]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "hw/qdev-properties.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/xive.h"
20 #include "hw/ppc/xive_regs.h"
21
22 /*
23 * XIVE Thread Interrupt Management context
24 */
25
26 /*
27 * Convert a priority number to an Interrupt Pending Buffer (IPB)
28 * register, which indicates a pending interrupt at the priority
29 * corresponding to the bit number
30 */
31 static uint8_t priority_to_ipb(uint8_t priority)
32 {
33 return priority > XIVE_PRIORITY_MAX ?
34 0 : 1 << (XIVE_PRIORITY_MAX - priority);
35 }
36
37 /*
38 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
39 * Interrupt Priority Register (PIPR), which contains the priority of
40 * the most favored pending notification.
41 */
42 static uint8_t ipb_to_pipr(uint8_t ibp)
43 {
44 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
45 }
46
47 static void ipb_update(uint8_t *regs, uint8_t priority)
48 {
49 regs[TM_IPB] |= priority_to_ipb(priority);
50 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
51 }
52
53 static uint8_t exception_mask(uint8_t ring)
54 {
55 switch (ring) {
56 case TM_QW1_OS:
57 return TM_QW1_NSR_EO;
58 case TM_QW3_HV_PHYS:
59 return TM_QW3_NSR_HE;
60 default:
61 g_assert_not_reached();
62 }
63 }
64
65 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
66 {
67 uint8_t *regs = &tctx->regs[ring];
68 uint8_t nsr = regs[TM_NSR];
69 uint8_t mask = exception_mask(ring);
70
71 qemu_irq_lower(tctx->output);
72
73 if (regs[TM_NSR] & mask) {
74 uint8_t cppr = regs[TM_PIPR];
75
76 regs[TM_CPPR] = cppr;
77
78 /* Reset the pending buffer bit */
79 regs[TM_IPB] &= ~priority_to_ipb(cppr);
80 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
81
82 /* Drop Exception bit */
83 regs[TM_NSR] &= ~mask;
84 }
85
86 return (nsr << 8) | regs[TM_CPPR];
87 }
88
89 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
90 {
91 uint8_t *regs = &tctx->regs[ring];
92
93 if (regs[TM_PIPR] < regs[TM_CPPR]) {
94 switch (ring) {
95 case TM_QW1_OS:
96 regs[TM_NSR] |= TM_QW1_NSR_EO;
97 break;
98 case TM_QW3_HV_PHYS:
99 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
100 break;
101 default:
102 g_assert_not_reached();
103 }
104 qemu_irq_raise(tctx->output);
105 }
106 }
107
108 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
109 {
110 if (cppr > XIVE_PRIORITY_MAX) {
111 cppr = 0xff;
112 }
113
114 tctx->regs[ring + TM_CPPR] = cppr;
115
116 /* CPPR has changed, check if we need to raise a pending exception */
117 xive_tctx_notify(tctx, ring);
118 }
119
120 /*
121 * XIVE Thread Interrupt Management Area (TIMA)
122 */
123
124 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
125 uint64_t value, unsigned size)
126 {
127 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
128 }
129
130 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
131 {
132 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
133 }
134
135 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
136 unsigned size)
137 {
138 uint64_t ret;
139
140 ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
141 tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
142 return ret;
143 }
144
145 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
146 uint64_t value, unsigned size)
147 {
148 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
149 }
150
151 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
152 {
153 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
154 }
155
156 /*
157 * Define an access map for each page of the TIMA that we will use in
158 * the memory region ops to filter values when doing loads and stores
159 * of raw registers values
160 *
161 * Registers accessibility bits :
162 *
163 * 0x0 - no access
164 * 0x1 - write only
165 * 0x2 - read only
166 * 0x3 - read/write
167 */
168
169 static const uint8_t xive_tm_hw_view[] = {
170 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
171 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
172 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
173 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
174 };
175
176 static const uint8_t xive_tm_hv_view[] = {
177 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
178 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
179 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
180 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
181 };
182
183 static const uint8_t xive_tm_os_view[] = {
184 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
185 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
186 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
187 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
188 };
189
190 static const uint8_t xive_tm_user_view[] = {
191 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
194 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
195 };
196
197 /*
198 * Overall TIMA access map for the thread interrupt management context
199 * registers
200 */
201 static const uint8_t *xive_tm_views[] = {
202 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
203 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
204 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
205 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
206 };
207
208 /*
209 * Computes a register access mask for a given offset in the TIMA
210 */
211 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
212 {
213 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
214 uint8_t reg_offset = offset & 0x3F;
215 uint8_t reg_mask = write ? 0x1 : 0x2;
216 uint64_t mask = 0x0;
217 int i;
218
219 for (i = 0; i < size; i++) {
220 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
221 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
222 }
223 }
224
225 return mask;
226 }
227
228 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
229 unsigned size)
230 {
231 uint8_t ring_offset = offset & 0x30;
232 uint8_t reg_offset = offset & 0x3F;
233 uint64_t mask = xive_tm_mask(offset, size, true);
234 int i;
235
236 /*
237 * Only 4 or 8 bytes stores are allowed and the User ring is
238 * excluded
239 */
240 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
241 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
242 HWADDR_PRIx"\n", offset);
243 return;
244 }
245
246 /*
247 * Use the register offset for the raw values and filter out
248 * reserved values
249 */
250 for (i = 0; i < size; i++) {
251 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
252 if (byte_mask) {
253 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
254 byte_mask;
255 }
256 }
257 }
258
259 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
260 {
261 uint8_t ring_offset = offset & 0x30;
262 uint8_t reg_offset = offset & 0x3F;
263 uint64_t mask = xive_tm_mask(offset, size, false);
264 uint64_t ret;
265 int i;
266
267 /*
268 * Only 4 or 8 bytes loads are allowed and the User ring is
269 * excluded
270 */
271 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
272 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
273 HWADDR_PRIx"\n", offset);
274 return -1;
275 }
276
277 /* Use the register offset for the raw values */
278 ret = 0;
279 for (i = 0; i < size; i++) {
280 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
281 }
282
283 /* filter out reserved values */
284 return ret & mask;
285 }
286
287 /*
288 * The TM context is mapped twice within each page. Stores and loads
289 * to the first mapping below 2K write and read the specified values
290 * without modification. The second mapping above 2K performs specific
291 * state changes (side effects) in addition to setting/returning the
292 * interrupt management area context of the processor thread.
