]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
target/ppc: Add POWER9 external interrupt model
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
20
21 /*
22 * XIVE Thread Interrupt Management context
23 */
24
25 /*
26 * Convert a priority number to an Interrupt Pending Buffer (IPB)
27 * register, which indicates a pending interrupt at the priority
28 * corresponding to the bit number
29 */
30 static uint8_t priority_to_ipb(uint8_t priority)
31 {
32 return priority > XIVE_PRIORITY_MAX ?
33 0 : 1 << (XIVE_PRIORITY_MAX - priority);
34 }
35
36 /*
37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38 * Interrupt Priority Register (PIPR), which contains the priority of
39 * the most favored pending notification.
40 */
41 static uint8_t ipb_to_pipr(uint8_t ibp)
42 {
43 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
44 }
45
46 static void ipb_update(uint8_t *regs, uint8_t priority)
47 {
48 regs[TM_IPB] |= priority_to_ipb(priority);
49 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
50 }
51
52 static uint8_t exception_mask(uint8_t ring)
53 {
54 switch (ring) {
55 case TM_QW1_OS:
56 return TM_QW1_NSR_EO;
57 default:
58 g_assert_not_reached();
59 }
60 }
61
62 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
63 {
64 uint8_t *regs = &tctx->regs[ring];
65 uint8_t nsr = regs[TM_NSR];
66 uint8_t mask = exception_mask(ring);
67
68 qemu_irq_lower(tctx->output);
69
70 if (regs[TM_NSR] & mask) {
71 uint8_t cppr = regs[TM_PIPR];
72
73 regs[TM_CPPR] = cppr;
74
75 /* Reset the pending buffer bit */
76 regs[TM_IPB] &= ~priority_to_ipb(cppr);
77 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
78
79 /* Drop Exception bit */
80 regs[TM_NSR] &= ~mask;
81 }
82
83 return (nsr << 8) | regs[TM_CPPR];
84 }
85
86 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
87 {
88 uint8_t *regs = &tctx->regs[ring];
89
90 if (regs[TM_PIPR] < regs[TM_CPPR]) {
91 regs[TM_NSR] |= exception_mask(ring);
92 qemu_irq_raise(tctx->output);
93 }
94 }
95
96 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
97 {
98 if (cppr > XIVE_PRIORITY_MAX) {
99 cppr = 0xff;
100 }
101
102 tctx->regs[ring + TM_CPPR] = cppr;
103
104 /* CPPR has changed, check if we need to raise a pending exception */
105 xive_tctx_notify(tctx, ring);
106 }
107
108 /*
109 * XIVE Thread Interrupt Management Area (TIMA)
110 */
111
112 /*
113 * Define an access map for each page of the TIMA that we will use in
114 * the memory region ops to filter values when doing loads and stores
115 * of raw registers values
116 *
117 * Registers accessibility bits :
118 *
119 * 0x0 - no access
120 * 0x1 - write only
121 * 0x2 - read only
122 * 0x3 - read/write
123 */
124
125 static const uint8_t xive_tm_hw_view[] = {
126 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
127 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
128 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
129 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
130 };
131
132 static const uint8_t xive_tm_hv_view[] = {
133 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
134 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
135 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
136 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
137 };
138
139 static const uint8_t xive_tm_os_view[] = {
140 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
141 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
142 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
143 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
144 };
145
146 static const uint8_t xive_tm_user_view[] = {
147 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
148 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
149 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
150 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
151 };
152
153 /*
154 * Overall TIMA access map for the thread interrupt management context
155 * registers
156 */
157 static const uint8_t *xive_tm_views[] = {
158 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
159 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
160 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
161 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
162 };
163
164 /*
165 * Computes a register access mask for a given offset in the TIMA
166 */
167 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
168 {
169 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
170 uint8_t reg_offset = offset & 0x3F;
171 uint8_t reg_mask = write ? 0x1 : 0x2;
172 uint64_t mask = 0x0;
173 int i;
174
175 for (i = 0; i < size; i++) {
176 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
177 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
178 }
179 }
180
181 return mask;
182 }
183
184 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
185 unsigned size)
186 {
187 uint8_t ring_offset = offset & 0x30;
188 uint8_t reg_offset = offset & 0x3F;
189 uint64_t mask = xive_tm_mask(offset, size, true);
190 int i;
191
192 /*
193 * Only 4 or 8 bytes stores are allowed and the User ring is
194 * excluded
195 */
196 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
197 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
198 HWADDR_PRIx"\n", offset);
199 return;
200 }
201
202 /*
203 * Use the register offset for the raw values and filter out
204 * reserved values
205 */
206 for (i = 0; i < size; i++) {
207 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
208 if (byte_mask) {
209 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
210 byte_mask;
211 }
212 }
213 }
214
215 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
216 {
217 uint8_t ring_offset = offset & 0x30;
218 uint8_t reg_offset = offset & 0x3F;
219 uint64_t mask = xive_tm_mask(offset, size, false);
220 uint64_t ret;
221 int i;
222
223 /*
224 * Only 4 or 8 bytes loads are allowed and the User ring is
225 * excluded
226 */
227 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
228 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
229 HWADDR_PRIx"\n", offset);
230 return -1;
231 }
232
233 /* Use the register offset for the raw values */
234 ret = 0;
235 for (i = 0; i < size; i++) {
236 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
237 }
238
239 /* filter out reserved values */
240 return ret & mask;
241 }
242
243 /*
244 * The TM context is mapped twice within each page. Stores and loads
245 * to the first mapping below 2K write and read the specified values
246 * without modification. The second mapping above 2K performs specific
247 * state changes (side effects) in addition to setting/returning the
248 * interrupt management area context of the processor thread.
