]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
ppc/xive: Add firmware bit when dumping the ENDs
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "hw/qdev-properties.h"
19 #include "migration/vmstate.h"
20 #include "monitor/monitor.h"
21 #include "hw/irq.h"
22 #include "hw/ppc/xive.h"
23 #include "hw/ppc/xive_regs.h"
24 #include "trace.h"
25
26 /*
27 * XIVE Thread Interrupt Management context
28 */
29
30 /*
31 * Convert a priority number to an Interrupt Pending Buffer (IPB)
32 * register, which indicates a pending interrupt at the priority
33 * corresponding to the bit number
34 */
35 static uint8_t priority_to_ipb(uint8_t priority)
36 {
37 return priority > XIVE_PRIORITY_MAX ?
38 0 : 1 << (XIVE_PRIORITY_MAX - priority);
39 }
40
41 /*
42 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
43 * Interrupt Priority Register (PIPR), which contains the priority of
44 * the most favored pending notification.
45 */
46 static uint8_t ipb_to_pipr(uint8_t ibp)
47 {
48 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
49 }
50
51 static uint8_t exception_mask(uint8_t ring)
52 {
53 switch (ring) {
54 case TM_QW1_OS:
55 return TM_QW1_NSR_EO;
56 case TM_QW3_HV_PHYS:
57 return TM_QW3_NSR_HE;
58 default:
59 g_assert_not_reached();
60 }
61 }
62
63 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
64 {
65 switch (ring) {
66 case TM_QW0_USER:
67 return 0; /* Not supported */
68 case TM_QW1_OS:
69 return tctx->os_output;
70 case TM_QW2_HV_POOL:
71 case TM_QW3_HV_PHYS:
72 return tctx->hv_output;
73 default:
74 return 0;
75 }
76 }
77
78 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
79 {
80 uint8_t *regs = &tctx->regs[ring];
81 uint8_t nsr = regs[TM_NSR];
82 uint8_t mask = exception_mask(ring);
83
84 qemu_irq_lower(xive_tctx_output(tctx, ring));
85
86 if (regs[TM_NSR] & mask) {
87 uint8_t cppr = regs[TM_PIPR];
88
89 regs[TM_CPPR] = cppr;
90
91 /* Reset the pending buffer bit */
92 regs[TM_IPB] &= ~priority_to_ipb(cppr);
93 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
94
95 /* Drop Exception bit */
96 regs[TM_NSR] &= ~mask;
97
98 trace_xive_tctx_accept(tctx->cs->cpu_index, ring,
99 regs[TM_IPB], regs[TM_PIPR],
100 regs[TM_CPPR], regs[TM_NSR]);
101 }
102
103 return (nsr << 8) | regs[TM_CPPR];
104 }
105
106 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
107 {
108 uint8_t *regs = &tctx->regs[ring];
109
110 if (regs[TM_PIPR] < regs[TM_CPPR]) {
111 switch (ring) {
112 case TM_QW1_OS:
113 regs[TM_NSR] |= TM_QW1_NSR_EO;
114 break;
115 case TM_QW3_HV_PHYS:
116 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
117 break;
118 default:
119 g_assert_not_reached();
120 }
121 trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
122 regs[TM_IPB], regs[TM_PIPR],
123 regs[TM_CPPR], regs[TM_NSR]);
124 qemu_irq_raise(xive_tctx_output(tctx, ring));
125 }
126 }
127
128 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
129 {
130 uint8_t *regs = &tctx->regs[ring];
131
132 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
133 regs[TM_IPB], regs[TM_PIPR],
134 cppr, regs[TM_NSR]);
135
136 if (cppr > XIVE_PRIORITY_MAX) {
137 cppr = 0xff;
138 }
139
140 tctx->regs[ring + TM_CPPR] = cppr;
141
142 /* CPPR has changed, check if we need to raise a pending exception */
143 xive_tctx_notify(tctx, ring);
144 }
145
146 void xive_tctx_ipb_update(XiveTCTX *tctx, uint8_t ring, uint8_t ipb)
147 {
148 uint8_t *regs = &tctx->regs[ring];
149
150 regs[TM_IPB] |= ipb;
151 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
152 xive_tctx_notify(tctx, ring);
153 }
154
155 static inline uint32_t xive_tctx_word2(uint8_t *ring)
156 {
157 return *((uint32_t *) &ring[TM_WORD2]);
158 }
159
160 /*
161 * XIVE Thread Interrupt Management Area (TIMA)
162 */
163
164 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
165 hwaddr offset, uint64_t value, unsigned size)
166 {
167 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
168 }
169
170 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
171 hwaddr offset, unsigned size)
172 {
173 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
174 }
175
176 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
177 hwaddr offset, unsigned size)
178 {
179 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
180 uint32_t qw2w2;
181
182 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
183 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
184 return qw2w2;
185 }
186
187 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
188 uint64_t value, unsigned size)
189 {
190 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
191 }
192
193 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
194 hwaddr offset, unsigned size)
195 {
196 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
197 }
198
199 /*
200 * Define an access map for each page of the TIMA that we will use in
201 * the memory region ops to filter values when doing loads and stores
202 * of raw registers values
203 *
204 * Registers accessibility bits :
205 *
206 * 0x0 - no access
207 * 0x1 - write only
208 * 0x2 - read only
209 * 0x3 - read/write
210 */
211
212 static const uint8_t xive_tm_hw_view[] = {
213 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
214 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
215 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
216 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */
217 };
218
219 static const uint8_t xive_tm_hv_view[] = {
220 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
221 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */
222 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */
223 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */
224 };
225
226 static const uint8_t xive_tm_os_view[] = {
227 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */
228 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
229 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
230 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
231 };
232
233 static const uint8_t xive_tm_user_view[] = {
234 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */
235 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */
236 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */
237 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */
238 };
239
240 /*
241 * Overall TIMA access map for the thread interrupt management context
242 * registers
243 */
244 static const uint8_t *xive_tm_views[] = {
245 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
246 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
247 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
248 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
249 };
250
251 /*
252 * Computes a register access mask for a given offset in the TIMA
253 */
254 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
255 {
256 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
257 uint8_t reg_offset = offset & 0x3F;
258 uint8_t reg_mask = write ? 0x1 : 0x2;
259 uint64_t mask = 0x0;
260 int i;
261
262 for (i = 0; i < size; i++) {
263 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
264 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
265 }
266 }
267
268 return mask;
269 }
270
271 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
272 unsigned size)
273 {
274 uint8_t ring_offset = offset & 0x30;
275 uint8_t reg_offset = offset & 0x3F;
276 uint64_t mask = xive_tm_mask(offset, size, true);
277 int i;
278
279 /*
280 * Only 4 or 8 bytes stores are allowed and the User ring is
281 * excluded
282 */
283 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
284 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
285 HWADDR_PRIx"\n", offset);
286 return;
287 }
288
289 /*
290 * Use the register offset for the raw values and filter out
291 * reserved values
292 */
293 for (i = 0; i < size; i++) {
294 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
295 if (byte_mask) {
296 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
297 byte_mask;
298 }
299 }
300 }
301
302 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
303 {
304 uint8_t ring_offset = offset & 0x30;
305 uint8_t reg_offset = offset & 0x3F;
306 uint64_t mask = xive_tm_mask(offset, size, false);
307 uint64_t ret;
308 int i;
309
310 /*
311 * Only 4 or 8 bytes loads are allowed and the User ring is
312 * excluded
313 */
314 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
315 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
316 HWADDR_PRIx"\n", offset);
317 return -1;
318 }
319
320 /* Use the register offset for the raw values */
321 ret = 0;
322 for (i = 0; i < size; i++) {
323 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
324 }
325
326 /* filter out reserved values */
327 return ret & mask;
328 }
329
330 /*
331 * The TM context is mapped twice within each page. Stores and loads
332 * to the first mapping below 2K write and read the specified values
333 * without modification. The second mapping above 2K performs specific
334 * state changes (side effects) in addition to setting/returning the
335 * interrupt management area context of the processor thread.
