]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
Merge tag 'for_upstream' of https://git.kernel.org/pub/scm/virt/kvm/mst/qemu into...
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive2.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "trace.h"
26
27 /*
28 * XIVE Thread Interrupt Management context
29 */
30
31 /*
32 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
33 * Interrupt Priority Register (PIPR), which contains the priority of
34 * the most favored pending notification.
35 */
36 static uint8_t ipb_to_pipr(uint8_t ibp)
37 {
38 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
39 }
40
41 static uint8_t exception_mask(uint8_t ring)
42 {
43 switch (ring) {
44 case TM_QW1_OS:
45 return TM_QW1_NSR_EO;
46 case TM_QW3_HV_PHYS:
47 return TM_QW3_NSR_HE;
48 default:
49 g_assert_not_reached();
50 }
51 }
52
53 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
54 {
55 switch (ring) {
56 case TM_QW0_USER:
57 return 0; /* Not supported */
58 case TM_QW1_OS:
59 return tctx->os_output;
60 case TM_QW2_HV_POOL:
61 case TM_QW3_HV_PHYS:
62 return tctx->hv_output;
63 default:
64 return 0;
65 }
66 }
67
68 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
69 {
70 uint8_t *regs = &tctx->regs[ring];
71 uint8_t nsr = regs[TM_NSR];
72 uint8_t mask = exception_mask(ring);
73
74 qemu_irq_lower(xive_tctx_output(tctx, ring));
75
76 if (regs[TM_NSR] & mask) {
77 uint8_t cppr = regs[TM_PIPR];
78
79 regs[TM_CPPR] = cppr;
80
81 /* Reset the pending buffer bit */
82 regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
83 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
84
85 /* Drop Exception bit */
86 regs[TM_NSR] &= ~mask;
87
88 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
89 regs[TM_IPB], regs[TM_PIPR],
90 regs[TM_CPPR], regs[TM_NSR]);
91 }
92
93 return (nsr << 8) | regs[TM_CPPR];
94 }
95
96 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
97 {
98 uint8_t *regs = &tctx->regs[ring];
99
100 if (regs[TM_PIPR] < regs[TM_CPPR]) {
101 switch (ring) {
102 case TM_QW1_OS:
103 regs[TM_NSR] |= TM_QW1_NSR_EO;
104 break;
105 case TM_QW3_HV_PHYS:
106 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
107 break;
108 default:
109 g_assert_not_reached();
110 }
111 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
112 regs[TM_IPB], regs[TM_PIPR],
113 regs[TM_CPPR], regs[TM_NSR]);
114 qemu_irq_raise(xive_tctx_output(tctx, ring));
115 }
116 }
117
118 void xive_tctx_reset_os_signal(XiveTCTX *tctx)
119 {
120 /*
121 * Lower the External interrupt. Used when pulling an OS
122 * context. It is necessary to avoid catching it in the hypervisor
123 * context. It should be raised again when re-pushing the OS
124 * context.
125 */
126 qemu_irq_lower(xive_tctx_output(tctx, TM_QW1_OS));
127 }
128
129 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
130 {
131 uint8_t *regs = &tctx->regs[ring];
132
133 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
134 regs[TM_IPB], regs[TM_PIPR],
135 cppr, regs[TM_NSR]);
136
137 if (cppr > XIVE_PRIORITY_MAX) {
138 cppr = 0xff;
139 }
140
141 tctx->regs[ring + TM_CPPR] = cppr;
142
143 /* CPPR has changed, check if we need to raise a pending exception */
144 xive_tctx_notify(tctx, ring);
145 }
146
147 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
148 {
149 uint8_t *regs = &tctx->regs[ring];
150
151 regs[TM_IPB] |= ipb;
152 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
153 xive_tctx_notify(tctx, ring);
154 }
155
156 /*
157 * XIVE Thread Interrupt Management Area (TIMA)
158 */
159
160 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
161 hwaddr offset, uint64_t value, unsigned size)
162 {
163 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
164 }
165
166 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
167 hwaddr offset, unsigned size)
168 {
169 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
170 }
171
172 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
173 hwaddr offset, unsigned size)
174 {
175 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
176 uint32_t qw2w2;
177
178 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
179 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
180 return qw2w2;
181 }
182
183 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
184 uint64_t value, unsigned size)
185 {
186 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
187 }
188
189 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
190 hwaddr offset, unsigned size)
191 {
192 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
193 }
194
195 /*
196 * Define an access map for each page of the TIMA that we will use in
197 * the memory region ops to filter values when doing loads and stores
198 * of raw registers values
199 *
200 * Registers accessibility bits :
201 *
202 * 0x0 - no access
203 * 0x1 - write only
204 * 0x2 - read only
205 * 0x3 - read/write
206 */
207
208 static const uint8_t xive_tm_hw_view[] = {
209 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
210 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
211 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
212 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
213 };
214
215 static const uint8_t xive_tm_hv_view[] = {
216 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
217 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
218 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
219 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
220 };
221
222 static const uint8_t xive_tm_os_view[] = {
223 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
224 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
225 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
226 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
227 };
228
229 static const uint8_t xive_tm_user_view[] = {
230 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
231 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
233 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
234 };
235
236 /*
237 * Overall TIMA access map for the thread interrupt management context
238 * registers
239 */
240 static const uint8_t *xive_tm_views[] = {
241 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
242 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
243 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
244 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
245 };
246
247 /*
248 * Computes a register access mask for a given offset in the TIMA
249 */
250 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
251 {
252 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
253 uint8_t reg_offset = offset & TM_REG_OFFSET;
254 uint8_t reg_mask = write ? 0x1 : 0x2;
255 uint64_t mask = 0x0;
256 int i;
257
258 for (i = 0; i < size; i++) {
259 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
260 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
261 }
262 }
263
264 return mask;
265 }
266
267 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
268 unsigned size)
269 {
270 uint8_t ring_offset = offset & TM_RING_OFFSET;
271 uint8_t reg_offset = offset & TM_REG_OFFSET;
272 uint64_t mask = xive_tm_mask(offset, size, true);
273 int i;
274
275 /*
276 * Only 4 or 8 bytes stores are allowed and the User ring is
277 * excluded
278 */
279 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
280 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
281 HWADDR_PRIx"\n", offset);
282 return;
283 }
284
285 /*
286 * Use the register offset for the raw values and filter out
287 * reserved values
288 */
289 for (i = 0; i < size; i++) {
290 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
291 if (byte_mask) {
292 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
293 byte_mask;
294 }
295 }
296 }
297
298 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
299 {
300 uint8_t ring_offset = offset & TM_RING_OFFSET;
301 uint8_t reg_offset = offset & TM_REG_OFFSET;
302 uint64_t mask = xive_tm_mask(offset, size, false);
303 uint64_t ret;
304 int i;
305
306 /*
307 * Only 4 or 8 bytes loads are allowed and the User ring is
308 * excluded
309 */
310 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
311 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
312 HWADDR_PRIx"\n", offset);
313 return -1;
314 }
315
316 /* Use the register offset for the raw values */
317 ret = 0;
318 for (i = 0; i < size; i++) {
319 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
320 }
321
322 /* filter out reserved values */
323 return ret & mask;
324 }
325
326 /*
327 * The TM context is mapped twice within each page. Stores and loads
328 * to the first mapping below 2K write and read the specified values
329 * without modification. The second mapping above 2K performs specific
330 * state changes (side effects) in addition to setting/returning the
331 * interrupt management area context of the processor thread.
