, 0, xive->fd,
169 vcpu_id, 0);
170 if (ret < 0) {
171 error_setg_errno(errp, -ret,
172 "XIVE: unable to connect CPU%ld to KVM device",
173 vcpu_id);
174 if (ret == -ENOSPC) {
175 error_append_hint(errp, "Try -smp maxcpus=N with N < %u\n",
176 MACHINE(qdev_get_machine())->smp.max_cpus);
177 }
178 return ret;
179 }
180
181 kvm_cpu_enable(tctx->cs);
182 return 0;
183 }
184
185 /*
186 * XIVE Interrupt Source (KVM)
187 */
188
189 void kvmppc_xive_set_source_config(SpaprXive *xive, uint32_t lisn, XiveEAS *eas,
190 Error **errp)
191 {
192 uint32_t end_idx;
193 uint32_t end_blk;
194 uint8_t priority;
195 uint32_t server;
196 bool masked;
197 uint32_t eisn;
198 uint64_t kvm_src;
199 Error *local_err = NULL;
200
201 assert(xive_eas_is_valid(eas));
202
203 end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
204 end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
205 eisn = xive_get_field64(EAS_END_DATA, eas->w);
206 masked = xive_eas_is_masked(eas);
207
208 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
209
210 kvm_src = priority << KVM_XIVE_SOURCE_PRIORITY_SHIFT &
211 KVM_XIVE_SOURCE_PRIORITY_MASK;
212 kvm_src |= server << KVM_XIVE_SOURCE_SERVER_SHIFT &
213 KVM_XIVE_SOURCE_SERVER_MASK;
214 kvm_src |= ((uint64_t) masked << KVM_XIVE_SOURCE_MASKED_SHIFT) &
215 KVM_XIVE_SOURCE_MASKED_MASK;
216 kvm_src |= ((uint64_t)eisn << KVM_XIVE_SOURCE_EISN_SHIFT) &
217 KVM_XIVE_SOURCE_EISN_MASK;
218
219 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_CONFIG, lisn,
220 &kvm_src, true, &local_err);
221 if (local_err) {
222 error_propagate(errp, local_err);
223 return;
224 }
225 }
226
227 void kvmppc_xive_sync_source(SpaprXive *xive, uint32_t lisn, Error **errp)
228 {
229 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE_SYNC, lisn,
230 NULL, true, errp);
231 }
232
233 /*
234 * At reset, the interrupt sources are simply created and MASKED. We
235 * only need to inform the KVM XIVE device about their type: LSI or
236 * MSI.
237 */
238 int kvmppc_xive_source_reset_one(XiveSource *xsrc, int srcno, Error **errp)
239 {
240 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
241 uint64_t state = 0;
242
243 assert(xive->fd != -1);
244
245 if (xive_source_irq_is_lsi(xsrc, srcno)) {
246 state |= KVM_XIVE_LEVEL_SENSITIVE;
247 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
248 state |= KVM_XIVE_LEVEL_ASSERTED;
249 }
250 }
251
252 return kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_SOURCE, srcno, &state,
253 true, errp);
254 }
255
256 static int kvmppc_xive_source_reset(XiveSource *xsrc, Error **errp)
257 {
258 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
259 int i;
260
261 for (i = 0; i < xsrc->nr_irqs; i++) {
262 int ret;
263
264 if (!xive_eas_is_valid(&xive->eat[i])) {
265 continue;
266 }
267
268 ret = kvmppc_xive_source_reset_one(xsrc, i, errp);
269 if (ret < 0) {
270 return ret;
271 }
272 }
273
274 return 0;
275 }
276
277 /*
278 * This is used to perform the magic loads on the ESB pages, described
279 * in xive.h.
280 *
281 * Memory barriers should not be needed for loads (no store for now).