336 */
337 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
338 hwaddr offset, unsigned size)
339 {
340 return xive_tctx_accept(tctx, TM_QW1_OS);
341 }
342
343 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
344 hwaddr offset, uint64_t value, unsigned size)
345 {
346 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
347 }
348
349 /*
350 * Adjust the IPB to allow a CPU to process event queues of other
351 * priorities during one physical interrupt cycle.
352 */
353 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
354 hwaddr offset, uint64_t value, unsigned size)
355 {
356 xive_tctx_ipb_update(tctx, TM_QW1_OS, priority_to_ipb(value & 0xff));
357 }
358
359 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
360 uint32_t *nvt_idx, bool *vo)
361 {
362 if (nvt_blk) {
363 *nvt_blk = xive_nvt_blk(cam);
364 }
365 if (nvt_idx) {
366 *nvt_idx = xive_nvt_idx(cam);
367 }
368 if (vo) {
369 *vo = !!(cam & TM_QW1W2_VO);
370 }
371 }
372
373 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
374 uint32_t *nvt_idx, bool *vo)
375 {
376 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
377 uint32_t cam = be32_to_cpu(qw1w2);
378
379 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
380 return qw1w2;
381 }
382
383 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
384 {
385 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
386 }
387
388 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
389 hwaddr offset, unsigned size)
390 {
391 uint32_t qw1w2;
392 uint32_t qw1w2_new;
393 uint8_t nvt_blk;
394 uint32_t nvt_idx;
395 bool vo;
396
397 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
398
399 if (!vo) {
400 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
401 nvt_blk, nvt_idx);
402 }
403
404 /* Invalidate CAM line */
405 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
406 xive_tctx_set_os_cam(tctx, qw1w2_new);
407 return qw1w2;
408 }
409
410 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
411 uint8_t nvt_blk, uint32_t nvt_idx)
412 {
413 XiveNVT nvt;
414 uint8_t ipb;
415
416 /*
417 * Grab the associated NVT to pull the pending bits, and merge
418 * them with the IPB of the thread interrupt context registers
419 */
420 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
421 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
422 nvt_blk, nvt_idx);
423 return;
424 }
425
426 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
427
428 if (ipb) {
429 /* Reset the NVT value */
430 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
431 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
432
433 /* Merge in current context */
434 xive_tctx_ipb_update(tctx, TM_QW1_OS, ipb);
435 }
436 }
437
438 /*
439 * Updating the OS CAM line can trigger a resend of interrupt
440 */
441 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
442 hwaddr offset, uint64_t value, unsigned size)
443 {
444 uint32_t cam = value;
445 uint32_t qw1w2 = cpu_to_be32(cam);
446 uint8_t nvt_blk;
447 uint32_t nvt_idx;
448 bool vo;
449
450 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
451
452 /* First update the registers */
453 xive_tctx_set_os_cam(tctx, qw1w2);
454
455 /* Check the interrupt pending bits */
456 if (vo) {
457 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
458 }
459 }
460
461 /*
462 * Define a mapping of "special" operations depending on the TIMA page
463 * offset and the size of the operation.
464 */
465 typedef struct XiveTmOp {
466 uint8_t page_offset;
467 uint32_t op_offset;
468 unsigned size;
469 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
470 hwaddr offset,
471 uint64_t value, unsigned size);
472 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
473 unsigned size);
474 } XiveTmOp;
475
476 static const XiveTmOp xive_tm_operations[] = {
477 /*
478 * MMIOs below 2K : raw values and special operations without side
479 * effects
480 */
481 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
482 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, NULL },
483 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
484 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
485 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
486
487 /* MMIOs above 2K : special operations with side effects */
488 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
489 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
490 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, xive_tm_pull_os_ctx },
491 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, xive_tm_pull_os_ctx },
492 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
493 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
494 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
495 };
496
497 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
498 {
499 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
500 uint32_t op_offset = offset & 0xFFF;
501 int i;
502
503 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
504 const XiveTmOp *xto = &xive_tm_operations[i];
505
506 /* Accesses done from a more privileged TIMA page is allowed */
507 if (xto->page_offset >= page_offset &&
508 xto->op_offset == op_offset &&
509 xto->size == size &&
510 ((write && xto->write_handler) || (!write && xto->read_handler))) {
511 return xto;
512 }
513 }
514 return NULL;
515 }
516
517 /*
518 * TIMA MMIO handlers
519 */
520 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
521 uint64_t value, unsigned size)
522 {
523 const XiveTmOp *xto;
524
525 trace_xive_tctx_tm_write(offset, size, value);
526
527 /*
528 * TODO: check V bit in Q[0-3]W2
529 */
530
531 /*
532 * First, check for special operations in the 2K region
533 */
534 if (offset & 0x800) {
535 xto = xive_tm_find_op(offset, size, true);
536 if (!xto) {
537 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
538 "@%"HWADDR_PRIx"\n", offset);
539 } else {
540 xto->write_handler(xptr, tctx, offset, value, size);
541 }
542 return;
543 }
544
545 /*
546 * Then, for special operations in the region below 2K.