332 */
333 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
334 hwaddr offset, unsigned size)
335 {
336 return xive_tctx_accept(tctx, TM_QW1_OS);
337 }
338
339 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
340 hwaddr offset, uint64_t value, unsigned size)
341 {
342 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
343 }
344
345 /*
346 * Adjust the IPB to allow a CPU to process event queues of other
347 * priorities during one physical interrupt cycle.
348 */
349 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
350 hwaddr offset, uint64_t value, unsigned size)
351 {
352 xive_tctx_ipb_update(tctx, TM_QW1_OS, xive_priority_to_ipb(value & 0xff));
353 }
354
355 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
356 uint32_t *nvt_idx, bool *vo)
357 {
358 if (nvt_blk) {
359 *nvt_blk = xive_nvt_blk(cam);
360 }
361 if (nvt_idx) {
362 *nvt_idx = xive_nvt_idx(cam);
363 }
364 if (vo) {
365 *vo = !!(cam & TM_QW1W2_VO);
366 }
367 }
368
369 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
370 uint32_t *nvt_idx, bool *vo)
371 {
372 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
373 uint32_t cam = be32_to_cpu(qw1w2);
374
375 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
376 return qw1w2;
377 }
378
379 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
380 {
381 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
382 }
383
384 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
385 hwaddr offset, unsigned size)
386 {
387 uint32_t qw1w2;
388 uint32_t qw1w2_new;
389 uint8_t nvt_blk;
390 uint32_t nvt_idx;
391 bool vo;
392
393 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
394
395 if (!vo) {
396 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
397 nvt_blk, nvt_idx);
398 }
399
400 /* Invalidate CAM line */
401 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
402 xive_tctx_set_os_cam(tctx, qw1w2_new);
403
404 xive_tctx_reset_os_signal(tctx);
405 return qw1w2;
406 }
407
408 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
409 uint8_t nvt_blk, uint32_t nvt_idx)
410 {
411 XiveNVT nvt;
412 uint8_t ipb;
413
414 /*
415 * Grab the associated NVT to pull the pending bits, and merge
416 * them with the IPB of the thread interrupt context registers
417 */
418 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
419 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
420 nvt_blk, nvt_idx);
421 return;
422 }
423
424 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
425
426 if (ipb) {
427 /* Reset the NVT value */
428 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
429 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
430 }
431 /*
432 * Always call xive_tctx_ipb_update(). Even if there were no
433 * escalation triggered, there could be a pending interrupt which
434 * was saved when the context was pulled and that we need to take
435 * into account by recalculating the PIPR (which is not
436 * saved/restored).
437 * It will also raise the External interrupt signal if needed.
438 */
439 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
440 }
441
442 /*
443 * Updating the OS CAM line can trigger a resend of interrupt
444 */
445 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
446 hwaddr offset, uint64_t value, unsigned size)
447 {
448 uint32_t cam = value;
449 uint32_t qw1w2 = cpu_to_be32(cam);
450 uint8_t nvt_blk;
451 uint32_t nvt_idx;
452 bool vo;
453
454 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
455
456 /* First update the registers */
457 xive_tctx_set_os_cam(tctx, qw1w2);
458
459 /* Check the interrupt pending bits */
460 if (vo) {
461 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
462 }
463 }
464
465 static uint32_t xive_presenter_get_config(XivePresenter *xptr)
466 {
467 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
468
469 return xpc->get_config(xptr);
470 }
471
472 /*
473 * Define a mapping of "special" operations depending on the TIMA page
474 * offset and the size of the operation.
475 */
476 typedef struct XiveTmOp {
477 uint8_t page_offset;
478 uint32_t op_offset;
479 unsigned size;
480 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
481 hwaddr offset,
482 uint64_t value, unsigned size);
483 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
484 unsigned size);
485 } XiveTmOp;
486
487 static const XiveTmOp xive_tm_operations[] = {
488 /*
489 * MMIOs below 2K : raw values and special operations without side
490 * effects
491 */
492 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
493 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
494 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
495 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
496 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
497
498 /* MMIOs above 2K : special operations with side effects */
499 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
500 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
501 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
502 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
503 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
504 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
505 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
506 };
507
508 static const XiveTmOp xive2_tm_operations[] = {
509 /*
510 * MMIOs below 2K : raw values and special operations without side
511 * effects
512 */
513 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
514 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive2_tm_push_os_ctx, NULL },
515 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
516 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
517 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
518
519 /* MMIOs above 2K : special operations with side effects */
520 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
521 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
522 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive2_tm_pull_os_ctx },
523 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive2_tm_pull_os_ctx },
524 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
525 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
526 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
527 };
528
529 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset,
530 unsigned size, bool write)
531 {
532 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
533 uint32_t op_offset = offset & TM_ADDRESS_MASK;
534 const XiveTmOp *tm_ops;
535 int i, tm_ops_count;
536 uint32_t cfg;
537
538 cfg = xive_presenter_get_config(xptr);
539 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) {
540 tm_ops = xive_tm_operations;
541 tm_ops_count = ARRAY_SIZE(xive_tm_operations);
542 } else {
543 tm_ops = xive2_tm_operations;
544 tm_ops_count = ARRAY_SIZE(xive2_tm_operations);
545 }
546
547 for (i = 0; i < tm_ops_count; i++) {
548 const XiveTmOp *xto = &tm_ops[i];
549
550 /* Accesses done from a more privileged TIMA page is allowed */
551 if (xto->page_offset >= page_offset &&
552 xto->op_offset == op_offset &&
553 xto->size == size &&
554 ((write && xto->write_handler) || (!write && xto->read_handler))) {
555 return xto;
556 }
557 }
558 return NULL;
559 }
560
561 /*
562 * TIMA MMIO handlers
563 */
564 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
565 uint64_t value, unsigned size)
566 {
567 const XiveTmOp *xto;
568
569 trace_xive_tctx_tm_write(offset, size, value);
570
571 /*
572 * TODO: check V bit in Q[0-3]W2
573 */
574
575 /*
576 * First, check for special operations in the 2K region
577 */
578 if (offset & TM_SPECIAL_OP) {
579 xto = xive_tm_find_op(tctx->xptr, offset, size, true);
580 if (!xto) {
581 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
582 "@%"HWADDR_PRIx"\n", offset);
583 } else {
584 xto->write_handler(xptr, tctx, offset, value, size);
585 }
586 return;
587 }
588
589 /*
590 * Then, for special operations in the region below 2K.