282 */
283 static uint64_t xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
284 uint64_t data, bool write)
285 {
286 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_mgmt(xsrc, srcno) +
287 offset;
288
289 if (write) {
290 *addr = cpu_to_be64(data);
291 return -1;
292 } else {
293 /* Prevent the compiler from optimizing away the load */
294 volatile uint64_t value = be64_to_cpu(*addr);
295 return value;
296 }
297 }
298
299 static uint8_t xive_esb_read(XiveSource *xsrc, int srcno, uint32_t offset)
300 {
301 return xive_esb_rw(xsrc, srcno, offset, 0, 0) & 0x3;
302 }
303
304 static void xive_esb_trigger(XiveSource *xsrc, int srcno)
305 {
306 uint64_t *addr = xsrc->esb_mmap + xive_source_esb_page(xsrc, srcno);
307
308 *addr = 0x0;
309 }
310
311 uint64_t kvmppc_xive_esb_rw(XiveSource *xsrc, int srcno, uint32_t offset,
312 uint64_t data, bool write)
313 {
314 if (write) {
315 return xive_esb_rw(xsrc, srcno, offset, data, 1);
316 }
317
318 /*
319 * Special Load EOI handling for LSI sources. Q bit is never set
320 * and the interrupt should be re-triggered if the level is still
321 * asserted.
322 */
323 if (xive_source_irq_is_lsi(xsrc, srcno) &&
324 offset == XIVE_ESB_LOAD_EOI) {
325 xive_esb_read(xsrc, srcno, XIVE_ESB_SET_PQ_00);
326 if (xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
327 xive_esb_trigger(xsrc, srcno);
328 }
329 return 0;
330 } else {
331 return xive_esb_rw(xsrc, srcno, offset, 0, 0);
332 }
333 }
334
335 static void kvmppc_xive_source_get_state(XiveSource *xsrc)
336 {
337 SpaprXive *xive = SPAPR_XIVE(xsrc->xive);
338 int i;
339
340 for (i = 0; i < xsrc->nr_irqs; i++) {
341 uint8_t pq;
342
343 if (!xive_eas_is_valid(&xive->eat[i])) {
344 continue;
345 }
346
347 /* Perform a load without side effect to retrieve the PQ bits */
348 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
349
350 /* and save PQ locally */
351 xive_source_esb_set(xsrc, i, pq);
352 }
353 }
354
355 void kvmppc_xive_source_set_irq(void *opaque, int srcno, int val)
356 {
357 XiveSource *xsrc = opaque;
358
359 if (!xive_source_irq_is_lsi(xsrc, srcno)) {
360 if (!val) {
361 return;
362 }
363 } else {
364 if (val) {
365 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
366 } else {
367 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
368 }
369 }
370
371 xive_esb_trigger(xsrc, srcno);
372 }
373
374 /*
375 * sPAPR XIVE interrupt controller (KVM)
376 */
377 int kvmppc_xive_get_queue_config(SpaprXive *xive, uint8_t end_blk,
378 uint32_t end_idx, XiveEND *end,
379 Error **errp)
380 {
381 struct kvm_ppc_xive_eq kvm_eq = { 0 };
382 uint64_t kvm_eq_idx;
383 uint8_t priority;
384 uint32_t server;
385 int ret;
386
387 assert(xive_end_is_valid(end));
388
389 /* Encode the tuple (server, prio) as a KVM EQ index */
390 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
391
392 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
393 KVM_XIVE_EQ_PRIORITY_MASK;
394 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
395 KVM_XIVE_EQ_SERVER_MASK;
396
397 ret = kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
398 &kvm_eq, false, errp);
399 if (ret < 0) {
400 return ret;
401 }
402
403 /*
404 * The EQ index and toggle bit are updated by HW. These are the
405 * only fields from KVM we want to update QEMU with. The other END
406 * fields should already be in the QEMU END table.
407 */
408 end->w1 = xive_set_field32(END_W1_GENERATION, 0ul, kvm_eq.qtoggle) |
409 xive_set_field32(END_W1_PAGE_OFF, 0ul, kvm_eq.qindex);
410
411 return 0;
412 }
413
414 int kvmppc_xive_set_queue_config(SpaprXive *xive, uint8_t end_blk,
415 uint32_t end_idx, XiveEND *end,
416 Error **errp)
417 {
418 struct kvm_ppc_xive_eq kvm_eq = { 0 };
419 uint64_t kvm_eq_idx;
420 uint8_t priority;
421 uint32_t server;
422
423 /*
424 * Build the KVM state from the local END structure.