293 */
294 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
295 {
296 return xive_tctx_accept(tctx, TM_QW1_OS);
297 }
298
299 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
300 uint64_t value, unsigned size)
301 {
302 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
303 }
304
305 /*
306 * Adjust the IPB to allow a CPU to process event queues of other
307 * priorities during one physical interrupt cycle.
308 */
309 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
310 uint64_t value, unsigned size)
311 {
312 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
313 xive_tctx_notify(tctx, TM_QW1_OS);
314 }
315
316 /*
317 * Define a mapping of "special" operations depending on the TIMA page
318 * offset and the size of the operation.
319 */
320 typedef struct XiveTmOp {
321 uint8_t page_offset;
322 uint32_t op_offset;
323 unsigned size;
324 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
325 unsigned size);
326 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
327 } XiveTmOp;
328
329 static const XiveTmOp xive_tm_operations[] = {
330 /*
331 * MMIOs below 2K : raw values and special operations without side
332 * effects
333 */
334 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
335 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
336 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
337 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
338
339 /* MMIOs above 2K : special operations with side effects */
340 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
341 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
342 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
343 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
344 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
345 };
346
347 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
348 {
349 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
350 uint32_t op_offset = offset & 0xFFF;
351 int i;
352
353 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
354 const XiveTmOp *xto = &xive_tm_operations[i];
355
356 /* Accesses done from a more privileged TIMA page is allowed */
357 if (xto->page_offset >= page_offset &&
358 xto->op_offset == op_offset &&
359 xto->size == size &&
360 ((write && xto->write_handler) || (!write && xto->read_handler))) {
361 return xto;
362 }
363 }
364 return NULL;
365 }
366
367 /*
368 * TIMA MMIO handlers
369 */
370 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
371 unsigned size)
372 {
373 const XiveTmOp *xto;
374
375 /*
376 * TODO: check V bit in Q[0-3]W2
377 */
378
379 /*
380 * First, check for special operations in the 2K region
381 */
382 if (offset & 0x800) {
383 xto = xive_tm_find_op(offset, size, true);
384 if (!xto) {
385 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
386 "@%"HWADDR_PRIx"\n", offset);
387 } else {
388 xto->write_handler(tctx, offset, value, size);
389 }
390 return;
391 }
392
393 /*
394 * Then, for special operations in the region below 2K.
395 */
396 xto = xive_tm_find_op(offset, size, true);
397 if (xto) {
398 xto->write_handler(tctx, offset, value, size);
399 return;
400 }
401
402 /*
403 * Finish with raw access to the register values
404 */
405 xive_tm_raw_write(tctx, offset, value, size);
406 }
407
408 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
409 {
410 const XiveTmOp *xto;
411
412 /*
413 * TODO: check V bit in Q[0-3]W2
414 */
415
416 /*
417 * First, check for special operations in the 2K region
418 */
419 if (offset & 0x800) {
420 xto = xive_tm_find_op(offset, size, false);
421 if (!xto) {
422 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
423 "@%"HWADDR_PRIx"\n", offset);
424 return -1;
425 }
426 return xto->read_handler(tctx, offset, size);
427 }
428
429 /*
430 * Then, for special operations in the region below 2K.
431 */
432 xto = xive_tm_find_op(offset, size, false);
433 if (xto) {
434 return xto->read_handler(tctx, offset, size);
435 }
436
437 /*
438 * Finish with raw access to the register values
439 */
440 return xive_tm_raw_read(tctx, offset, size);
441 }
442
443 static void xive_tm_write(void *opaque, hwaddr offset,
444 uint64_t value, unsigned size)
445 {
446 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
447
448 xive_tctx_tm_write(tctx, offset, value, size);
449 }
450
451 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
452 {
453 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
454
455 return xive_tctx_tm_read(tctx, offset, size);
456 }
457
458 const MemoryRegionOps xive_tm_ops = {
459 .read = xive_tm_read,
460 .write = xive_tm_write,
461 .endianness = DEVICE_BIG_ENDIAN,
462 .valid = {
463 .min_access_size = 1,
464 .max_access_size = 8,
465 },
466 .impl = {
467 .min_access_size = 1,
468 .max_access_size = 8,
469 },
470 };
471
472 static inline uint32_t xive_tctx_word2(uint8_t *ring)
473 {
474 return *((uint32_t *) &ring[TM_WORD2]);
475 }
476
477 static char *xive_tctx_ring_print(uint8_t *ring)
478 {
479 uint32_t w2 = xive_tctx_word2(ring);
480
481 return g_strdup_printf("%02x %02x %02x %02x %02x "
482 "%02x %02x %02x %08x",
483 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
484 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
485 be32_to_cpu(w2));
486 }
487
488 static const char * const xive_tctx_ring_names[] = {
489 "USER", "OS", "POOL", "PHYS",
490 };
491
492 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
493 {
494 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
495 int i;
496
497 if (kvm_irqchip_in_kernel()) {
498 Error *local_err = NULL;
499
500 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
501 if (local_err) {
502 error_report_err(local_err);
503 return;
504 }
505 }
506
507 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
508 " W2\n", cpu_index);
509
510 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
511 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
512 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
513 xive_tctx_ring_names[i], s);
514 g_free(s);
515 }
516 }
517
518 static void xive_tctx_reset(void *dev)
519 {
520 XiveTCTX *tctx = XIVE_TCTX(dev);
521
522 memset(tctx->regs, 0, sizeof(tctx->regs));
523
524 /* Set some defaults */
525 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
526 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
527 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
528
529 /*
530 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
531 * CPPR is first set.