591 */
592 xto = xive_tm_find_op(tctx->xptr, offset, size, true);
593 if (xto) {
594 xto->write_handler(xptr, tctx, offset, value, size);
595 return;
596 }
597
598 /*
599 * Finish with raw access to the register values
600 */
601 xive_tm_raw_write(tctx, offset, value, size);
602 }
603
604 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
605 unsigned size)
606 {
607 const XiveTmOp *xto;
608 uint64_t ret;
609
610 /*
611 * TODO: check V bit in Q[0-3]W2
612 */
613
614 /*
615 * First, check for special operations in the 2K region
616 */
617 if (offset & TM_SPECIAL_OP) {
618 xto = xive_tm_find_op(tctx->xptr, offset, size, false);
619 if (!xto) {
620 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
621 "@%"HWADDR_PRIx"\n", offset);
622 return -1;
623 }
624 ret = xto->read_handler(xptr, tctx, offset, size);
625 goto out;
626 }
627
628 /*
629 * Then, for special operations in the region below 2K.
630 */
631 xto = xive_tm_find_op(tctx->xptr, offset, size, false);
632 if (xto) {
633 ret = xto->read_handler(xptr, tctx, offset, size);
634 goto out;
635 }
636
637 /*
638 * Finish with raw access to the register values
639 */
640 ret = xive_tm_raw_read(tctx, offset, size);
641 out:
642 trace_xive_tctx_tm_read(offset, size, ret);
643 return ret;
644 }
645
646 static char *xive_tctx_ring_print(uint8_t *ring)
647 {
648 uint32_t w2 = xive_tctx_word2(ring);
649
650 return g_strdup_printf("%02x %02x %02x %02x %02x "
651 "%02x %02x %02x %08x",
652 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
653 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
654 be32_to_cpu(w2));
655 }
656
657 static const char * const xive_tctx_ring_names[] = {
658 "USER", "OS", "POOL", "PHYS",
659 };
660
661 /*
662 * kvm_irqchip_in_kernel() will cause the compiler to turn this
663 * info a nop if CONFIG_KVM isn't defined.
664 */
665 #define xive_in_kernel(xptr) \
666 (kvm_irqchip_in_kernel() && \
667 ({ \
668 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
669 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
670 }))
671
672 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
673 {
674 int cpu_index;
675 int i;
676
677 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
678 * are hot plugged or unplugged.
679 */
680 if (!tctx) {
681 return;
682 }
683
684 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
685
686 if (xive_in_kernel(tctx->xptr)) {
687 Error *local_err = NULL;
688
689 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
690 if (local_err) {
691 error_report_err(local_err);
692 return;
693 }
694 }
695
696 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
697 " W2\n", cpu_index);
698
699 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
700 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
701 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
702 xive_tctx_ring_names[i], s);
703 g_free(s);
704 }
705 }
706
707 void xive_tctx_reset(XiveTCTX *tctx)
708 {
709 memset(tctx->regs, 0, sizeof(tctx->regs));
710
711 /* Set some defaults */
712 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
713 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
714 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
715
716 /*
717 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
718 * CPPR is first set.
719 */
720 tctx->regs[TM_QW1_OS + TM_PIPR] =
721 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
722 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
723 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
724 }
725
726 static void xive_tctx_realize(DeviceState *dev, Error **errp)
727 {
728 XiveTCTX *tctx = XIVE_TCTX(dev);
729 PowerPCCPU *cpu;
730 CPUPPCState *env;
731
732 assert(tctx->cs);
733 assert(tctx->xptr);
734
735 cpu = POWERPC_CPU(tctx->cs);
736 env = &cpu->env;
737 switch (PPC_INPUT(env)) {
738 case PPC_FLAGS_INPUT_POWER9:
739 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
740 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
741 break;
742
743 default:
744 error_setg(errp, "XIVE interrupt controller does not support "
745 "this CPU bus model");
746 return;
747 }
748
749 /* Connect the presenter to the VCPU (required for CPU hotplug) */
750 if (xive_in_kernel(tctx->xptr)) {
751 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
752 return;
753 }
754 }
755 }
756
757 static int vmstate_xive_tctx_pre_save(void *opaque)
758 {
759 XiveTCTX *tctx = XIVE_TCTX(opaque);
760 Error *local_err = NULL;
761 int ret;
762
763 if (xive_in_kernel(tctx->xptr)) {
764 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
765 if (ret < 0) {
766 error_report_err(local_err);
767 return ret;
768 }
769 }
770
771 return 0;
772 }
773
774 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
775 {
776 XiveTCTX *tctx = XIVE_TCTX(opaque);
777 Error *local_err = NULL;
778 int ret;
779
780 if (xive_in_kernel(tctx->xptr)) {
781 /*
782 * Required for hotplugged CPU, for which the state comes
783 * after all states of the machine.
784 */
785 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
786 if (ret < 0) {
787 error_report_err(local_err);
788 return ret;
789 }
790 }
791
792 return 0;
793 }
794
795 static const VMStateDescription vmstate_xive_tctx = {
796 .name = TYPE_XIVE_TCTX,
797 .version_id = 1,
798 .minimum_version_id = 1,
799 .pre_save = vmstate_xive_tctx_pre_save,
800 .post_load = vmstate_xive_tctx_post_load,
801 .fields = (VMStateField[]) {
802 VMSTATE_BUFFER(regs, XiveTCTX),
803 VMSTATE_END_OF_LIST()
804 },
805 };
806
807 static Property xive_tctx_properties[] = {
808 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
809 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
810 XivePresenter *),
811 DEFINE_PROP_END_OF_LIST(),
812 };
813
814 static void xive_tctx_class_init(ObjectClass *klass, void *data)
815 {
816 DeviceClass *dc = DEVICE_CLASS(klass);
817
818 dc->desc = "XIVE Interrupt Thread Context";
819 dc->realize = xive_tctx_realize;
820 dc->vmsd = &vmstate_xive_tctx;
821 device_class_set_props(dc, xive_tctx_properties);
822 /*
823 * Reason: part of XIVE interrupt controller, needs to be wired up
824 * by xive_tctx_create().