425 */
426
427 kvm_eq.flags = 0;
428 if (xive_get_field32(END_W0_UCOND_NOTIFY, end->w0)) {
429 kvm_eq.flags |= KVM_XIVE_EQ_ALWAYS_NOTIFY;
430 }
431
432 /*
433 * If the hcall is disabling the EQ, set the size and page address
434 * to zero. When migrating, only valid ENDs are taken into
435 * account.
436 */
437 if (xive_end_is_valid(end)) {
438 kvm_eq.qshift = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
439 kvm_eq.qaddr = xive_end_qaddr(end);
440 /*
441 * The EQ toggle bit and index should only be relevant when
442 * restoring the EQ state
443 */
444 kvm_eq.qtoggle = xive_get_field32(END_W1_GENERATION, end->w1);
445 kvm_eq.qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
446 } else {
447 kvm_eq.qshift = 0;
448 kvm_eq.qaddr = 0;
449 }
450
451 /* Encode the tuple (server, prio) as a KVM EQ index */
452 spapr_xive_end_to_target(end_blk, end_idx, &server, &priority);
453
454 kvm_eq_idx = priority << KVM_XIVE_EQ_PRIORITY_SHIFT &
455 KVM_XIVE_EQ_PRIORITY_MASK;
456 kvm_eq_idx |= server << KVM_XIVE_EQ_SERVER_SHIFT &
457 KVM_XIVE_EQ_SERVER_MASK;
458
459 return
460 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_EQ_CONFIG, kvm_eq_idx,
461 &kvm_eq, true, errp);
462 }
463
464 void kvmppc_xive_reset(SpaprXive *xive, Error **errp)
465 {
466 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL, KVM_DEV_XIVE_RESET,
467 NULL, true, errp);
468 }
469
470 static int kvmppc_xive_get_queues(SpaprXive *xive, Error **errp)
471 {
472 int i;
473 int ret;
474
475 for (i = 0; i < xive->nr_ends; i++) {
476 if (!xive_end_is_valid(&xive->endt[i])) {
477 continue;
478 }
479
480 ret = kvmppc_xive_get_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
481 &xive->endt[i], errp);
482 if (ret < 0) {
483 return ret;
484 }
485 }
486
487 return 0;
488 }
489
490 /*
491 * The primary goal of the XIVE VM change handler is to mark the EQ
492 * pages dirty when all XIVE event notifications have stopped.
493 *
494 * Whenever the VM is stopped, the VM change handler sets the source
495 * PQs to PENDING to stop the flow of events and to possibly catch a
496 * triggered interrupt occuring while the VM is stopped. The previous
497 * state is saved in anticipation of a migration. The XIVE controller
498 * is then synced through KVM to flush any in-flight event
499 * notification and stabilize the EQs.
500 *
501 * At this stage, we can mark the EQ page dirty and let a migration
502 * sequence transfer the EQ pages to the destination, which is done
503 * just after the stop state.
504 *
505 * The previous configuration of the sources is restored when the VM
506 * runs again. If an interrupt was queued while the VM was stopped,
507 * simply generate a trigger.
508 */
509 static void kvmppc_xive_change_state_handler(void *opaque, int running,
510 RunState state)
511 {
512 SpaprXive *xive = opaque;
513 XiveSource *xsrc = &xive->source;
514 Error *local_err = NULL;
515 int i;
516
517 /*
518 * Restore the sources to their initial state. This is called when
519 * the VM resumes after a stop or a migration.
520 */
521 if (running) {
522 for (i = 0; i < xsrc->nr_irqs; i++) {
523 uint8_t pq;
524 uint8_t old_pq;
525
526 if (!xive_eas_is_valid(&xive->eat[i])) {
527 continue;
528 }
529
530 pq = xive_source_esb_get(xsrc, i);
531 old_pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_00 + (pq << 8));
532
533 /*
534 * An interrupt was queued while the VM was stopped,
535 * generate a trigger.