547 */
548 xto = xive_tm_find_op(offset, size, true);
549 if (xto) {
550 xto->write_handler(xptr, tctx, offset, value, size);
551 return;
552 }
553
554 /*
555 * Finish with raw access to the register values
556 */
557 xive_tm_raw_write(tctx, offset, value, size);
558 }
559
560 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
561 unsigned size)
562 {
563 const XiveTmOp *xto;
564 uint64_t ret;
565
566 /*
567 * TODO: check V bit in Q[0-3]W2
568 */
569
570 /*
571 * First, check for special operations in the 2K region
572 */
573 if (offset & 0x800) {
574 xto = xive_tm_find_op(offset, size, false);
575 if (!xto) {
576 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
577 "@%"HWADDR_PRIx"\n", offset);
578 return -1;
579 }
580 ret = xto->read_handler(xptr, tctx, offset, size);
581 goto out;
582 }
583
584 /*
585 * Then, for special operations in the region below 2K.
586 */
587 xto = xive_tm_find_op(offset, size, false);
588 if (xto) {
589 ret = xto->read_handler(xptr, tctx, offset, size);
590 goto out;
591 }
592
593 /*
594 * Finish with raw access to the register values
595 */
596 ret = xive_tm_raw_read(tctx, offset, size);
597 out:
598 trace_xive_tctx_tm_read(offset, size, ret);
599 return ret;
600 }
601
602 static char *xive_tctx_ring_print(uint8_t *ring)
603 {
604 uint32_t w2 = xive_tctx_word2(ring);
605
606 return g_strdup_printf("%02x %02x %02x %02x %02x "
607 "%02x %02x %02x %08x",
608 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
609 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
610 be32_to_cpu(w2));
611 }
612
613 static const char * const xive_tctx_ring_names[] = {
614 "USER", "OS", "POOL", "PHYS",
615 };
616
617 /*
618 * kvm_irqchip_in_kernel() will cause the compiler to turn this
619 * info a nop if CONFIG_KVM isn't defined.
620 */
621 #define xive_in_kernel(xptr) \
622 (kvm_irqchip_in_kernel() && \
623 ({ \
624 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \
625 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \
626 }))
627
628 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
629 {
630 int cpu_index;
631 int i;
632
633 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
634 * are hot plugged or unplugged.
635 */
636 if (!tctx) {
637 return;
638 }
639
640 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
641
642 if (xive_in_kernel(tctx->xptr)) {
643 Error *local_err = NULL;
644
645 kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
646 if (local_err) {
647 error_report_err(local_err);
648 return;
649 }
650 }
651
652 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
653 " W2\n", cpu_index);
654
655 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
656 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
657 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
658 xive_tctx_ring_names[i], s);
659 g_free(s);
660 }
661 }
662
663 void xive_tctx_reset(XiveTCTX *tctx)
664 {
665 memset(tctx->regs, 0, sizeof(tctx->regs));
666
667 /* Set some defaults */
668 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
669 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
670 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
671
672 /*
673 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
674 * CPPR is first set.
675 */
676 tctx->regs[TM_QW1_OS + TM_PIPR] =
677 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
678 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
679 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
680 }
681
682 static void xive_tctx_realize(DeviceState *dev, Error **errp)
683 {
684 XiveTCTX *tctx = XIVE_TCTX(dev);
685 PowerPCCPU *cpu;
686 CPUPPCState *env;
687
688 assert(tctx->cs);
689 assert(tctx->xptr);
690
691 cpu = POWERPC_CPU(tctx->cs);
692 env = &cpu->env;
693 switch (PPC_INPUT(env)) {
694 case PPC_FLAGS_INPUT_POWER9:
695 tctx->hv_output = env->irq_inputs[POWER9_INPUT_HINT];
696 tctx->os_output = env->irq_inputs[POWER9_INPUT_INT];
697 break;
698
699 default:
700 error_setg(errp, "XIVE interrupt controller does not support "
701 "this CPU bus model");
702 return;
703 }
704
705 /* Connect the presenter to the VCPU (required for CPU hotplug) */
706 if (xive_in_kernel(tctx->xptr)) {
707 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
708 return;
709 }
710 }
711 }
712
713 static int vmstate_xive_tctx_pre_save(void *opaque)
714 {
715 XiveTCTX *tctx = XIVE_TCTX(opaque);
716 Error *local_err = NULL;
717 int ret;
718
719 if (xive_in_kernel(tctx->xptr)) {
720 ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
721 if (ret < 0) {
722 error_report_err(local_err);
723 return ret;
724 }
725 }
726
727 return 0;
728 }
729
730 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
731 {
732 XiveTCTX *tctx = XIVE_TCTX(opaque);
733 Error *local_err = NULL;
734 int ret;
735
736 if (xive_in_kernel(tctx->xptr)) {
737 /*
738 * Required for hotplugged CPU, for which the state comes
739 * after all states of the machine.
740 */
741 ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
742 if (ret < 0) {
743 error_report_err(local_err);
744 return ret;
745 }
746 }
747
748 return 0;
749 }
750
751 static const VMStateDescription vmstate_xive_tctx = {
752 .name = TYPE_XIVE_TCTX,
753 .version_id = 1,
754 .minimum_version_id = 1,
755 .pre_save = vmstate_xive_tctx_pre_save,
756 .post_load = vmstate_xive_tctx_post_load,
757 .fields = (VMStateField[]) {
758 VMSTATE_BUFFER(regs, XiveTCTX),
759 VMSTATE_END_OF_LIST()
760 },
761 };
762
763 static Property xive_tctx_properties[] = {
764 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
765 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
766 XivePresenter *),
767 DEFINE_PROP_END_OF_LIST(),
768 };
769
770 static void xive_tctx_class_init(ObjectClass *klass, void *data)
771 {
772 DeviceClass *dc = DEVICE_CLASS(klass);
773
774 dc->desc = "XIVE Interrupt Thread Context";
775 dc->realize = xive_tctx_realize;
776 dc->vmsd = &vmstate_xive_tctx;
777 device_class_set_props(dc, xive_tctx_properties);
778 /*
779 * Reason: part of XIVE interrupt controller, needs to be wired up
780 * by xive_tctx_create().