825 */
826 dc->user_creatable = false;
827 }
828
829 static const TypeInfo xive_tctx_info = {
830 .name = TYPE_XIVE_TCTX,
831 .parent = TYPE_DEVICE,
832 .instance_size = sizeof(XiveTCTX),
833 .class_init = xive_tctx_class_init,
834 };
835
836 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
837 {
838 Object *obj;
839
840 obj = object_new(TYPE_XIVE_TCTX);
841 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
842 object_unref(obj);
843 object_property_set_link(obj, "cpu", cpu, &error_abort);
844 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
845 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
846 object_unparent(obj);
847 return NULL;
848 }
849 return obj;
850 }
851
852 void xive_tctx_destroy(XiveTCTX *tctx)
853 {
854 Object *obj = OBJECT(tctx);
855
856 object_unparent(obj);
857 }
858
859 /*
860 * XIVE ESB helpers
861 */
862
863 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
864 {
865 uint8_t old_pq = *pq & 0x3;
866
867 *pq &= ~0x3;
868 *pq |= value & 0x3;
869
870 return old_pq;
871 }
872
873 bool xive_esb_trigger(uint8_t *pq)
874 {
875 uint8_t old_pq = *pq & 0x3;
876
877 switch (old_pq) {
878 case XIVE_ESB_RESET:
879 xive_esb_set(pq, XIVE_ESB_PENDING);
880 return true;
881 case XIVE_ESB_PENDING:
882 case XIVE_ESB_QUEUED:
883 xive_esb_set(pq, XIVE_ESB_QUEUED);
884 return false;
885 case XIVE_ESB_OFF:
886 xive_esb_set(pq, XIVE_ESB_OFF);
887 return false;
888 default:
889 g_assert_not_reached();
890 }
891 }
892
893 bool xive_esb_eoi(uint8_t *pq)
894 {
895 uint8_t old_pq = *pq & 0x3;
896
897 switch (old_pq) {
898 case XIVE_ESB_RESET:
899 case XIVE_ESB_PENDING:
900 xive_esb_set(pq, XIVE_ESB_RESET);
901 return false;
902 case XIVE_ESB_QUEUED:
903 xive_esb_set(pq, XIVE_ESB_PENDING);
904 return true;
905 case XIVE_ESB_OFF:
906 xive_esb_set(pq, XIVE_ESB_OFF);
907 return false;
908 default:
909 g_assert_not_reached();
910 }
911 }
912
913 /*
914 * XIVE Interrupt Source (or IVSE)
915 */
916
917 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
918 {
919 assert(srcno < xsrc->nr_irqs);
920
921 return xsrc->status[srcno] & 0x3;
922 }
923
924 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
925 {
926 assert(srcno < xsrc->nr_irqs);
927
928 return xive_esb_set(&xsrc->status[srcno], pq);
929 }
930
931 /*
932 * Returns whether the event notification should be forwarded.
933 */
934 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
935 {
936 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
937
938 xive_source_set_asserted(xsrc, srcno, true);
939
940 switch (old_pq) {
941 case XIVE_ESB_RESET:
942 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
943 return true;
944 default:
945 return false;
946 }
947 }
948
949 /*
950 * Sources can be configured with PQ offloading in which case the check
951 * on the PQ state bits of MSIs is disabled
952 */
953 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
954 {
955 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
956 !xive_source_irq_is_lsi(xsrc, srcno);
957 }
958
959 /*
960 * Returns whether the event notification should be forwarded.
961 */
962 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
963 {
964 bool ret;
965
966 assert(srcno < xsrc->nr_irqs);
967
968 if (xive_source_esb_disabled(xsrc, srcno)) {
969 return true;
970 }
971
972 ret = xive_esb_trigger(&xsrc->status[srcno]);
973
974 if (xive_source_irq_is_lsi(xsrc, srcno) &&
975 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
976 qemu_log_mask(LOG_GUEST_ERROR,
977 "XIVE: queued an event on LSI IRQ %d\n", srcno);
978 }
979
980 return ret;
981 }
982
983 /*
984 * Returns whether the event notification should be forwarded.
985 */
986 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
987 {
988 bool ret;
989
990 assert(srcno < xsrc->nr_irqs);
991
992 if (xive_source_esb_disabled(xsrc, srcno)) {
993 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
994 return false;
995 }
996
997 ret = xive_esb_eoi(&xsrc->status[srcno]);
998
999 /*
1000 * LSI sources do not set the Q bit but they can still be
1001 * asserted, in which case we should forward a new event
1002 * notification
1003 */
1004 if (xive_source_irq_is_lsi(xsrc, srcno) &&
1005 xive_source_is_asserted(xsrc, srcno)) {
1006 ret = xive_source_lsi_trigger(xsrc, srcno);
1007 }
1008
1009 return ret;
1010 }
1011
1012 /*
1013 * Forward the source event notification to the Router
1014 */
1015 static void xive_source_notify(XiveSource *xsrc, int srcno)
1016 {
1017 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
1018 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
1019
1020 if (xnc->notify) {
1021 xnc->notify(xsrc->xive, srcno, pq_checked);
1022 }
1023 }
1024
1025 /*
1026 * In a two pages ESB MMIO setting, even page is the trigger page, odd
1027 * page is for management
1028 */
1029 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
1030 {
1031 return !((addr >> shift) & 1);
1032 }
1033
1034 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
1035 {
1036 return xive_source_esb_has_2page(xsrc) &&
1037 addr_is_even(addr, xsrc->esb_shift - 1);
1038 }
1039
1040 /*
1041 * ESB MMIO loads
1042 * Trigger page Management/EOI page
1043 *
1044 * ESB MMIO setting 2 pages 1 or 2 pages
1045 *
1046 * 0x000 .. 0x3FF -1 EOI and return 0|1
1047 * 0x400 .. 0x7FF -1 EOI and return 0|1
1048 * 0x800 .. 0xBFF -1 return PQ
1049 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
1050 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
1051 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
1052 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
1053 */
1054 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1055 {
1056 XiveSource *xsrc = XIVE_SOURCE(opaque);
1057 uint32_t offset = addr & 0xFFF;
1058 uint32_t srcno = addr >> xsrc->esb_shift;
1059 uint64_t ret = -1;
1060
1061 /* In a two pages ESB MMIO setting, trigger page should not be read */
1062 if (xive_source_is_trigger_page(xsrc, addr)) {
1063 qemu_log_mask(LOG_GUEST_ERROR,
1064 "XIVE: invalid load on IRQ %d trigger page at "
1065 "0x%"HWADDR_PRIx"\n", srcno, addr);
1066 return -1;
1067 }
1068
1069 switch (offset) {
1070 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1071 ret = xive_source_esb_eoi(xsrc, srcno);
1072
1073 /* Forward the source event notification for routing */
1074 if (ret) {
1075 xive_source_notify(xsrc, srcno);
1076 }
1077 break;
1078
1079 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1080 ret = xive_source_esb_get(xsrc, srcno);
1081 break;
1082
1083 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1084 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1085 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1086 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1087 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1088 break;
1089 default:
1090 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1091 offset);
1092 }
1093
1094 trace_xive_source_esb_read(addr, srcno, ret);
1095
1096 return ret;
1097 }
1098
1099 /*
1100 * ESB MMIO stores
1101 * Trigger page Management/EOI page
1102 *
1103 * ESB MMIO setting 2 pages 1 or 2 pages
1104 *
1105 * 0x000 .. 0x3FF Trigger Trigger
1106 * 0x400 .. 0x7FF Trigger EOI
1107 * 0x800 .. 0xBFF Trigger undefined
1108 * 0xC00 .. 0xCFF Trigger PQ=00
1109 * 0xD00 .. 0xDFF Trigger PQ=01
1110 * 0xE00 .. 0xDFF Trigger PQ=10
1111 * 0xF00 .. 0xDFF Trigger PQ=11
1112 */
1113 static void xive_source_esb_write(void *opaque, hwaddr addr,
1114 uint64_t value, unsigned size)
1115 {
1116 XiveSource *xsrc = XIVE_SOURCE(opaque);
1117 uint32_t offset = addr & 0xFFF;
1118 uint32_t srcno = addr >> xsrc->esb_shift;
1119 bool notify = false;
1120
1121 trace_xive_source_esb_write(addr, srcno, value);
1122
1123 /* In a two pages ESB MMIO setting, trigger page only triggers */
1124 if (xive_source_is_trigger_page(xsrc, addr)) {
1125 notify = xive_source_esb_trigger(xsrc, srcno);
1126 goto out;
1127 }
1128
1129 switch (offset) {
1130 case 0 ... 0x3FF:
1131 notify = xive_source_esb_trigger(xsrc, srcno);
1132 break;
1133
1134 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1135 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1136 qemu_log_mask(LOG_GUEST_ERROR,
1137 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1138 return;
1139 }
1140
1141 notify = xive_source_esb_eoi(xsrc, srcno);
1142 break;
1143
1144 /*
1145 * This is an internal offset used to inject triggers when the PQ
1146 * state bits are not controlled locally. Such as for LSIs when
1147 * under ABT mode.