536 */
537 if (pq == XIVE_ESB_RESET && old_pq == XIVE_ESB_QUEUED) {
538 xive_esb_trigger(xsrc, i);
539 }
540 }
541
542 return;
543 }
544
545 /*
546 * Mask the sources, to stop the flow of event notifications, and
547 * save the PQs locally in the XiveSource object. The XiveSource
548 * state will be collected later on by its vmstate handler if a
549 * migration is in progress.
550 */
551 for (i = 0; i < xsrc->nr_irqs; i++) {
552 uint8_t pq;
553
554 if (!xive_eas_is_valid(&xive->eat[i])) {
555 continue;
556 }
557
558 pq = xive_esb_read(xsrc, i, XIVE_ESB_GET);
559
560 /*
561 * PQ is set to PENDING to possibly catch a triggered
562 * interrupt occuring while the VM is stopped (hotplug event
563 * for instance) .
564 */
565 if (pq != XIVE_ESB_OFF) {
566 pq = xive_esb_read(xsrc, i, XIVE_ESB_SET_PQ_10);
567 }
568 xive_source_esb_set(xsrc, i, pq);
569 }
570
571 /*
572 * Sync the XIVE controller in KVM, to flush in-flight event
573 * notification that should be enqueued in the EQs and mark the
574 * XIVE EQ pages dirty to collect all updates.
575 */
576 kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
577 KVM_DEV_XIVE_EQ_SYNC, NULL, true, &local_err);
578 if (local_err) {
579 error_report_err(local_err);
580 return;
581 }
582 }
583
584 void kvmppc_xive_synchronize_state(SpaprXive *xive, Error **errp)
585 {
586 assert(xive->fd != -1);
587
588 /*
589 * When the VM is stopped, the sources are masked and the previous
590 * state is saved in anticipation of a migration. We should not
591 * synchronize the source state in that case else we will override
592 * the saved state.
593 */
594 if (runstate_is_running()) {
595 kvmppc_xive_source_get_state(&xive->source);
596 }
597
598 /* EAT: there is no extra state to query from KVM */
599
600 /* ENDT */
601 kvmppc_xive_get_queues(xive, errp);
602 }
603
604 /*
605 * The SpaprXive 'pre_save' method is called by the vmstate handler of
606 * the SpaprXive model, after the XIVE controller is synced in the VM
607 * change handler.
608 */
609 int kvmppc_xive_pre_save(SpaprXive *xive)
610 {
611 Error *local_err = NULL;
612
613 assert(xive->fd != -1);
614
615 /* EAT: there is no extra state to query from KVM */
616
617 /* ENDT */
618 kvmppc_xive_get_queues(xive, &local_err);
619 if (local_err) {
620 error_report_err(local_err);
621 return -1;
622 }
623
624 return 0;
625 }
626
627 /*
628 * The SpaprXive 'post_load' method is not called by a vmstate
629 * handler. It is called at the sPAPR machine level at the end of the
630 * migration sequence by the sPAPR IRQ backend 'post_load' method,
631 * when all XIVE states have been transferred and loaded.
632 */
633 int kvmppc_xive_post_load(SpaprXive *xive, int version_id)
634 {
635 Error *local_err = NULL;
636 CPUState *cs;
637 int i;
638
639 /* The KVM XIVE device should be in use */
640 assert(xive->fd != -1);
641
642 /* Restore the ENDT first. The targetting depends on it. */
643 for (i = 0; i < xive->nr_ends; i++) {
644 if (!xive_end_is_valid(&xive->endt[i])) {
645 continue;
646 }
647
648 kvmppc_xive_set_queue_config(xive, SPAPR_XIVE_BLOCK_ID, i,
649 &xive->endt[i], &local_err);
650 if (local_err) {
651 error_report_err(local_err);
652 return -1;
653 }
654 }
655
656 /* Restore the EAT */
657 for (i = 0; i < xive->nr_irqs; i++) {
658 if (!xive_eas_is_valid(&xive->eat[i])) {
659 continue;
660 }
661
662 /*
663 * We can only restore the source config if the source has been
664 * previously set in KVM. Since we don't do that for all interrupts
665 * at reset time anymore, let's do it now.