532 */
533 tctx->regs[TM_QW1_OS + TM_PIPR] =
534 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
535 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
536 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
537 }
538
539 static void xive_tctx_realize(DeviceState *dev, Error **errp)
540 {
541 XiveTCTX *tctx = XIVE_TCTX(dev);
542 PowerPCCPU *cpu;
543 CPUPPCState *env;
544 Object *obj;
545 Error *local_err = NULL;
546
547 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
548 if (!obj) {
549 error_propagate(errp, local_err);
550 error_prepend(errp, "required link 'cpu' not found: ");
551 return;
552 }
553
554 cpu = POWERPC_CPU(obj);
555 tctx->cs = CPU(obj);
556
557 env = &cpu->env;
558 switch (PPC_INPUT(env)) {
559 case PPC_FLAGS_INPUT_POWER9:
560 tctx->output = env->irq_inputs[POWER9_INPUT_INT];
561 break;
562
563 default:
564 error_setg(errp, "XIVE interrupt controller does not support "
565 "this CPU bus model");
566 return;
567 }
568
569 /* Connect the presenter to the VCPU (required for CPU hotplug) */
570 if (kvm_irqchip_in_kernel()) {
571 kvmppc_xive_cpu_connect(tctx, &local_err);
572 if (local_err) {
573 error_propagate(errp, local_err);
574 return;
575 }
576 }
577
578 qemu_register_reset(xive_tctx_reset, dev);
579 }
580
581 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
582 {
583 qemu_unregister_reset(xive_tctx_reset, dev);
584 }
585
586 static int vmstate_xive_tctx_pre_save(void *opaque)
587 {
588 Error *local_err = NULL;
589
590 if (kvm_irqchip_in_kernel()) {
591 kvmppc_xive_cpu_get_state(XIVE_TCTX(opaque), &local_err);
592 if (local_err) {
593 error_report_err(local_err);
594 return -1;
595 }
596 }
597
598 return 0;
599 }
600
601 static const VMStateDescription vmstate_xive_tctx = {
602 .name = TYPE_XIVE_TCTX,
603 .version_id = 1,
604 .minimum_version_id = 1,
605 .pre_save = vmstate_xive_tctx_pre_save,
606 .post_load = NULL, /* handled by the sPAPRxive model */
607 .fields = (VMStateField[]) {
608 VMSTATE_BUFFER(regs, XiveTCTX),
609 VMSTATE_END_OF_LIST()
610 },
611 };
612
613 static void xive_tctx_class_init(ObjectClass *klass, void *data)
614 {
615 DeviceClass *dc = DEVICE_CLASS(klass);
616
617 dc->desc = "XIVE Interrupt Thread Context";
618 dc->realize = xive_tctx_realize;
619 dc->unrealize = xive_tctx_unrealize;
620 dc->vmsd = &vmstate_xive_tctx;
621 }
622
623 static const TypeInfo xive_tctx_info = {
624 .name = TYPE_XIVE_TCTX,
625 .parent = TYPE_DEVICE,
626 .instance_size = sizeof(XiveTCTX),
627 .class_init = xive_tctx_class_init,
628 };
629
630 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
631 {
632 Error *local_err = NULL;
633 Object *obj;
634
635 obj = object_new(TYPE_XIVE_TCTX);
636 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
637 object_unref(obj);
638 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
639 object_property_set_bool(obj, true, "realized", &local_err);
640 if (local_err) {
641 goto error;
642 }
643
644 return obj;
645
646 error:
647 object_unparent(obj);
648 error_propagate(errp, local_err);
649 return NULL;
650 }
651
652 /*
653 * XIVE ESB helpers
654 */
655
656 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
657 {
658 uint8_t old_pq = *pq & 0x3;
659
660 *pq &= ~0x3;
661 *pq |= value & 0x3;
662
663 return old_pq;
664 }
665
666 static bool xive_esb_trigger(uint8_t *pq)
667 {
668 uint8_t old_pq = *pq & 0x3;
669
670 switch (old_pq) {
671 case XIVE_ESB_RESET:
672 xive_esb_set(pq, XIVE_ESB_PENDING);
673 return true;
674 case XIVE_ESB_PENDING:
675 case XIVE_ESB_QUEUED:
676 xive_esb_set(pq, XIVE_ESB_QUEUED);
677 return false;
678 case XIVE_ESB_OFF:
679 xive_esb_set(pq, XIVE_ESB_OFF);
680 return false;
681 default:
682 g_assert_not_reached();
683 }
684 }
685
686 static bool xive_esb_eoi(uint8_t *pq)
687 {
688 uint8_t old_pq = *pq & 0x3;
689
690 switch (old_pq) {
691 case XIVE_ESB_RESET:
692 case XIVE_ESB_PENDING:
693 xive_esb_set(pq, XIVE_ESB_RESET);
694 return false;
695 case XIVE_ESB_QUEUED:
696 xive_esb_set(pq, XIVE_ESB_PENDING);
697 return true;
698 case XIVE_ESB_OFF:
699 xive_esb_set(pq, XIVE_ESB_OFF);
700 return false;
701 default:
702 g_assert_not_reached();
703 }
704 }
705
706 /*
707 * XIVE Interrupt Source (or IVSE)
708 */
709
710 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
711 {
712 assert(srcno < xsrc->nr_irqs);
713
714 return xsrc->status[srcno] & 0x3;
715 }
716
717 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
718 {
719 assert(srcno < xsrc->nr_irqs);
720
721 return xive_esb_set(&xsrc->status[srcno], pq);
722 }
723
724 /*
725 * Returns whether the event notification should be forwarded.