1148 */
1149 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1150 notify = true;
1151 break;
1152
1153 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1154 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1155 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1156 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1157 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1158 break;
1159
1160 default:
1161 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1162 offset);
1163 return;
1164 }
1165
1166 out:
1167 /* Forward the source event notification for routing */
1168 if (notify) {
1169 xive_source_notify(xsrc, srcno);
1170 }
1171 }
1172
1173 static const MemoryRegionOps xive_source_esb_ops = {
1174 .read = xive_source_esb_read,
1175 .write = xive_source_esb_write,
1176 .endianness = DEVICE_BIG_ENDIAN,
1177 .valid = {
1178 .min_access_size = 8,
1179 .max_access_size = 8,
1180 },
1181 .impl = {
1182 .min_access_size = 8,
1183 .max_access_size = 8,
1184 },
1185 };
1186
1187 void xive_source_set_irq(void *opaque, int srcno, int val)
1188 {
1189 XiveSource *xsrc = XIVE_SOURCE(opaque);
1190 bool notify = false;
1191
1192 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1193 if (val) {
1194 notify = xive_source_lsi_trigger(xsrc, srcno);
1195 } else {
1196 xive_source_set_asserted(xsrc, srcno, false);
1197 }
1198 } else {
1199 if (val) {
1200 notify = xive_source_esb_trigger(xsrc, srcno);
1201 }
1202 }
1203
1204 /* Forward the source event notification for routing */
1205 if (notify) {
1206 xive_source_notify(xsrc, srcno);
1207 }
1208 }
1209
1210 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1211 {
1212 int i;
1213
1214 for (i = 0; i < xsrc->nr_irqs; i++) {
1215 uint8_t pq = xive_source_esb_get(xsrc, i);
1216
1217 if (pq == XIVE_ESB_OFF) {
1218 continue;
1219 }
1220
1221 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1222 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1223 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1224 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1225 xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1226 }
1227 }
1228
1229 static void xive_source_reset(void *dev)
1230 {
1231 XiveSource *xsrc = XIVE_SOURCE(dev);
1232
1233 /* Do not clear the LSI bitmap */
1234
1235 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1236 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1237 }
1238
1239 static void xive_source_realize(DeviceState *dev, Error **errp)
1240 {
1241 XiveSource *xsrc = XIVE_SOURCE(dev);
1242 size_t esb_len = xive_source_esb_len(xsrc);
1243
1244 assert(xsrc->xive);
1245
1246 if (!xsrc->nr_irqs) {
1247 error_setg(errp, "Number of interrupt needs to be greater than 0");
1248 return;
1249 }
1250
1251 if (xsrc->esb_shift != XIVE_ESB_4K &&
1252 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1253 xsrc->esb_shift != XIVE_ESB_64K &&
1254 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1255 error_setg(errp, "Invalid ESB shift setting");
1256 return;
1257 }
1258
1259 xsrc->status = g_malloc0(xsrc->nr_irqs);
1260 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1261
1262 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1263 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1264 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1265 esb_len);
1266 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1267
1268 qemu_register_reset(xive_source_reset, dev);
1269 }
1270
1271 static const VMStateDescription vmstate_xive_source = {
1272 .name = TYPE_XIVE_SOURCE,
1273 .version_id = 1,
1274 .minimum_version_id = 1,
1275 .fields = (VMStateField[]) {
1276 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1277 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1278 VMSTATE_END_OF_LIST()
1279 },
1280 };
1281
1282 /*
1283 * The default XIVE interrupt source setting for the ESB MMIOs is two
1284 * 64k pages without Store EOI, to be in sync with KVM.
1285 */
1286 static Property xive_source_properties[] = {
1287 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1288 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1289 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1290 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1291 XiveNotifier *),
1292 DEFINE_PROP_END_OF_LIST(),
1293 };
1294
1295 static void xive_source_class_init(ObjectClass *klass, void *data)
1296 {
1297 DeviceClass *dc = DEVICE_CLASS(klass);
1298
1299 dc->desc = "XIVE Interrupt Source";
1300 device_class_set_props(dc, xive_source_properties);
1301 dc->realize = xive_source_realize;
1302 dc->vmsd = &vmstate_xive_source;
1303 /*
1304 * Reason: part of XIVE interrupt controller, needs to be wired up,
1305 * e.g. by spapr_xive_instance_init().