781 */
782 dc->user_creatable = false;
783 }
784
785 static const TypeInfo xive_tctx_info = {
786 .name = TYPE_XIVE_TCTX,
787 .parent = TYPE_DEVICE,
788 .instance_size = sizeof(XiveTCTX),
789 .class_init = xive_tctx_class_init,
790 };
791
792 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
793 {
794 Object *obj;
795
796 obj = object_new(TYPE_XIVE_TCTX);
797 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
798 object_unref(obj);
799 object_property_set_link(obj, "cpu", cpu, &error_abort);
800 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
801 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
802 object_unparent(obj);
803 return NULL;
804 }
805 return obj;
806 }
807
808 void xive_tctx_destroy(XiveTCTX *tctx)
809 {
810 Object *obj = OBJECT(tctx);
811
812 object_unparent(obj);
813 }
814
815 /*
816 * XIVE ESB helpers
817 */
818
819 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
820 {
821 uint8_t old_pq = *pq & 0x3;
822
823 *pq &= ~0x3;
824 *pq |= value & 0x3;
825
826 return old_pq;
827 }
828
829 static bool xive_esb_trigger(uint8_t *pq)
830 {
831 uint8_t old_pq = *pq & 0x3;
832
833 switch (old_pq) {
834 case XIVE_ESB_RESET:
835 xive_esb_set(pq, XIVE_ESB_PENDING);
836 return true;
837 case XIVE_ESB_PENDING:
838 case XIVE_ESB_QUEUED:
839 xive_esb_set(pq, XIVE_ESB_QUEUED);
840 return false;
841 case XIVE_ESB_OFF:
842 xive_esb_set(pq, XIVE_ESB_OFF);
843 return false;
844 default:
845 g_assert_not_reached();
846 }
847 }
848
849 static bool xive_esb_eoi(uint8_t *pq)
850 {
851 uint8_t old_pq = *pq & 0x3;
852
853 switch (old_pq) {
854 case XIVE_ESB_RESET:
855 case XIVE_ESB_PENDING:
856 xive_esb_set(pq, XIVE_ESB_RESET);
857 return false;
858 case XIVE_ESB_QUEUED:
859 xive_esb_set(pq, XIVE_ESB_PENDING);
860 return true;
861 case XIVE_ESB_OFF:
862 xive_esb_set(pq, XIVE_ESB_OFF);
863 return false;
864 default:
865 g_assert_not_reached();
866 }
867 }
868
869 /*
870 * XIVE Interrupt Source (or IVSE)
871 */
872
873 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
874 {
875 assert(srcno < xsrc->nr_irqs);
876
877 return xsrc->status[srcno] & 0x3;
878 }
879
880 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
881 {
882 assert(srcno < xsrc->nr_irqs);
883
884 return xive_esb_set(&xsrc->status[srcno], pq);
885 }
886
887 /*
888 * Returns whether the event notification should be forwarded.
889 */
890 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
891 {
892 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
893
894 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
895
896 switch (old_pq) {
897 case XIVE_ESB_RESET:
898 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
899 return true;
900 default:
901 return false;
902 }
903 }
904
905 /*
906 * Returns whether the event notification should be forwarded.
907 */
908 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
909 {
910 bool ret;
911
912 assert(srcno < xsrc->nr_irqs);
913
914 ret = xive_esb_trigger(&xsrc->status[srcno]);
915
916 if (xive_source_irq_is_lsi(xsrc, srcno) &&
917 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
918 qemu_log_mask(LOG_GUEST_ERROR,
919 "XIVE: queued an event on LSI IRQ %d\n", srcno);
920 }
921
922 return ret;
923 }
924
925 /*
926 * Returns whether the event notification should be forwarded.
927 */
928 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
929 {
930 bool ret;
931
932 assert(srcno < xsrc->nr_irqs);
933
934 ret = xive_esb_eoi(&xsrc->status[srcno]);
935
936 /*
937 * LSI sources do not set the Q bit but they can still be
938 * asserted, in which case we should forward a new event
939 * notification
940 */
941 if (xive_source_irq_is_lsi(xsrc, srcno) &&
942 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
943 ret = xive_source_lsi_trigger(xsrc, srcno);
944 }
945
946 return ret;
947 }
948
949 /*
950 * Forward the source event notification to the Router
951 */
952 static void xive_source_notify(XiveSource *xsrc, int srcno)
953 {
954 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
955
956 if (xnc->notify) {
957 xnc->notify(xsrc->xive, srcno);
958 }
959 }
960
961 /*
962 * In a two pages ESB MMIO setting, even page is the trigger page, odd
963 * page is for management
964 */
965 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
966 {
967 return !((addr >> shift) & 1);
968 }
969
970 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
971 {
972 return xive_source_esb_has_2page(xsrc) &&
973 addr_is_even(addr, xsrc->esb_shift - 1);
974 }
975
976 /*
977 * ESB MMIO loads
978 * Trigger page Management/EOI page
979 *
980 * ESB MMIO setting 2 pages 1 or 2 pages
981 *
982 * 0x000 .. 0x3FF -1 EOI and return 0|1
983 * 0x400 .. 0x7FF -1 EOI and return 0|1
984 * 0x800 .. 0xBFF -1 return PQ
985 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
986 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
987 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
988 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
989 */
990 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
991 {
992 XiveSource *xsrc = XIVE_SOURCE(opaque);
993 uint32_t offset = addr & 0xFFF;
994 uint32_t srcno = addr >> xsrc->esb_shift;
995 uint64_t ret = -1;
996
997 /* In a two pages ESB MMIO setting, trigger page should not be read */
998 if (xive_source_is_trigger_page(xsrc, addr)) {
999 qemu_log_mask(LOG_GUEST_ERROR,
1000 "XIVE: invalid load on IRQ %d trigger page at "
1001 "0x%"HWADDR_PRIx"\n", srcno, addr);
1002 return -1;
1003 }
1004
1005 switch (offset) {
1006 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1007 ret = xive_source_esb_eoi(xsrc, srcno);
1008
1009 /* Forward the source event notification for routing */
1010 if (ret) {
1011 xive_source_notify(xsrc, srcno);
1012 }
1013 break;
1014
1015 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1016 ret = xive_source_esb_get(xsrc, srcno);
1017 break;
1018
1019 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1020 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1021 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1022 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1023 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1024 break;