726 */
727 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
728 {
729 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
730
731 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
732
733 switch (old_pq) {
734 case XIVE_ESB_RESET:
735 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
736 return true;
737 default:
738 return false;
739 }
740 }
741
742 /*
743 * Returns whether the event notification should be forwarded.
744 */
745 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
746 {
747 bool ret;
748
749 assert(srcno < xsrc->nr_irqs);
750
751 ret = xive_esb_trigger(&xsrc->status[srcno]);
752
753 if (xive_source_irq_is_lsi(xsrc, srcno) &&
754 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
755 qemu_log_mask(LOG_GUEST_ERROR,
756 "XIVE: queued an event on LSI IRQ %d\n", srcno);
757 }
758
759 return ret;
760 }
761
762 /*
763 * Returns whether the event notification should be forwarded.
764 */
765 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
766 {
767 bool ret;
768
769 assert(srcno < xsrc->nr_irqs);
770
771 ret = xive_esb_eoi(&xsrc->status[srcno]);
772
773 /*
774 * LSI sources do not set the Q bit but they can still be
775 * asserted, in which case we should forward a new event
776 * notification
777 */
778 if (xive_source_irq_is_lsi(xsrc, srcno) &&
779 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
780 ret = xive_source_lsi_trigger(xsrc, srcno);
781 }
782
783 return ret;
784 }
785
786 /*
787 * Forward the source event notification to the Router
788 */
789 static void xive_source_notify(XiveSource *xsrc, int srcno)
790 {
791 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
792
793 if (xnc->notify) {
794 xnc->notify(xsrc->xive, srcno);
795 }
796 }
797
798 /*
799 * In a two pages ESB MMIO setting, even page is the trigger page, odd
800 * page is for management
801 */
802 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
803 {
804 return !((addr >> shift) & 1);
805 }
806
807 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
808 {
809 return xive_source_esb_has_2page(xsrc) &&
810 addr_is_even(addr, xsrc->esb_shift - 1);
811 }
812
813 /*
814 * ESB MMIO loads
815 * Trigger page Management/EOI page
816 *
817 * ESB MMIO setting 2 pages 1 or 2 pages
818 *
819 * 0x000 .. 0x3FF -1 EOI and return 0|1
820 * 0x400 .. 0x7FF -1 EOI and return 0|1
821 * 0x800 .. 0xBFF -1 return PQ
822 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
823 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
824 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
825 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
826 */
827 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
828 {
829 XiveSource *xsrc = XIVE_SOURCE(opaque);
830 uint32_t offset = addr & 0xFFF;
831 uint32_t srcno = addr >> xsrc->esb_shift;
832 uint64_t ret = -1;
833
834 /* In a two pages ESB MMIO setting, trigger page should not be read */
835 if (xive_source_is_trigger_page(xsrc, addr)) {
836 qemu_log_mask(LOG_GUEST_ERROR,
837 "XIVE: invalid load on IRQ %d trigger page at "
838 "0x%"HWADDR_PRIx"\n", srcno, addr);
839 return -1;
840 }
841
842 switch (offset) {
843 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
844 ret = xive_source_esb_eoi(xsrc, srcno);
845
846 /* Forward the source event notification for routing */
847 if (ret) {
848 xive_source_notify(xsrc, srcno);
849 }
850 break;
851
852 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
853 ret = xive_source_esb_get(xsrc, srcno);
854 break;
855
856 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
857 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
858 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
859 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
860 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
861 break;
862 default:
863 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
864 offset);
865 }
866
867 return ret;
868 }
869
870 /*
871 * ESB MMIO stores
872 * Trigger page Management/EOI page
873 *
874 * ESB MMIO setting 2 pages 1 or 2 pages
875 *
876 * 0x000 .. 0x3FF Trigger Trigger
877 * 0x400 .. 0x7FF Trigger EOI
878 * 0x800 .. 0xBFF Trigger undefined
879 * 0xC00 .. 0xCFF Trigger PQ=00
880 * 0xD00 .. 0xDFF Trigger PQ=01
881 * 0xE00 .. 0xDFF Trigger PQ=10
882 * 0xF00 .. 0xDFF Trigger PQ=11
883 */
884 static void xive_source_esb_write(void *opaque, hwaddr addr,
885 uint64_t value, unsigned size)
886 {
887 XiveSource *xsrc = XIVE_SOURCE(opaque);
888 uint32_t offset = addr & 0xFFF;
889 uint32_t srcno = addr >> xsrc->esb_shift;