666 */
667 kvmppc_xive_source_reset_one(&xive->source, i, &local_err);
668 if (local_err) {
669 error_report_err(local_err);
670 return -1;
671 }
672
673 kvmppc_xive_set_source_config(xive, i, &xive->eat[i], &local_err);
674 if (local_err) {
675 error_report_err(local_err);
676 return -1;
677 }
678 }
679
680 /*
681 * Restore the thread interrupt contexts of initial CPUs.
682 *
683 * The context of hotplugged CPUs is restored later, by the
684 * 'post_load' handler of the XiveTCTX model because they are not
685 * available at the time the SpaprXive 'post_load' method is
686 * called. We can not restore the context of all CPUs in the
687 * 'post_load' handler of XiveTCTX because the machine is not
688 * necessarily connected to the KVM device at that time.
689 */
690 CPU_FOREACH(cs) {
691 PowerPCCPU *cpu = POWERPC_CPU(cs);
692
693 kvmppc_xive_cpu_set_state(spapr_cpu_state(cpu)->tctx, &local_err);
694 if (local_err) {
695 error_report_err(local_err);
696 return -1;
697 }
698 }
699
700 /* The source states will be restored when the machine starts running */
701 return 0;
702 }
703
704 /* Returns MAP_FAILED on error and sets errno */
705 static void *kvmppc_xive_mmap(SpaprXive *xive, int pgoff, size_t len,
706 Error **errp)
707 {
708 void *addr;
709 uint32_t page_shift = 16; /* TODO: fix page_shift */
710
711 addr = mmap(NULL, len, PROT_WRITE | PROT_READ, MAP_SHARED, xive->fd,
712 pgoff << page_shift);
713 if (addr == MAP_FAILED) {
714 error_setg_errno(errp, errno, "XIVE: unable to set memory mapping");
715 }
716
717 return addr;
718 }
719
720 /*
721 * All the XIVE memory regions are now backed by mappings from the KVM
722 * XIVE device.
723 */
724 int kvmppc_xive_connect(SpaprInterruptController *intc, uint32_t nr_servers,
725 Error **errp)
726 {
727 SpaprXive *xive = SPAPR_XIVE(intc);
728 XiveSource *xsrc = &xive->source;
729 Error *local_err = NULL;
730 size_t esb_len = xive_source_esb_len(xsrc);
731 size_t tima_len = 4ull << TM_SHIFT;
732 CPUState *cs;
733 int fd;
734 void *addr;
735
736 /*
737 * The KVM XIVE device already in use. This is the case when
738 * rebooting under the XIVE-only interrupt mode.