1025 default:
1026 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1027 offset);
1028 }
1029
1030 trace_xive_source_esb_read(addr, srcno, ret);
1031
1032 return ret;
1033 }
1034
1035 /*
1036 * ESB MMIO stores
1037 * Trigger page Management/EOI page
1038 *
1039 * ESB MMIO setting 2 pages 1 or 2 pages
1040 *
1041 * 0x000 .. 0x3FF Trigger Trigger
1042 * 0x400 .. 0x7FF Trigger EOI
1043 * 0x800 .. 0xBFF Trigger undefined
1044 * 0xC00 .. 0xCFF Trigger PQ=00
1045 * 0xD00 .. 0xDFF Trigger PQ=01
1046 * 0xE00 .. 0xDFF Trigger PQ=10
1047 * 0xF00 .. 0xDFF Trigger PQ=11
1048 */
1049 static void xive_source_esb_write(void *opaque, hwaddr addr,
1050 uint64_t value, unsigned size)
1051 {
1052 XiveSource *xsrc = XIVE_SOURCE(opaque);
1053 uint32_t offset = addr & 0xFFF;
1054 uint32_t srcno = addr >> xsrc->esb_shift;
1055 bool notify = false;
1056
1057 trace_xive_source_esb_write(addr, srcno, value);
1058
1059 /* In a two pages ESB MMIO setting, trigger page only triggers */
1060 if (xive_source_is_trigger_page(xsrc, addr)) {
1061 notify = xive_source_esb_trigger(xsrc, srcno);
1062 goto out;
1063 }
1064
1065 switch (offset) {
1066 case 0 ... 0x3FF:
1067 notify = xive_source_esb_trigger(xsrc, srcno);
1068 break;
1069
1070 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1071 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1072 qemu_log_mask(LOG_GUEST_ERROR,
1073 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1074 return;
1075 }
1076
1077 notify = xive_source_esb_eoi(xsrc, srcno);
1078 break;
1079
1080 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1081 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1082 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1083 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1084 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1085 break;
1086
1087 default:
1088 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1089 offset);
1090 return;
1091 }
1092
1093 out:
1094 /* Forward the source event notification for routing */
1095 if (notify) {
1096 xive_source_notify(xsrc, srcno);
1097 }
1098 }
1099
1100 static const MemoryRegionOps xive_source_esb_ops = {
1101 .read = xive_source_esb_read,
1102 .write = xive_source_esb_write,
1103 .endianness = DEVICE_BIG_ENDIAN,
1104 .valid = {
1105 .min_access_size = 8,
1106 .max_access_size = 8,
1107 },
1108 .impl = {
1109 .min_access_size = 8,
1110 .max_access_size = 8,
1111 },
1112 };
1113
1114 void xive_source_set_irq(void *opaque, int srcno, int val)
1115 {
1116 XiveSource *xsrc = XIVE_SOURCE(opaque);
1117 bool notify = false;
1118
1119 if (xive_source_irq_is_lsi(xsrc, srcno)) {
1120 if (val) {
1121 notify = xive_source_lsi_trigger(xsrc, srcno);
1122 } else {
1123 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
1124 }
1125 } else {
1126 if (val) {
1127 notify = xive_source_esb_trigger(xsrc, srcno);
1128 }
1129 }
1130
1131 /* Forward the source event notification for routing */
1132 if (notify) {
1133 xive_source_notify(xsrc, srcno);
1134 }
1135 }
1136
1137 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
1138 {
1139 int i;
1140
1141 for (i = 0; i < xsrc->nr_irqs; i++) {
1142 uint8_t pq = xive_source_esb_get(xsrc, i);
1143
1144 if (pq == XIVE_ESB_OFF) {
1145 continue;
1146 }
1147
1148 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
1149 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1150 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1151 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1152 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
1153 }
1154 }
1155
1156 static void xive_source_reset(void *dev)
1157 {
1158 XiveSource *xsrc = XIVE_SOURCE(dev);
1159
1160 /* Do not clear the LSI bitmap */
1161
1162 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
1163 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
1164 }
1165
1166 static void xive_source_realize(DeviceState *dev, Error **errp)
1167 {
1168 XiveSource *xsrc = XIVE_SOURCE(dev);
1169 size_t esb_len = xive_source_esb_len(xsrc);
1170
1171 assert(xsrc->xive);
1172
1173 if (!xsrc->nr_irqs) {
1174 error_setg(errp, "Number of interrupt needs to be greater than 0");
1175 return;
1176 }
1177
1178 if (xsrc->esb_shift != XIVE_ESB_4K &&
1179 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1180 xsrc->esb_shift != XIVE_ESB_64K &&
1181 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1182 error_setg(errp, "Invalid ESB shift setting");
1183 return;
1184 }
1185
1186 xsrc->status = g_malloc0(xsrc->nr_irqs);
1187 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1188
1189 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1190 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1191 &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1192 esb_len);
1193 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1194
1195 qemu_register_reset(xive_source_reset, dev);
1196 }
1197
1198 static const VMStateDescription vmstate_xive_source = {
1199 .name = TYPE_XIVE_SOURCE,
1200 .version_id = 1,
1201 .minimum_version_id = 1,
1202 .fields = (VMStateField[]) {
1203 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1204 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1205 VMSTATE_END_OF_LIST()
1206 },
1207 };
1208
1209 /*
1210 * The default XIVE interrupt source setting for the ESB MMIOs is two
1211 * 64k pages without Store EOI, to be in sync with KVM.
1212 */
1213 static Property xive_source_properties[] = {
1214 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1215 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1216 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1217 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1218 XiveNotifier *),
1219 DEFINE_PROP_END_OF_LIST(),
1220 };
1221
1222 static void xive_source_class_init(ObjectClass *klass, void *data)
1223 {
1224 DeviceClass *dc = DEVICE_CLASS(klass);
1225
1226 dc->desc = "XIVE Interrupt Source";
1227 device_class_set_props(dc, xive_source_properties);
1228 dc->realize = xive_source_realize;
1229 dc->vmsd = &vmstate_xive_source;
1230 /*
1231 * Reason: part of XIVE interrupt controller, needs to be wired up,
1232 * e.g. by spapr_xive_instance_init().