890 bool notify = false;
891
892 /* In a two pages ESB MMIO setting, trigger page only triggers */
893 if (xive_source_is_trigger_page(xsrc, addr)) {
894 notify = xive_source_esb_trigger(xsrc, srcno);
895 goto out;
896 }
897
898 switch (offset) {
899 case 0 ... 0x3FF:
900 notify = xive_source_esb_trigger(xsrc, srcno);
901 break;
902
903 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
904 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
905 qemu_log_mask(LOG_GUEST_ERROR,
906 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
907 return;
908 }
909
910 notify = xive_source_esb_eoi(xsrc, srcno);
911 break;
912
913 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
914 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
915 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
916 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
917 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
918 break;
919
920 default:
921 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
922 offset);
923 return;
924 }
925
926 out:
927 /* Forward the source event notification for routing */
928 if (notify) {
929 xive_source_notify(xsrc, srcno);
930 }
931 }
932
933 static const MemoryRegionOps xive_source_esb_ops = {
934 .read = xive_source_esb_read,
935 .write = xive_source_esb_write,
936 .endianness = DEVICE_BIG_ENDIAN,
937 .valid = {
938 .min_access_size = 8,
939 .max_access_size = 8,
940 },
941 .impl = {
942 .min_access_size = 8,
943 .max_access_size = 8,
944 },
945 };
946
947 void xive_source_set_irq(void *opaque, int srcno, int val)
948 {
949 XiveSource *xsrc = XIVE_SOURCE(opaque);
950 bool notify = false;
951
952 if (xive_source_irq_is_lsi(xsrc, srcno)) {
953 if (val) {
954 notify = xive_source_lsi_trigger(xsrc, srcno);
955 } else {
956 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
957 }
958 } else {
959 if (val) {
960 notify = xive_source_esb_trigger(xsrc, srcno);
961 }
962 }
963
964 /* Forward the source event notification for routing */
965 if (notify) {
966 xive_source_notify(xsrc, srcno);
967 }
968 }
969
970 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
971 {
972 int i;
973
974 for (i = 0; i < xsrc->nr_irqs; i++) {
975 uint8_t pq = xive_source_esb_get(xsrc, i);
976
977 if (pq == XIVE_ESB_OFF) {
978 continue;
979 }
980
981 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
982 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
983 pq & XIVE_ESB_VAL_P ? 'P' : '-',
984 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
985 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
986 }
987 }
988
989 static void xive_source_reset(void *dev)
990 {
991 XiveSource *xsrc = XIVE_SOURCE(dev);
992
993 /* Do not clear the LSI bitmap */
994
995 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
996 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
997 }
998
999 static void xive_source_realize(DeviceState *dev, Error **errp)
1000 {
1001 XiveSource *xsrc = XIVE_SOURCE(dev);
1002 Object *obj;
1003 Error *local_err = NULL;
1004
1005 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1006 if (!obj) {
1007 error_propagate(errp, local_err);
1008 error_prepend(errp, "required link 'xive' not found: ");
1009 return;
1010 }
1011
1012 xsrc->xive = XIVE_NOTIFIER(obj);
1013
1014 if (!xsrc->nr_irqs) {
1015 error_setg(errp, "Number of interrupt needs to be greater than 0");
1016 return;
1017 }
1018
1019 if (xsrc->esb_shift != XIVE_ESB_4K &&
1020 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1021 xsrc->esb_shift != XIVE_ESB_64K &&
1022 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1023 error_setg(errp, "Invalid ESB shift setting");
1024 return;
1025 }
1026
1027 xsrc->status = g_malloc0(xsrc->nr_irqs);
1028 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1029
1030 if (!kvm_irqchip_in_kernel()) {
1031 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1032 &xive_source_esb_ops, xsrc, "xive.esb",
1033 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
1034 }
1035
1036 qemu_register_reset(xive_source_reset, dev);
1037 }
1038
1039 static const VMStateDescription vmstate_xive_source = {
1040 .name = TYPE_XIVE_SOURCE,
1041 .version_id = 1,
1042 .minimum_version_id = 1,
1043 .fields = (VMStateField[]) {
1044 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1045 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1046 VMSTATE_END_OF_LIST()
1047 },
1048 };
1049
1050 /*
1051 * The default XIVE interrupt source setting for the ESB MMIOs is two
1052 * 64k pages without Store EOI, to be in sync with KVM.