1306 */
1307 dc->user_creatable = false;
1308 }
1309
1310 static const TypeInfo xive_source_info = {
1311 .name = TYPE_XIVE_SOURCE,
1312 .parent = TYPE_DEVICE,
1313 .instance_size = sizeof(XiveSource),
1314 .class_init = xive_source_class_init,
1315 };
1316
1317 /*
1318 * XiveEND helpers
1319 */
1320
1321 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1322 {
1323 uint64_t qaddr_base = xive_end_qaddr(end);
1324 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1325 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1326 uint32_t qentries = 1 << (qsize + 10);
1327 int i;
1328
1329 /*
1330 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1331 */
1332 monitor_printf(mon, " [ ");
1333 qindex = (qindex - (width - 1)) & (qentries - 1);
1334 for (i = 0; i < width; i++) {
1335 uint64_t qaddr = qaddr_base + (qindex << 2);
1336 uint32_t qdata = -1;
1337
1338 if (dma_memory_read(&address_space_memory, qaddr,
1339 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1340 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1341 HWADDR_PRIx "\n", qaddr);
1342 return;
1343 }
1344 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1345 be32_to_cpu(qdata));
1346 qindex = (qindex + 1) & (qentries - 1);
1347 }
1348 monitor_printf(mon, "]");
1349 }
1350
1351 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1352 {
1353 uint64_t qaddr_base = xive_end_qaddr(end);
1354 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1355 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1356 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1357 uint32_t qentries = 1 << (qsize + 10);
1358
1359 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1360 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1361 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1362 uint8_t pq;
1363
1364 if (!xive_end_is_valid(end)) {
1365 return;
1366 }
1367
1368 pq = xive_get_field32(END_W1_ESn, end->w1);
1369
1370 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1371 end_idx,
1372 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1373 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1374 xive_end_is_valid(end) ? 'v' : '-',
1375 xive_end_is_enqueue(end) ? 'q' : '-',
1376 xive_end_is_notify(end) ? 'n' : '-',
1377 xive_end_is_backlog(end) ? 'b' : '-',
1378 xive_end_is_escalate(end) ? 'e' : '-',
1379 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1380 xive_end_is_silent_escalation(end) ? 's' : '-',
1381 xive_end_is_firmware(end) ? 'f' : '-',
1382 priority, nvt_blk, nvt_idx);
1383
1384 if (qaddr_base) {
1385 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1386 qaddr_base, qindex, qentries, qgen);
1387 xive_end_queue_pic_print_info(end, 6, mon);
1388 }
1389 monitor_printf(mon, "\n");
1390 }
1391
1392 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1393 {
1394 uint64_t qaddr_base = xive_end_qaddr(end);
1395 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1396 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1397 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1398
1399 uint64_t qaddr = qaddr_base + (qindex << 2);
1400 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1401 uint32_t qentries = 1 << (qsize + 10);
1402
1403 if (dma_memory_write(&address_space_memory, qaddr,
1404 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1406 HWADDR_PRIx "\n", qaddr);
1407 return;
1408 }
1409
1410 qindex = (qindex + 1) & (qentries - 1);
1411 if (qindex == 0) {
1412 qgen ^= 1;
1413 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1414 }
1415 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1416 }
1417
1418 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1419 Monitor *mon)
1420 {
1421 XiveEAS *eas = (XiveEAS *) &end->w4;
1422 uint8_t pq;
1423
1424 if (!xive_end_is_escalate(end)) {
1425 return;
1426 }
1427
1428 pq = xive_get_field32(END_W1_ESe, end->w1);
1429
1430 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1431 end_idx,
1432 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1433 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1434 xive_eas_is_valid(eas) ? 'V' : ' ',
1435 xive_eas_is_masked(eas) ? 'M' : ' ',
1436 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1437 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1438 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1439 }
1440
1441 /*
1442 * XIVE Router (aka. Virtualization Controller or IVRE)
1443 */
1444
1445 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1446 XiveEAS *eas)
1447 {
1448 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1449
1450 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1451 }
1452
1453 static
1454 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1455 uint8_t *pq)
1456 {
1457 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1458
1459 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1460 }
1461
1462 static
1463 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1464 uint8_t *pq)
1465 {
1466 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1467
1468 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1469 }
1470
1471 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1472 XiveEND *end)
1473 {
1474 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1475
1476 return xrc->get_end(xrtr, end_blk, end_idx, end);
1477 }
1478
1479 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1480 XiveEND *end, uint8_t word_number)
1481 {
1482 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1483
1484 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1485 }
1486
1487 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1488 XiveNVT *nvt)
1489 {
1490 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1491
1492 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1493 }
1494
1495 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1496 XiveNVT *nvt, uint8_t word_number)
1497 {
1498 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1499
1500 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1501 }
1502
1503 static int xive_router_get_block_id(XiveRouter *xrtr)
1504 {
1505 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1506
1507 return xrc->get_block_id(xrtr);
1508 }
1509
1510 static void xive_router_realize(DeviceState *dev, Error **errp)
1511 {
1512 XiveRouter *xrtr = XIVE_ROUTER(dev);
1513
1514 assert(xrtr->xfb);
1515 }
1516
1517 /*
1518 * Encode the HW CAM line in the block group mode format :
1519 *
1520 * chip << 19 | 0000000 0 0001 thread (7Bit)
1521 */
1522 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1523 {
1524 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1525 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1526 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1527
1528 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1529 }
1530
1531 /*
1532 * The thread context register words are in big-endian format.
1533 */
1534 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1535 uint8_t format,
1536 uint8_t nvt_blk, uint32_t nvt_idx,
1537 bool cam_ignore, uint32_t logic_serv)
1538 {
1539 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1540 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1541 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1542 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1543 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1544
1545 /*
1546 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1547 * identifier are ignored in the "CAM" match.
1548 */
1549
1550 if (format == 0) {
1551 if (cam_ignore == true) {
1552 /*
1553 * F=0 & i=1: Logical server notification (bits ignored at
1554 * the end of the NVT identifier)
1555 */
1556 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1557 nvt_blk, nvt_idx);
1558 return -1;
1559 }
1560
1561 /* F=0 & i=0: Specific NVT notification */
1562
1563 /* PHYS ring */
1564 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1565 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1566 return TM_QW3_HV_PHYS;
1567 }
1568
1569 /* HV POOL ring */
1570 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1571 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1572 return TM_QW2_HV_POOL;
1573 }
1574
1575 /* OS ring */
1576 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1577 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1578 return TM_QW1_OS;
1579 }
1580 } else {
1581 /* F=1 : User level Event-Based Branch (EBB) notification */
1582
1583 /* USER ring */
1584 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1585 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1586 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1587 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1588 return TM_QW0_USER;
1589 }
1590 }
1591 return -1;
1592 }
1593
1594 /*
1595 * This is our simple Xive Presenter Engine model. It is merged in the
1596 * Router as it does not require an extra object.
1597 *
1598 * It receives notification requests sent by the IVRE to find one
1599 * matching NVT (or more) dispatched on the processor threads. In case
1600 * of a single NVT notification, the process is abreviated and the
1601 * thread is signaled if a match is found. In case of a logical server
1602 * notification (bits ignored at the end of the NVT identifier), the
1603 * IVPE and IVRE select a winning thread using different filters. This
1604 * involves 2 or 3 exchanges on the PowerBus that the model does not
1605 * support.