1233 */
1234 dc->user_creatable = false;
1235 }
1236
1237 static const TypeInfo xive_source_info = {
1238 .name = TYPE_XIVE_SOURCE,
1239 .parent = TYPE_DEVICE,
1240 .instance_size = sizeof(XiveSource),
1241 .class_init = xive_source_class_init,
1242 };
1243
1244 /*
1245 * XiveEND helpers
1246 */
1247
1248 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1249 {
1250 uint64_t qaddr_base = xive_end_qaddr(end);
1251 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1252 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1253 uint32_t qentries = 1 << (qsize + 10);
1254 int i;
1255
1256 /*
1257 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1258 */
1259 monitor_printf(mon, " [ ");
1260 qindex = (qindex - (width - 1)) & (qentries - 1);
1261 for (i = 0; i < width; i++) {
1262 uint64_t qaddr = qaddr_base + (qindex << 2);
1263 uint32_t qdata = -1;
1264
1265 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1266 sizeof(qdata))) {
1267 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1268 HWADDR_PRIx "\n", qaddr);
1269 return;
1270 }
1271 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1272 be32_to_cpu(qdata));
1273 qindex = (qindex + 1) & (qentries - 1);
1274 }
1275 monitor_printf(mon, "]");
1276 }
1277
1278 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1279 {
1280 uint64_t qaddr_base = xive_end_qaddr(end);
1281 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1282 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1283 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1284 uint32_t qentries = 1 << (qsize + 10);
1285
1286 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1287 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1288 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1289 uint8_t pq;
1290
1291 if (!xive_end_is_valid(end)) {
1292 return;
1293 }
1294
1295 pq = xive_get_field32(END_W1_ESn, end->w1);
1296
1297 monitor_printf(mon, " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1298 end_idx,
1299 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1300 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1301 xive_end_is_valid(end) ? 'v' : '-',
1302 xive_end_is_enqueue(end) ? 'q' : '-',
1303 xive_end_is_notify(end) ? 'n' : '-',
1304 xive_end_is_backlog(end) ? 'b' : '-',
1305 xive_end_is_escalate(end) ? 'e' : '-',
1306 xive_end_is_uncond_escalation(end) ? 'u' : '-',
1307 xive_end_is_silent_escalation(end) ? 's' : '-',
1308 xive_end_is_firmware(end) ? 'f' : '-',
1309 priority, nvt_blk, nvt_idx);
1310
1311 if (qaddr_base) {
1312 monitor_printf(mon, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1313 qaddr_base, qindex, qentries, qgen);
1314 xive_end_queue_pic_print_info(end, 6, mon);
1315 }
1316 monitor_printf(mon, "\n");
1317 }
1318
1319 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1320 {
1321 uint64_t qaddr_base = xive_end_qaddr(end);
1322 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1323 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1324 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1325
1326 uint64_t qaddr = qaddr_base + (qindex << 2);
1327 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1328 uint32_t qentries = 1 << (qsize + 10);
1329
1330 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1331 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1332 HWADDR_PRIx "\n", qaddr);
1333 return;
1334 }
1335
1336 qindex = (qindex + 1) & (qentries - 1);
1337 if (qindex == 0) {
1338 qgen ^= 1;
1339 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1340 }
1341 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1342 }
1343
1344 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx,
1345 Monitor *mon)
1346 {
1347 XiveEAS *eas = (XiveEAS *) &end->w4;
1348 uint8_t pq;
1349
1350 if (!xive_end_is_escalate(end)) {
1351 return;
1352 }
1353
1354 pq = xive_get_field32(END_W1_ESe, end->w1);
1355
1356 monitor_printf(mon, " %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1357 end_idx,
1358 pq & XIVE_ESB_VAL_P ? 'P' : '-',
1359 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1360 xive_eas_is_valid(eas) ? 'V' : ' ',
1361 xive_eas_is_masked(eas) ? 'M' : ' ',
1362 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1363 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1364 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1365 }
1366
1367 /*
1368 * XIVE Router (aka. Virtualization Controller or IVRE)
1369 */
1370
1371 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1372 XiveEAS *eas)
1373 {
1374 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1375
1376 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1377 }
1378
1379 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1380 XiveEND *end)
1381 {
1382 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1383
1384 return xrc->get_end(xrtr, end_blk, end_idx, end);
1385 }
1386
1387 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1388 XiveEND *end, uint8_t word_number)
1389 {
1390 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1391
1392 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1393 }
1394
1395 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1396 XiveNVT *nvt)
1397 {
1398 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1399
1400 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1401 }
1402
1403 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1404 XiveNVT *nvt, uint8_t word_number)
1405 {
1406 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1407
1408 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1409 }
1410
1411 static int xive_router_get_block_id(XiveRouter *xrtr)
1412 {
1413 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1414
1415 return xrc->get_block_id(xrtr);
1416 }
1417
1418 static void xive_router_realize(DeviceState *dev, Error **errp)
1419 {
1420 XiveRouter *xrtr = XIVE_ROUTER(dev);
1421
1422 assert(xrtr->xfb);
1423 }
1424
1425 /*
1426 * Encode the HW CAM line in the block group mode format :
1427 *
1428 * chip << 19 | 0000000 0 0001 thread (7Bit)
1429 */
1430 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1431 {
1432 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1433 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1434 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1435
1436 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1437 }
1438
1439 /*
1440 * The thread context register words are in big-endian format.
1441 */
1442 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1443 uint8_t format,
1444 uint8_t nvt_blk, uint32_t nvt_idx,
1445 bool cam_ignore, uint32_t logic_serv)
1446 {
1447 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1448 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1449 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1450 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1451 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1452
1453 /*
1454 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1455 * identifier are ignored in the "CAM" match.
1456 */
1457
1458 if (format == 0) {
1459 if (cam_ignore == true) {
1460 /*
1461 * F=0 & i=1: Logical server notification (bits ignored at
1462 * the end of the NVT identifier)
1463 */
1464 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1465 nvt_blk, nvt_idx);
1466 return -1;
1467 }
1468
1469 /* F=0 & i=0: Specific NVT notification */
1470
1471 /* PHYS ring */
1472 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1473 cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1474 return TM_QW3_HV_PHYS;
1475 }
1476
1477 /* HV POOL ring */
1478 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1479 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1480 return TM_QW2_HV_POOL;
1481 }
1482
1483 /* OS ring */
1484 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1485 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1486 return TM_QW1_OS;
1487 }
1488 } else {
1489 /* F=1 : User level Event-Based Branch (EBB) notification */
1490
1491 /* USER ring */
1492 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1493 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1494 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1495 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1496 return TM_QW0_USER;
1497 }
1498 }
1499 return -1;
1500 }
1501
1502 /*
1503 * This is our simple Xive Presenter Engine model. It is merged in the
1504 * Router as it does not require an extra object.
1505 *
1506 * It receives notification requests sent by the IVRE to find one
1507 * matching NVT (or more) dispatched on the processor threads. In case
1508 * of a single NVT notification, the process is abreviated and the
1509 * thread is signaled if a match is found. In case of a logical server
1510 * notification (bits ignored at the end of the NVT identifier), the
1511 * IVPE and IVRE select a winning thread using different filters. This
1512 * involves 2 or 3 exchanges on the PowerBus that the model does not
1513 * support.
1514 *
1515 * The parameters represent what is sent on the PowerBus
1516 */
1517 static bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1518 uint8_t nvt_blk, uint32_t nvt_idx,
1519 bool cam_ignore, uint8_t priority,
1520 uint32_t logic_serv)
1521 {
1522 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1523 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1524 int count;
1525
1526 /*
1527 * Ask the machine to scan the interrupt controllers for a match
1528 */
1529 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, cam_ignore,
1530 priority, logic_serv, &match);
1531 if (count < 0) {
1532 return false;
1533 }
1534
1535 /* handle CPU exception delivery */
1536 if (count) {
1537 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring);
1538 xive_tctx_ipb_update(match.tctx, match.ring, priority_to_ipb(priority));
1539 }
1540
1541 return !!count;
1542 }
1543
1544 /*
1545 * Notification using the END ESe/ESn bit (Event State Buffer for
1546 * escalation and notification). Provide further coalescing in the
1547 * Router.