1053 */
1054 static Property xive_source_properties[] = {
1055 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1056 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1057 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1058 DEFINE_PROP_END_OF_LIST(),
1059 };
1060
1061 static void xive_source_class_init(ObjectClass *klass, void *data)
1062 {
1063 DeviceClass *dc = DEVICE_CLASS(klass);
1064
1065 dc->desc = "XIVE Interrupt Source";
1066 dc->props = xive_source_properties;
1067 dc->realize = xive_source_realize;
1068 dc->vmsd = &vmstate_xive_source;
1069 }
1070
1071 static const TypeInfo xive_source_info = {
1072 .name = TYPE_XIVE_SOURCE,
1073 .parent = TYPE_DEVICE,
1074 .instance_size = sizeof(XiveSource),
1075 .class_init = xive_source_class_init,
1076 };
1077
1078 /*
1079 * XiveEND helpers
1080 */
1081
1082 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1083 {
1084 uint64_t qaddr_base = xive_end_qaddr(end);
1085 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1086 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1087 uint32_t qentries = 1 << (qsize + 10);
1088 int i;
1089
1090 /*
1091 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1092 */
1093 monitor_printf(mon, " [ ");
1094 qindex = (qindex - (width - 1)) & (qentries - 1);
1095 for (i = 0; i < width; i++) {
1096 uint64_t qaddr = qaddr_base + (qindex << 2);
1097 uint32_t qdata = -1;
1098
1099 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1100 sizeof(qdata))) {
1101 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1102 HWADDR_PRIx "\n", qaddr);
1103 return;
1104 }
1105 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1106 be32_to_cpu(qdata));
1107 qindex = (qindex + 1) & (qentries - 1);
1108 }
1109 }
1110
1111 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1112 {
1113 uint64_t qaddr_base = xive_end_qaddr(end);
1114 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1115 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1116 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1117 uint32_t qentries = 1 << (qsize + 10);
1118
1119 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1120 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1121
1122 if (!xive_end_is_valid(end)) {
1123 return;
1124 }
1125
1126 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1127 "% 6d/%5d ^%d", end_idx,
1128 xive_end_is_valid(end) ? 'v' : '-',
1129 xive_end_is_enqueue(end) ? 'q' : '-',
1130 xive_end_is_notify(end) ? 'n' : '-',
1131 xive_end_is_backlog(end) ? 'b' : '-',
1132 xive_end_is_escalate(end) ? 'e' : '-',
1133 priority, nvt, qaddr_base, qindex, qentries, qgen);
1134
1135 xive_end_queue_pic_print_info(end, 6, mon);
1136 monitor_printf(mon, "]\n");
1137 }
1138
1139 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1140 {
1141 uint64_t qaddr_base = xive_end_qaddr(end);
1142 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1143 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1144 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1145
1146 uint64_t qaddr = qaddr_base + (qindex << 2);
1147 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1148 uint32_t qentries = 1 << (qsize + 10);
1149
1150 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1151 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1152 HWADDR_PRIx "\n", qaddr);
1153 return;
1154 }
1155
1156 qindex = (qindex + 1) & (qentries - 1);
1157 if (qindex == 0) {
1158 qgen ^= 1;
1159 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1160 }
1161 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1162 }
1163
1164 /*
1165 * XIVE Router (aka. Virtualization Controller or IVRE)
1166 */
1167
1168 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1169 XiveEAS *eas)
1170 {
1171 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1172
1173 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1174 }
1175
1176 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1177 XiveEND *end)
1178 {
1179 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1180
1181 return xrc->get_end(xrtr, end_blk, end_idx, end);
1182 }
1183
1184 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1185 XiveEND *end, uint8_t word_number)
1186 {
1187 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1188
1189 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1190 }
1191
1192 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1193 XiveNVT *nvt)
1194 {
1195 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1196
1197 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1198 }
1199
1200 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1201 XiveNVT *nvt, uint8_t word_number)
1202 {
1203 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1204
1205 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1206 }
1207
1208 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1209 {
1210 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1211
1212 return xrc->get_tctx(xrtr, cs);
1213 }
1214
1215 /*
1216 * By default on P9, the HW CAM line (23bits) is hardwired to :
1217 *
1218 * 0x000||0b1||4Bit chip number||7Bit Thread number.
1219 *
1220 * When the block grouping is enabled, the CAM line is changed to :
1221 *
1222 * 4Bit chip number||0x001||7Bit Thread number.
1223 */
1224 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1225 {
1226 return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1227 }
1228
1229 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1230 uint8_t nvt_blk, uint32_t nvt_idx)
1231 {
1232 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1233 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1234
1235 return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1236 hw_cam_line(nvt_blk, nvt_idx);
1237 }
1238
1239 /*
1240 * The thread context register words are in big-endian format.
1241 */
1242 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1243 uint8_t nvt_blk, uint32_t nvt_idx,
1244 bool cam_ignore, uint32_t logic_serv)
1245 {
1246 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1247 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1248 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1249 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1250 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1251
1252 /*
1253 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1254 * identifier are ignored in the "CAM" match.
1255 */
1256
1257 if (format == 0) {
1258 if (cam_ignore == true) {
1259 /*
1260 * F=0 & i=1: Logical server notification (bits ignored at
1261 * the end of the NVT identifier)
1262 */
1263 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1264 nvt_blk, nvt_idx);
1265 return -1;
1266 }
1267
1268 /* F=0 & i=0: Specific NVT notification */
1269
1270 /* PHYS ring */
1271 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1272 xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1273 return TM_QW3_HV_PHYS;
1274 }
1275
1276 /* HV POOL ring */
1277 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1278 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1279 return TM_QW2_HV_POOL;
1280 }
1281
1282 /* OS ring */
1283 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1284 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1285 return TM_QW1_OS;
1286 }
1287 } else {
1288 /* F=1 : User level Event-Based Branch (EBB) notification */
1289
1290 /* USER ring */
1291 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1292 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1293 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1294 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1295 return TM_QW0_USER;
1296 }
1297 }
1298 return -1;
1299 }
1300
1301 typedef struct XiveTCTXMatch {
1302 XiveTCTX *tctx;
1303 uint8_t ring;
1304 } XiveTCTXMatch;
1305
1306 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1307 uint8_t nvt_blk, uint32_t nvt_idx,
1308 bool cam_ignore, uint8_t priority,
1309 uint32_t logic_serv, XiveTCTXMatch *match)
1310 {
1311 CPUState *cs;
1312
1313 /*
1314 * TODO (PowerNV): handle chip_id overwrite of block field for
1315 * hardwired CAM compares
1316 */
1317
1318 CPU_FOREACH(cs) {
1319 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1320 int ring;
1321
1322 /*
1323 * HW checks that the CPU is enabled in the Physical Thread
1324 * Enable Register (PTER).