249 */
250 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
251 {
252 return xive_tctx_accept(tctx, TM_QW1_OS);
253 }
254
255 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
256 uint64_t value, unsigned size)
257 {
258 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
259 }
260
261 /*
262 * Adjust the IPB to allow a CPU to process event queues of other
263 * priorities during one physical interrupt cycle.
264 */
265 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
266 uint64_t value, unsigned size)
267 {
268 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
269 xive_tctx_notify(tctx, TM_QW1_OS);
270 }
271
272 /*
273 * Define a mapping of "special" operations depending on the TIMA page
274 * offset and the size of the operation.
275 */
276 typedef struct XiveTmOp {
277 uint8_t page_offset;
278 uint32_t op_offset;
279 unsigned size;
280 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
281 unsigned size);
282 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
283 } XiveTmOp;
284
285 static const XiveTmOp xive_tm_operations[] = {
286 /*
287 * MMIOs below 2K : raw values and special operations without side
288 * effects
289 */
290 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
291
292 /* MMIOs above 2K : special operations with side effects */
293 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
294 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
295 };
296
297 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
298 {
299 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
300 uint32_t op_offset = offset & 0xFFF;
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
304 const XiveTmOp *xto = &xive_tm_operations[i];
305
306 /* Accesses done from a more privileged TIMA page is allowed */
307 if (xto->page_offset >= page_offset &&
308 xto->op_offset == op_offset &&
309 xto->size == size &&
310 ((write && xto->write_handler) || (!write && xto->read_handler))) {
311 return xto;
312 }
313 }
314 return NULL;
315 }
316
317 /*
318 * TIMA MMIO handlers
319 */
320 static void xive_tm_write(void *opaque, hwaddr offset,
321 uint64_t value, unsigned size)
322 {
323 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
324 const XiveTmOp *xto;
325
326 /*
327 * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
328 */
329
330 /*
331 * First, check for special operations in the 2K region
332 */
333 if (offset & 0x800) {
334 xto = xive_tm_find_op(offset, size, true);
335 if (!xto) {
336 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
337 "@%"HWADDR_PRIx"\n", offset);
338 } else {
339 xto->write_handler(tctx, offset, value, size);
340 }
341 return;
342 }
343
344 /*
345 * Then, for special operations in the region below 2K.
346 */
347 xto = xive_tm_find_op(offset, size, true);
348 if (xto) {
349 xto->write_handler(tctx, offset, value, size);
350 return;
351 }
352
353 /*
354 * Finish with raw access to the register values
355 */
356 xive_tm_raw_write(tctx, offset, value, size);
357 }
358
359 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
360 {
361 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
362 const XiveTmOp *xto;
363
364 /*
365 * TODO: check V bit in Q[0-3]W2, check PTER bit associated with CPU
366 */
367
368 /*
369 * First, check for special operations in the 2K region
370 */
371 if (offset & 0x800) {
372 xto = xive_tm_find_op(offset, size, false);
373 if (!xto) {
374 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
375 "@%"HWADDR_PRIx"\n", offset);
376 return -1;
377 }
378 return xto->read_handler(tctx, offset, size);
379 }
380
381 /*
382 * Then, for special operations in the region below 2K.