1548 */
1549 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1550 uint32_t end_idx, XiveEND *end,
1551 uint32_t end_esmask)
1552 {
1553 uint8_t pq = xive_get_field32(end_esmask, end->w1);
1554 bool notify = xive_esb_trigger(&pq);
1555
1556 if (pq != xive_get_field32(end_esmask, end->w1)) {
1557 end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1558 xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1559 }
1560
1561 /* ESe/n[Q]=1 : end of notification */
1562 return notify;
1563 }
1564
1565 /*
1566 * An END trigger can come from an event trigger (IPI or HW) or from
1567 * another chip. We don't model the PowerBus but the END trigger
1568 * message has the same parameters than in the function below.
1569 */
1570 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1571 uint32_t end_idx, uint32_t end_data)
1572 {
1573 XiveEND end;
1574 uint8_t priority;
1575 uint8_t format;
1576 uint8_t nvt_blk;
1577 uint32_t nvt_idx;
1578 XiveNVT nvt;
1579 bool found;
1580
1581 /* END cache lookup */
1582 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1583 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1584 end_idx);
1585 return;
1586 }
1587
1588 if (!xive_end_is_valid(&end)) {
1589 trace_xive_router_end_notify(end_blk, end_idx, end_data);
1590 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1591 end_blk, end_idx);
1592 return;
1593 }
1594
1595 if (xive_end_is_enqueue(&end)) {
1596 xive_end_enqueue(&end, end_data);
1597 /* Enqueuing event data modifies the EQ toggle and index */
1598 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1599 }
1600
1601 /*
1602 * When the END is silent, we skip the notification part.
1603 */
1604 if (xive_end_is_silent_escalation(&end)) {
1605 goto do_escalation;
1606 }
1607
1608 /*
1609 * The W7 format depends on the F bit in W6. It defines the type
1610 * of the notification :
1611 *
1612 * F=0 : single or multiple NVT notification
1613 * F=1 : User level Event-Based Branch (EBB) notification, no
1614 * priority
1615 */
1616 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1617 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1618
1619 /* The END is masked */
1620 if (format == 0 && priority == 0xff) {
1621 return;
1622 }
1623
1624 /*
1625 * Check the END ESn (Event State Buffer for notification) for
1626 * even further coalescing in the Router
1627 */
1628 if (!xive_end_is_notify(&end)) {
1629 /* ESn[Q]=1 : end of notification */
1630 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1631 &end, END_W1_ESn)) {
1632 return;
1633 }
1634 }
1635
1636 /*
1637 * Follows IVPE notification
1638 */
1639 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1640 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1641
1642 /* NVT cache lookup */
1643 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1644 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1645 nvt_blk, nvt_idx);
1646 return;
1647 }
1648
1649 if (!xive_nvt_is_valid(&nvt)) {
1650 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1651 nvt_blk, nvt_idx);
1652 return;
1653 }
1654
1655 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1656 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1657 priority,
1658 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1659
1660 /* TODO: Auto EOI. */
1661
1662 if (found) {
1663 return;
1664 }
1665
1666 /*
1667 * If no matching NVT is dispatched on a HW thread :
1668 * - specific VP: update the NVT structure if backlog is activated
1669 * - logical server : forward request to IVPE (not supported)
1670 */
1671 if (xive_end_is_backlog(&end)) {
1672 uint8_t ipb;
1673
1674 if (format == 1) {
1675 qemu_log_mask(LOG_GUEST_ERROR,
1676 "XIVE: END %x/%x invalid config: F1 & backlog\n",
1677 end_blk, end_idx);
1678 return;
1679 }
1680 /*
1681 * Record the IPB in the associated NVT structure for later
1682 * use. The presenter will resend the interrupt when the vCPU
1683 * is dispatched again on a HW thread.
1684 */
1685 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | priority_to_ipb(priority);
1686 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1687 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1688
1689 /*
1690 * On HW, follows a "Broadcast Backlog" to IVPEs
1691 */
1692 }
1693
1694 do_escalation:
1695 /*
1696 * If activated, escalate notification using the ESe PQ bits and
1697 * the EAS in w4-5
1698 */
1699 if (!xive_end_is_escalate(&end)) {
1700 return;
1701 }
1702
1703 /*
1704 * Check the END ESe (Event State Buffer for escalation) for even
1705 * further coalescing in the Router
1706 */
1707 if (!xive_end_is_uncond_escalation(&end)) {
1708 /* ESe[Q]=1 : end of notification */
1709 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1710 &end, END_W1_ESe)) {
1711 return;
1712 }
1713 }
1714
1715 trace_xive_router_end_escalate(end_blk, end_idx,
1716 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1717 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1718 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1719 /*
1720 * The END trigger becomes an Escalation trigger
1721 */
1722 xive_router_end_notify(xrtr,
1723 xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
1724 xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
1725 xive_get_field32(END_W5_ESC_END_DATA, end.w5));
1726 }
1727
1728 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1729 {
1730 XiveRouter *xrtr = XIVE_ROUTER(xn);
1731 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
1732 uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
1733 XiveEAS eas;
1734
1735 /* EAS cache lookup */
1736 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1737 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1738 return;
1739 }
1740
1741 /*
1742 * The IVRE checks the State Bit Cache at this point. We skip the
1743 * SBC lookup because the state bits of the sources are modeled
1744 * internally in QEMU.