1325 */
1326
1327 /*
1328 * Check the thread context CAM lines and record matches. We
1329 * will handle CPU exception delivery later
1330 */
1331 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1332 cam_ignore, logic_serv);
1333 /*
1334 * Save the context and follow on to catch duplicates, that we
1335 * don't support yet.
1336 */
1337 if (ring != -1) {
1338 if (match->tctx) {
1339 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1340 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1341 return false;
1342 }
1343
1344 match->ring = ring;
1345 match->tctx = tctx;
1346 }
1347 }
1348
1349 if (!match->tctx) {
1350 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1351 nvt_blk, nvt_idx);
1352 return false;
1353 }
1354
1355 return true;
1356 }
1357
1358 /*
1359 * This is our simple Xive Presenter Engine model. It is merged in the
1360 * Router as it does not require an extra object.
1361 *
1362 * It receives notification requests sent by the IVRE to find one
1363 * matching NVT (or more) dispatched on the processor threads. In case
1364 * of a single NVT notification, the process is abreviated and the
1365 * thread is signaled if a match is found. In case of a logical server
1366 * notification (bits ignored at the end of the NVT identifier), the
1367 * IVPE and IVRE select a winning thread using different filters. This
1368 * involves 2 or 3 exchanges on the PowerBus that the model does not
1369 * support.
1370 *
1371 * The parameters represent what is sent on the PowerBus
1372 */
1373 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1374 uint8_t nvt_blk, uint32_t nvt_idx,
1375 bool cam_ignore, uint8_t priority,
1376 uint32_t logic_serv)
1377 {
1378 XiveNVT nvt;
1379 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1380 bool found;
1381
1382 /* NVT cache lookup */
1383 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1385 nvt_blk, nvt_idx);
1386 return;
1387 }
1388
1389 if (!xive_nvt_is_valid(&nvt)) {
1390 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1391 nvt_blk, nvt_idx);
1392 return;
1393 }
1394
1395 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1396 priority, logic_serv, &match);
1397 if (found) {
1398 ipb_update(&match.tctx->regs[match.ring], priority);
1399 xive_tctx_notify(match.tctx, match.ring);
1400 return;
1401 }
1402
1403 /* Record the IPB in the associated NVT structure */
1404 ipb_update((uint8_t *) &nvt.w4, priority);
1405 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1406
1407 /*
1408 * If no matching NVT is dispatched on a HW thread :
1409 * - update the NVT structure if backlog is activated
1410 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1411 * activated
1412 */
1413 }
1414
1415 /*
1416 * An END trigger can come from an event trigger (IPI or HW) or from
1417 * another chip. We don't model the PowerBus but the END trigger
1418 * message has the same parameters than in the function below.
1419 */
1420 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1421 uint32_t end_idx, uint32_t end_data)
1422 {
1423 XiveEND end;
1424 uint8_t priority;
1425 uint8_t format;
1426
1427 /* END cache lookup */
1428 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1429 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1430 end_idx);
1431 return;
1432 }
1433
1434 if (!xive_end_is_valid(&end)) {
1435 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1436 end_blk, end_idx);
1437 return;
1438 }
1439
1440 if (xive_end_is_enqueue(&end)) {
1441 xive_end_enqueue(&end, end_data);
1442 /* Enqueuing event data modifies the EQ toggle and index */
1443 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1444 }
1445
1446 /*
1447 * The W7 format depends on the F bit in W6. It defines the type
1448 * of the notification :
1449 *
1450 * F=0 : single or multiple NVT notification
1451 * F=1 : User level Event-Based Branch (EBB) notification, no
1452 * priority
1453 */
1454 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1455 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1456
1457 /* The END is masked */
1458 if (format == 0 && priority == 0xff) {
1459 return;
1460 }
1461
1462 /*
1463 * Check the END ESn (Event State Buffer for notification) for
1464 * even futher coalescing in the Router
1465 */
1466 if (!xive_end_is_notify(&end)) {
1467 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1468 bool notify = xive_esb_trigger(&pq);
1469
1470 if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1471 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1472 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1473 }
1474
1475 /* ESn[Q]=1 : end of notification */
1476 if (!notify) {
1477 return;
1478 }
1479 }
1480
1481 /*
1482 * Follows IVPE notification
1483 */
1484 xive_presenter_notify(xrtr, format,
1485 xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1486 xive_get_field32(END_W6_NVT_INDEX, end.w6),
1487 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1488 priority,
1489 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1490
1491 /* TODO: Auto EOI. */
1492 }
1493
1494 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1495 {
1496 XiveRouter *xrtr = XIVE_ROUTER(xn);
1497 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1498 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1499 XiveEAS eas;
1500
1501 /* EAS cache lookup */
1502 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1503 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1504 return;
1505 }
1506
1507 /*
1508 * The IVRE checks the State Bit Cache at this point. We skip the
1509 * SBC lookup because the state bits of the sources are modeled
1510 * internally in QEMU.