1606 *
1607 * The parameters represent what is sent on the PowerBus
1608 */
1609 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1610 uint8_t nvt_blk, uint32_t nvt_idx,
1611 bool cam_ignore, uint8_t priority,
1612 uint32_t logic_serv)
1613 {
1614 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1615 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1616 int count;
1617
1618 /*
1619 * Ask the machine to scan the interrupt controllers for a match
1620 */
1621 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1622 priority, logic_serv, &match);
1623 if (count < 0) {
1624 return false;
1625 }
1626
1627 /* handle CPU exception delivery */
1628 if (count) {
1629 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1630 xive_tctx_ipb_update(match.tctx, match.ring,
1631 xive_priority_to_ipb(priority));
1632 }
1633
1634 return !!count;
1635 }
1636
1637 /*
1638 * Notification using the END ESe/ESn bit (Event State Buffer for
1639 * escalation and notification). Provide further coalescing in the
1640 * Router.
1641 */
1642 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1643 uint32_t end_idx, XiveEND *end,
1644 uint32_t end_esmask)
1645 {
1646 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1647 bool notify = xive_esb_trigger(&pq);
1648
1649 if (pq != xive_get_field32(end_esmask, end->w1)) {
1650 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1651 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1652 }
1653
1654 /* ESe/n[Q]=1 : end of notification */
1655 return notify;
1656 }
1657
1658 /*
1659 * An END trigger can come from an event trigger (IPI or HW) or from
1660 * another chip. We don't model the PowerBus but the END trigger
1661 * message has the same parameters than in the function below.
1662 */
1663 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1664 uint32_t end_idx, uint32_t end_data)
1665 {
1666 XiveEND end;
1667 uint8_t priority;
1668 uint8_t format;
1669 uint8_t nvt_blk;
1670 uint32_t nvt_idx;
1671 XiveNVT nvt;
1672 bool found;
1673
1674 /* END cache lookup */
1675 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1676 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1677 end_idx);
1678 return;
1679 }
1680
1681 if (!xive_end_is_valid(&end)) {
1682 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1683 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1684 end_blk, end_idx);
1685 return;
1686 }
1687
1688 if (xive_end_is_enqueue(&end)) {
1689 xive_end_enqueue(&end, end_data);
1690 /* Enqueuing event data modifies the EQ toggle and index */
1691 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1692 }
1693
1694 /*
1695 * When the END is silent, we skip the notification part.
1696 */
1697 if (xive_end_is_silent_escalation(&end)) {
1698 goto do_escalation;
1699 }
1700
1701 /*
1702 * The W7 format depends on the F bit in W6. It defines the type
1703 * of the notification :
1704 *
1705 * F=0 : single or multiple NVT notification
1706 * F=1 : User level Event-Based Branch (EBB) notification, no
1707 * priority
1708 */
1709 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1710 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1711
1712 /* The END is masked */
1713 if (format == 0 && priority == 0xff) {
1714 return;
1715 }
1716
1717 /*
1718 * Check the END ESn (Event State Buffer for notification) for
1719 * even further coalescing in the Router
1720 */
1721 if (!xive_end_is_notify(&end)) {
1722 /* ESn[Q]=1 : end of notification */
1723 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1724 &end, END_W1_ESn)) {
1725 return;
1726 }
1727 }
1728
1729 /*
1730 * Follows IVPE notification
1731 */
1732 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1733 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1734
1735 /* NVT cache lookup */
1736 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1737 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1738 nvt_blk, nvt_idx);
1739 return;
1740 }
1741
1742 if (!xive_nvt_is_valid(&nvt)) {
1743 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1744 nvt_blk, nvt_idx);
1745 return;
1746 }
1747
1748 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1749 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1750 priority,
1751 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1752
1753 /* TODO: Auto EOI. */
1754
1755 if (found) {
1756 return;
1757 }
1758
1759 /*
1760 * If no matching NVT is dispatched on a HW thread :
1761 * - specific VP: update the NVT structure if backlog is activated
1762 * - logical server : forward request to IVPE (not supported)
1763 */
1764 if (xive_end_is_backlog(&end)) {
1765 uint8_t ipb;
1766
1767 if (format == 1) {
1768 qemu_log_mask(LOG_GUEST_ERROR,
1769 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1770 end_blk, end_idx);
1771 return;
1772 }
1773 /*
1774 * Record the IPB in the associated NVT structure for later
1775 * use. The presenter will resend the interrupt when the vCPU
1776 * is dispatched again on a HW thread.
1777 */
1778 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1779 xive_priority_to_ipb(priority);
1780 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1781 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1782
1783 /*
1784 * On HW, follows a "Broadcast Backlog" to IVPEs
1785 */
1786 }
1787
1788 do_escalation:
1789 /*
1790 * If activated, escalate notification using the ESe PQ bits and
1791 * the EAS in w4-5
1792 */
1793 if (!xive_end_is_escalate(&end)) {
1794 return;
1795 }
1796
1797 /*
1798 * Check the END ESe (Event State Buffer for escalation) for even
1799 * further coalescing in the Router
1800 */
1801 if (!xive_end_is_uncond_escalation(&end)) {
1802 /* ESe[Q]=1 : end of notification */
1803 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1804 &end, END_W1_ESe)) {
1805 return;
1806 }
1807 }
1808
1809 trace_xive_router_end_escalate(end_blk, end_idx,
1810 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1811 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1812 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1813 /*
1814 * The END trigger becomes an Escalation trigger
1815 */
1816 xive_router_end_notify(xrtr,
1817 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1818 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1819 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1820 }
1821
1822 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
1823 {
1824 XiveRouter *xrtr = XIVE_ROUTER(xn);
1825 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1826 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1827 XiveEAS eas;
1828
1829 /* EAS cache lookup */
1830 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1831 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1832 return;
1833 }
1834
1835 if (!pq_checked) {
1836 bool notify;
1837 uint8_t pq;
1838
1839 /* PQ cache lookup */
1840 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
1841 /* Set FIR */
1842 g_assert_not_reached();
1843 }
1844
1845 notify = xive_esb_trigger(&pq);
1846
1847 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
1848 /* Set FIR */
1849 g_assert_not_reached();
1850 }
1851
1852 if (!notify) {
1853 return;
1854 }
1855 }
1856
1857 if (!xive_eas_is_valid(&eas)) {
1858 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1859 return;
1860 }
1861
1862 if (xive_eas_is_masked(&eas)) {
1863 /* Notification completed */
1864 return;
1865 }
1866
1867 /*
1868 * The event trigger becomes an END trigger
1869 */
1870 xive_router_end_notify(xrtr,
1871 xive_get_field64(EAS_END_BLOCK, eas.w),
1872 xive_get_field64(EAS_END_INDEX, eas.w),
1873 xive_get_field64(EAS_END_DATA, eas.w));
1874 }
1875
1876 static Property xive_router_properties[] = {
1877 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1878 TYPE_XIVE_FABRIC, XiveFabric *),
1879 DEFINE_PROP_END_OF_LIST(),
1880 };
1881
1882 static void xive_router_class_init(ObjectClass *klass, void *data)
1883 {
1884 DeviceClass *dc = DEVICE_CLASS(klass);
1885 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1886
1887 dc->desc = "XIVE Router Engine";
1888 device_class_set_props(dc, xive_router_properties);
1889 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1890 dc->realize = xive_router_realize;
1891 xnc->notify = xive_router_notify;
1892 }
1893
1894 static const TypeInfo xive_router_info = {
1895 .name = TYPE_XIVE_ROUTER,
1896 .parent = TYPE_SYS_BUS_DEVICE,
1897 .abstract = true,
1898 .instance_size = sizeof(XiveRouter),
1899 .class_size = sizeof(XiveRouterClass),
1900 .class_init = xive_router_class_init,
1901 .interfaces = (InterfaceInfo[]) {
1902 { TYPE_XIVE_NOTIFIER },
1903 { TYPE_XIVE_PRESENTER },
1904 { }
1905 }
1906 };
1907
1908 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1909 {
1910 if (!xive_eas_is_valid(eas)) {
1911 return;
1912 }
1913
1914 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1915 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1916 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1917 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1918 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1919 }
1920
1921 /*
1922 * END ESB MMIO loads
1923 */
1924 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1925 {
1926 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1927 uint32_t offset = addr & 0xFFF;
1928 uint8_t end_blk;
1929 uint32_t end_idx;
1930 XiveEND end;
1931 uint32_t end_esmask;
1932 uint8_t pq;
1933 uint64_t ret = -1;
1934
1935 /*
1936 * The block id should be deduced from the load address on the END
1937 * ESB MMIO but our model only supports a single block per XIVE chip.