1745 */
1746
1747 if (!xive_eas_is_valid(&eas)) {
1748 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1749 return;
1750 }
1751
1752 if (xive_eas_is_masked(&eas)) {
1753 /* Notification completed */
1754 return;
1755 }
1756
1757 /*
1758 * The event trigger becomes an END trigger
1759 */
1760 xive_router_end_notify(xrtr,
1761 xive_get_field64(EAS_END_BLOCK, eas.w),
1762 xive_get_field64(EAS_END_INDEX, eas.w),
1763 xive_get_field64(EAS_END_DATA, eas.w));
1764 }
1765
1766 static Property xive_router_properties[] = {
1767 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
1768 TYPE_XIVE_FABRIC, XiveFabric *),
1769 DEFINE_PROP_END_OF_LIST(),
1770 };
1771
1772 static void xive_router_class_init(ObjectClass *klass, void *data)
1773 {
1774 DeviceClass *dc = DEVICE_CLASS(klass);
1775 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1776
1777 dc->desc = "XIVE Router Engine";
1778 device_class_set_props(dc, xive_router_properties);
1779 /* Parent is SysBusDeviceClass. No need to call its realize hook */
1780 dc->realize = xive_router_realize;
1781 xnc->notify = xive_router_notify;
1782 }
1783
1784 static const TypeInfo xive_router_info = {
1785 .name = TYPE_XIVE_ROUTER,
1786 .parent = TYPE_SYS_BUS_DEVICE,
1787 .abstract = true,
1788 .instance_size = sizeof(XiveRouter),
1789 .class_size = sizeof(XiveRouterClass),
1790 .class_init = xive_router_class_init,
1791 .interfaces = (InterfaceInfo[]) {
1792 { TYPE_XIVE_NOTIFIER },
1793 { TYPE_XIVE_PRESENTER },
1794 { }
1795 }
1796 };
1797
1798 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1799 {
1800 if (!xive_eas_is_valid(eas)) {
1801 return;
1802 }
1803
1804 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1805 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1806 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1807 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1808 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1809 }
1810
1811 /*
1812 * END ESB MMIO loads
1813 */
1814 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1815 {
1816 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1817 uint32_t offset = addr & 0xFFF;
1818 uint8_t end_blk;
1819 uint32_t end_idx;
1820 XiveEND end;
1821 uint32_t end_esmask;
1822 uint8_t pq;
1823 uint64_t ret = -1;
1824
1825 /*
1826 * The block id should be deduced from the load address on the END
1827 * ESB MMIO but our model only supports a single block per XIVE chip.
1828 */
1829 end_blk = xive_router_get_block_id(xsrc->xrtr);
1830 end_idx = addr >> (xsrc->esb_shift + 1);
1831
1832 trace_xive_end_source_read(end_blk, end_idx, addr);
1833
1834 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1835 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1836 end_idx);
1837 return -1;
1838 }
1839
1840 if (!xive_end_is_valid(&end)) {
1841 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1842 end_blk, end_idx);
1843 return -1;
1844 }
1845
1846 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1847 pq = xive_get_field32(end_esmask, end.w1);
1848
1849 switch (offset) {
1850 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1851 ret = xive_esb_eoi(&pq);
1852
1853 /* Forward the source event notification for routing ?? */
1854 break;
1855
1856 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1857 ret = pq;
1858 break;
1859
1860 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1861 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1862 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1863 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1864 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1865 break;
1866 default:
1867 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1868 offset);
1869 return -1;
1870 }
1871
1872 if (pq != xive_get_field32(end_esmask, end.w1)) {
1873 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1874 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1875 }
1876
1877 return ret;
1878 }
1879
1880 /*
1881 * END ESB MMIO stores are invalid
1882 */
1883 static void xive_end_source_write(void *opaque, hwaddr addr,
1884 uint64_t value, unsigned size)
1885 {
1886 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1887 HWADDR_PRIx"\n", addr);
1888 }
1889
1890 static const MemoryRegionOps xive_end_source_ops = {
1891 .read = xive_end_source_read,
1892 .write = xive_end_source_write,
1893 .endianness = DEVICE_BIG_ENDIAN,
1894 .valid = {
1895 .min_access_size = 8,
1896 .max_access_size = 8,
1897 },
1898 .impl = {
1899 .min_access_size = 8,
1900 .max_access_size = 8,
1901 },
1902 };
1903
1904 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1905 {
1906 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1907
1908 assert(xsrc->xrtr);
1909
1910 if (!xsrc->nr_ends) {
1911 error_setg(errp, "Number of interrupt needs to be greater than 0");
1912 return;
1913 }
1914
1915 if (xsrc->esb_shift != XIVE_ESB_4K &&
1916 xsrc->esb_shift != XIVE_ESB_64K) {
1917 error_setg(errp, "Invalid ESB shift setting");
1918 return;
1919 }
1920
1921 /*
1922 * Each END is assigned an even/odd pair of MMIO pages, the even page
1923 * manages the ESn field while the odd page manages the ESe field.
1924 */
1925 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1926 &xive_end_source_ops, xsrc, "xive.end",
1927 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1928 }
1929
1930 static Property xive_end_source_properties[] = {
1931 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1932 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1933 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
1934 XiveRouter *),
1935 DEFINE_PROP_END_OF_LIST(),
1936 };
1937
1938 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1939 {
1940 DeviceClass *dc = DEVICE_CLASS(klass);
1941
1942 dc->desc = "XIVE END Source";
1943 device_class_set_props(dc, xive_end_source_properties);
1944 dc->realize = xive_end_source_realize;
1945 /*
1946 * Reason: part of XIVE interrupt controller, needs to be wired up,
1947 * e.g. by spapr_xive_instance_init().
1948 */
1949 dc->user_creatable = false;
1950 }
1951
1952 static const TypeInfo xive_end_source_info = {
1953 .name = TYPE_XIVE_END_SOURCE,
1954 .parent = TYPE_DEVICE,
1955 .instance_size = sizeof(XiveENDSource),
1956 .class_init = xive_end_source_class_init,
1957 };
1958
1959 /*
1960 * XIVE Notifier
1961 */
1962 static const TypeInfo xive_notifier_info = {
1963 .name = TYPE_XIVE_NOTIFIER,
1964 .parent = TYPE_INTERFACE,
1965 .class_size = sizeof(XiveNotifierClass),
1966 };
1967
1968 /*
1969 * XIVE Presenter
1970 */
1971 static const TypeInfo xive_presenter_info = {
1972 .name = TYPE_XIVE_PRESENTER,
1973 .parent = TYPE_INTERFACE,
1974 .class_size = sizeof(XivePresenterClass),
1975 };
1976
1977 /*
1978 * XIVE Fabric
1979 */
1980 static const TypeInfo xive_fabric_info = {
1981 .name = TYPE_XIVE_FABRIC,
1982 .parent = TYPE_INTERFACE,
1983 .class_size = sizeof(XiveFabricClass),
1984 };
1985
1986 static void xive_register_types(void)
1987 {
1988 type_register_static(&xive_fabric_info);
1989 type_register_static(&xive_source_info);
1990 type_register_static(&xive_notifier_info);
1991 type_register_static(&xive_presenter_info);
1992 type_register_static(&xive_router_info);
1993 type_register_static(&xive_end_source_info);
1994 type_register_static(&xive_tctx_info);
1995 }
1996
1997 type_init(xive_register_types)