1511 */
1512
1513 if (!xive_eas_is_valid(&eas)) {
1514 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1515 return;
1516 }
1517
1518 if (xive_eas_is_masked(&eas)) {
1519 /* Notification completed */
1520 return;
1521 }
1522
1523 /*
1524 * The event trigger becomes an END trigger
1525 */
1526 xive_router_end_notify(xrtr,
1527 xive_get_field64(EAS_END_BLOCK, eas.w),
1528 xive_get_field64(EAS_END_INDEX, eas.w),
1529 xive_get_field64(EAS_END_DATA, eas.w));
1530 }
1531
1532 static void xive_router_class_init(ObjectClass *klass, void *data)
1533 {
1534 DeviceClass *dc = DEVICE_CLASS(klass);
1535 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1536
1537 dc->desc = "XIVE Router Engine";
1538 xnc->notify = xive_router_notify;
1539 }
1540
1541 static const TypeInfo xive_router_info = {
1542 .name = TYPE_XIVE_ROUTER,
1543 .parent = TYPE_SYS_BUS_DEVICE,
1544 .abstract = true,
1545 .class_size = sizeof(XiveRouterClass),
1546 .class_init = xive_router_class_init,
1547 .interfaces = (InterfaceInfo[]) {
1548 { TYPE_XIVE_NOTIFIER },
1549 { }
1550 }
1551 };
1552
1553 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1554 {
1555 if (!xive_eas_is_valid(eas)) {
1556 return;
1557 }
1558
1559 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1560 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1561 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1562 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1563 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1564 }
1565
1566 /*
1567 * END ESB MMIO loads
1568 */
1569 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1570 {
1571 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1572 uint32_t offset = addr & 0xFFF;
1573 uint8_t end_blk;
1574 uint32_t end_idx;
1575 XiveEND end;
1576 uint32_t end_esmask;
1577 uint8_t pq;
1578 uint64_t ret = -1;
1579
1580 end_blk = xsrc->block_id;
1581 end_idx = addr >> (xsrc->esb_shift + 1);
1582
1583 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1584 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1585 end_idx);
1586 return -1;
1587 }
1588
1589 if (!xive_end_is_valid(&end)) {
1590 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1591 end_blk, end_idx);
1592 return -1;
1593 }
1594
1595 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1596 pq = xive_get_field32(end_esmask, end.w1);
1597
1598 switch (offset) {
1599 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1600 ret = xive_esb_eoi(&pq);
1601
1602 /* Forward the source event notification for routing ?? */
1603 break;
1604
1605 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1606 ret = pq;
1607 break;
1608
1609 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1610 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1611 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1612 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1613 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1614 break;
1615 default:
1616 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1617 offset);
1618 return -1;
1619 }
1620
1621 if (pq != xive_get_field32(end_esmask, end.w1)) {
1622 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1623 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1624 }
1625
1626 return ret;
1627 }
1628
1629 /*
1630 * END ESB MMIO stores are invalid
1631 */
1632 static void xive_end_source_write(void *opaque, hwaddr addr,
1633 uint64_t value, unsigned size)
1634 {
1635 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1636 HWADDR_PRIx"\n", addr);
1637 }
1638
1639 static const MemoryRegionOps xive_end_source_ops = {
1640 .read = xive_end_source_read,
1641 .write = xive_end_source_write,
1642 .endianness = DEVICE_BIG_ENDIAN,
1643 .valid = {
1644 .min_access_size = 8,
1645 .max_access_size = 8,
1646 },
1647 .impl = {
1648 .min_access_size = 8,
1649 .max_access_size = 8,
1650 },
1651 };
1652
1653 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1654 {
1655 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1656 Object *obj;
1657 Error *local_err = NULL;
1658
1659 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1660 if (!obj) {
1661 error_propagate(errp, local_err);
1662 error_prepend(errp, "required link 'xive' not found: ");
1663 return;
1664 }
1665
1666 xsrc->xrtr = XIVE_ROUTER(obj);
1667
1668 if (!xsrc->nr_ends) {
1669 error_setg(errp, "Number of interrupt needs to be greater than 0");
1670 return;
1671 }
1672
1673 if (xsrc->esb_shift != XIVE_ESB_4K &&
1674 xsrc->esb_shift != XIVE_ESB_64K) {
1675 error_setg(errp, "Invalid ESB shift setting");
1676 return;
1677 }
1678
1679 /*
1680 * Each END is assigned an even/odd pair of MMIO pages, the even page
1681 * manages the ESn field while the odd page manages the ESe field.
1682 */
1683 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1684 &xive_end_source_ops, xsrc, "xive.end",
1685 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1686 }
1687
1688 static Property xive_end_source_properties[] = {
1689 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1690 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1691 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1692 DEFINE_PROP_END_OF_LIST(),
1693 };
1694
1695 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1696 {
1697 DeviceClass *dc = DEVICE_CLASS(klass);
1698
1699 dc->desc = "XIVE END Source";
1700 dc->props = xive_end_source_properties;
1701 dc->realize = xive_end_source_realize;
1702 }
1703
1704 static const TypeInfo xive_end_source_info = {
1705 .name = TYPE_XIVE_END_SOURCE,
1706 .parent = TYPE_DEVICE,
1707 .instance_size = sizeof(XiveENDSource),
1708 .class_init = xive_end_source_class_init,
1709 };
1710
1711 /*
1712 * XIVE Notifier
1713 */
1714 static const TypeInfo xive_notifier_info = {
1715 .name = TYPE_XIVE_NOTIFIER,
1716 .parent = TYPE_INTERFACE,
1717 .class_size = sizeof(XiveNotifierClass),
1718 };
1719
1720 static void xive_register_types(void)
1721 {
1722 type_register_static(&xive_source_info);
1723 type_register_static(&xive_notifier_info);
1724 type_register_static(&xive_router_info);
1725 type_register_static(&xive_end_source_info);
1726 type_register_static(&xive_tctx_info);
1727 }
1728
1729 type_init(xive_register_types)