1938 */
1939 end_blk = xive_router_get_block_id(xsrc->xrtr);
1940 end_idx = addr >> (xsrc->esb_shift + 1);
1941
1942 trace_xive_end_source_read(end_blk, end_idx, addr);
1943
1944 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1945 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1946 end_idx);
1947 return -1;
1948 }
1949
1950 if (!xive_end_is_valid(&end)) {
1951 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1952 end_blk, end_idx);
1953 return -1;
1954 }
1955
1956 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1957 pq = xive_get_field32(end_esmask, end.w1);
1958
1959 switch (offset) {
1960 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1961 ret = xive_esb_eoi(&pq);
1962
1963 /* Forward the source event notification for routing ?? */
1964 break;
1965
1966 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1967 ret = pq;
1968 break;
1969
1970 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1971 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1972 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1973 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1974 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1975 break;
1976 default:
1977 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1978 offset);
1979 return -1;
1980 }
1981
1982 if (pq != xive_get_field32(end_esmask, end.w1)) {
1983 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1984 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1985 }
1986
1987 return ret;
1988 }
1989
1990 /*
1991 * END ESB MMIO stores are invalid
1992 */
1993 static void xive_end_source_write(void *opaque, hwaddr addr,
1994 uint64_t value, unsigned size)
1995 {
1996 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1997 HWADDR_PRIx"\n", addr);
1998 }
1999
2000 static const MemoryRegionOps xive_end_source_ops = {
2001 .read = xive_end_source_read,
2002 .write = xive_end_source_write,
2003 .endianness = DEVICE_BIG_ENDIAN,
2004 .valid = {
2005 .min_access_size = 8,
2006 .max_access_size = 8,
2007 },
2008 .impl = {
2009 .min_access_size = 8,
2010 .max_access_size = 8,
2011 },
2012 };
2013
2014 static void xive_end_source_realize(DeviceState *dev, Error **errp)
2015 {
2016 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
2017
2018 assert(xsrc->xrtr);
2019
2020 if (!xsrc->nr_ends) {
2021 error_setg(errp, "Number of interrupt needs to be greater than 0");
2022 return;
2023 }
2024
2025 if (xsrc->esb_shift != XIVE_ESB_4K &&
2026 xsrc->esb_shift != XIVE_ESB_64K) {
2027 error_setg(errp, "Invalid ESB shift setting");
2028 return;
2029 }
2030
2031 /*
2032 * Each END is assigned an even/odd pair of MMIO pages, the even page
2033 * manages the ESn field while the odd page manages the ESe field.
2034 */
2035 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
2036 &xive_end_source_ops, xsrc, "xive.end",
2037 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
2038 }
2039
2040 static Property xive_end_source_properties[] = {
2041 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
2042 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
2043 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
2044 XiveRouter *),
2045 DEFINE_PROP_END_OF_LIST(),
2046 };
2047
2048 static void xive_end_source_class_init(ObjectClass *klass, void *data)
2049 {
2050 DeviceClass *dc = DEVICE_CLASS(klass);
2051
2052 dc->desc = "XIVE END Source";
2053 device_class_set_props(dc, xive_end_source_properties);
2054 dc->realize = xive_end_source_realize;
2055 /*
2056 * Reason: part of XIVE interrupt controller, needs to be wired up,
2057 * e.g. by spapr_xive_instance_init().
2058 */
2059 dc->user_creatable = false;
2060 }
2061
2062 static const TypeInfo xive_end_source_info = {
2063 .name = TYPE_XIVE_END_SOURCE,
2064 .parent = TYPE_DEVICE,
2065 .instance_size = sizeof(XiveENDSource),
2066 .class_init = xive_end_source_class_init,
2067 };
2068
2069 /*
2070 * XIVE Notifier
2071 */
2072 static const TypeInfo xive_notifier_info = {
2073 .name = TYPE_XIVE_NOTIFIER,
2074 .parent = TYPE_INTERFACE,
2075 .class_size = sizeof(XiveNotifierClass),
2076 };
2077
2078 /*
2079 * XIVE Presenter
2080 */
2081 static const TypeInfo xive_presenter_info = {
2082 .name = TYPE_XIVE_PRESENTER,
2083 .parent = TYPE_INTERFACE,
2084 .class_size = sizeof(XivePresenterClass),
2085 };
2086
2087 /*
2088 * XIVE Fabric
2089 */
2090 static const TypeInfo xive_fabric_info = {
2091 .name = TYPE_XIVE_FABRIC,
2092 .parent = TYPE_INTERFACE,
2093 .class_size = sizeof(XiveFabricClass),
2094 };
2095
2096 static void xive_register_types(void)
2097 {
2098 type_register_static(&xive_fabric_info);
2099 type_register_static(&xive_source_info);
2100 type_register_static(&xive_notifier_info);
2101 type_register_static(&xive_presenter_info);
2102 type_register_static(&xive_router_info);
2103 type_register_static(&xive_end_source_info);
2104 type_register_static(&xive_tctx_info);
2105 }
2106
2107 type_init(xive_register_types)