739 */
740 if (xive->fd != -1) {
741 return 0;
742 }
743
744 if (!kvmppc_has_cap_xive()) {
745 error_setg(errp, "IRQ_XIVE capability must be present for KVM");
746 return -1;
747 }
748
749 /* First, create the KVM XIVE device */
750 fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_XIVE, false);
751 if (fd < 0) {
752 error_setg_errno(errp, -fd, "XIVE: error creating KVM device");
753 return -1;
754 }
755 xive->fd = fd;
756
757 /* Tell KVM about the # of VCPUs we may have */
758 if (kvm_device_check_attr(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
759 KVM_DEV_XIVE_NR_SERVERS)) {
760 if (kvm_device_access(xive->fd, KVM_DEV_XIVE_GRP_CTRL,
761 KVM_DEV_XIVE_NR_SERVERS, &nr_servers, true,
762 &local_err)) {
763 goto fail;
764 }
765 }
766
767 /*
768 * 1. Source ESB pages - KVM mapping
769 */
770 addr = kvmppc_xive_mmap(xive, KVM_XIVE_ESB_PAGE_OFFSET, esb_len,
771 &local_err);
772 if (addr == MAP_FAILED) {
773 goto fail;
774 }
775 xsrc->esb_mmap = addr;
776
777 memory_region_init_ram_device_ptr(&xsrc->esb_mmio_kvm, OBJECT(xsrc),
778 "xive.esb-kvm", esb_len, xsrc->esb_mmap);
779 memory_region_add_subregion_overlap(&xsrc->esb_mmio, 0,
780 &xsrc->esb_mmio_kvm, 1);
781
782 /*
783 * 2. END ESB pages (No KVM support yet)
784 */
785
786 /*
787 * 3. TIMA pages - KVM mapping
788 */
789 addr = kvmppc_xive_mmap(xive, KVM_XIVE_TIMA_PAGE_OFFSET, tima_len,
790 &local_err);
791 if (addr == MAP_FAILED) {
792 goto fail;
793 }
794 xive->tm_mmap = addr;
795
796 memory_region_init_ram_device_ptr(&xive->tm_mmio_kvm, OBJECT(xive),
797 "xive.tima", tima_len, xive->tm_mmap);
798 memory_region_add_subregion_overlap(&xive->tm_mmio, 0,
799 &xive->tm_mmio_kvm, 1);
800
801 xive->change = qemu_add_vm_change_state_handler(
802 kvmppc_xive_change_state_handler, xive);
803
804 /* Connect the presenters to the initial VCPUs of the machine */
805 CPU_FOREACH(cs) {
806 PowerPCCPU *cpu = POWERPC_CPU(cs);
807
808 kvmppc_xive_cpu_connect(spapr_cpu_state(cpu)->tctx, &local_err);
809 if (local_err) {
810 goto fail;
811 }
812 }
813
814 /* Update the KVM sources */
815 kvmppc_xive_source_reset(xsrc, &local_err);
816 if (local_err) {
817 goto fail;
818 }
819
820 kvm_kernel_irqchip = true;
821 kvm_msi_via_irqfd_allowed = true;
822 kvm_gsi_direct_mapping = true;
823 return 0;
824
825 fail:
826 error_propagate(errp, local_err);
827 kvmppc_xive_disconnect(intc);
828 return -1;
829 }
830
831 void kvmppc_xive_disconnect(SpaprInterruptController *intc)
832 {
833 SpaprXive *xive = SPAPR_XIVE(intc);
834 XiveSource *xsrc;
835 size_t esb_len;
836
837 assert(xive->fd != -1);
838
839 /* Clear the KVM mapping */
840 xsrc = &xive->source;
841 esb_len = (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
842
843 if (xsrc->esb_mmap) {
844 memory_region_del_subregion(&xsrc->esb_mmio, &xsrc->esb_mmio_kvm);
845 object_unparent(OBJECT(&xsrc->esb_mmio_kvm));
846 munmap(xsrc->esb_mmap, esb_len);
847 xsrc->esb_mmap = NULL;
848 }
849
850 if (xive->tm_mmap) {
851 memory_region_del_subregion(&xive->tm_mmio, &xive->tm_mmio_kvm);
852 object_unparent(OBJECT(&xive->tm_mmio_kvm));
853 munmap(xive->tm_mmap, 4ull << TM_SHIFT);
854 xive->tm_mmap = NULL;
855 }
856
857 /*
858 * When the KVM device fd is closed, the KVM device is destroyed
859 * and removed from the list of devices of the VM. The VCPU
860 * presenters are also detached from the device.
861 */
862 close(xive->fd);
863 xive->fd = -1;
864
865 kvm_kernel_irqchip = false;
866 kvm_msi_via_irqfd_allowed = false;
867 kvm_gsi_direct_mapping = false;
868
869 /* Clear the local list of presenter (hotplug) */
870 kvm_cpu_disable_all();
871
872 /* VM Change state handler is not needed anymore */
873 if (xive->change) {
874 qemu_del_vm_change_state_handler(xive->change);
875 xive->change = NULL;
876 }
877 }