383 */
384 xto = xive_tm_find_op(offset, size, false);
385 if (xto) {
386 return xto->read_handler(tctx, offset, size);
387 }
388
389 /*
390 * Finish with raw access to the register values
391 */
392 return xive_tm_raw_read(tctx, offset, size);
393 }
394
395 const MemoryRegionOps xive_tm_ops = {
396 .read = xive_tm_read,
397 .write = xive_tm_write,
398 .endianness = DEVICE_BIG_ENDIAN,
399 .valid = {
400 .min_access_size = 1,
401 .max_access_size = 8,
402 },
403 .impl = {
404 .min_access_size = 1,
405 .max_access_size = 8,
406 },
407 };
408
409 static inline uint32_t xive_tctx_word2(uint8_t *ring)
410 {
411 return *((uint32_t *) &ring[TM_WORD2]);
412 }
413
414 static char *xive_tctx_ring_print(uint8_t *ring)
415 {
416 uint32_t w2 = xive_tctx_word2(ring);
417
418 return g_strdup_printf("%02x %02x %02x %02x %02x "
419 "%02x %02x %02x %08x",
420 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
421 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
422 be32_to_cpu(w2));
423 }
424
425 static const char * const xive_tctx_ring_names[] = {
426 "USER", "OS", "POOL", "PHYS",
427 };
428
429 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
430 {
431 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
432 int i;
433
434 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
435 " W2\n", cpu_index);
436
437 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
438 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
439 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
440 xive_tctx_ring_names[i], s);
441 g_free(s);
442 }
443 }
444
445 static void xive_tctx_reset(void *dev)
446 {
447 XiveTCTX *tctx = XIVE_TCTX(dev);
448
449 memset(tctx->regs, 0, sizeof(tctx->regs));
450
451 /* Set some defaults */
452 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
453 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
454 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
455
456 /*
457 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
458 * CPPR is first set.
459 */
460 tctx->regs[TM_QW1_OS + TM_PIPR] =
461 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
462 }
463
464 static void xive_tctx_realize(DeviceState *dev, Error **errp)
465 {
466 XiveTCTX *tctx = XIVE_TCTX(dev);
467 PowerPCCPU *cpu;
468 CPUPPCState *env;
469 Object *obj;
470 Error *local_err = NULL;
471
472 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
473 if (!obj) {
474 error_propagate(errp, local_err);
475 error_prepend(errp, "required link 'cpu' not found: ");
476 return;
477 }
478
479 cpu = POWERPC_CPU(obj);
480 tctx->cs = CPU(obj);
481
482 env = &cpu->env;
483 switch (PPC_INPUT(env)) {
484 case PPC_FLAGS_INPUT_POWER7:
485 tctx->output = env->irq_inputs[POWER7_INPUT_INT];
486 break;
487 case PPC_FLAGS_INPUT_POWER9:
488 tctx->output = env->irq_inputs[POWER9_INPUT_INT];
489 break;
490
491 default:
492 error_setg(errp, "XIVE interrupt controller does not support "
493 "this CPU bus model");
494 return;
495 }
496
497 qemu_register_reset(xive_tctx_reset, dev);
498 }
499
500 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
501 {
502 qemu_unregister_reset(xive_tctx_reset, dev);
503 }
504
505 static const VMStateDescription vmstate_xive_tctx = {
506 .name = TYPE_XIVE_TCTX,
507 .version_id = 1,
508 .minimum_version_id = 1,
509 .fields = (VMStateField[]) {
510 VMSTATE_BUFFER(regs, XiveTCTX),
511 VMSTATE_END_OF_LIST()
512 },
513 };
514
515 static void xive_tctx_class_init(ObjectClass *klass, void *data)
516 {
517 DeviceClass *dc = DEVICE_CLASS(klass);
518
519 dc->desc = "XIVE Interrupt Thread Context";
520 dc->realize = xive_tctx_realize;
521 dc->unrealize = xive_tctx_unrealize;
522 dc->vmsd = &vmstate_xive_tctx;
523 }
524
525 static const TypeInfo xive_tctx_info = {
526 .name = TYPE_XIVE_TCTX,
527 .parent = TYPE_DEVICE,
528 .instance_size = sizeof(XiveTCTX),
529 .class_init = xive_tctx_class_init,
530 };
531
532 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
533 {
534 Error *local_err = NULL;
535 Object *obj;
536
537 obj = object_new(TYPE_XIVE_TCTX);
538 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
539 object_unref(obj);
540 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
541 object_property_set_bool(obj, true, "realized", &local_err);
542 if (local_err) {
543 goto error;
544 }
545
546 return obj;
547
548 error:
549 object_unparent(obj);
550 error_propagate(errp, local_err);
551 return NULL;
552 }
553
554 /*
555 * XIVE ESB helpers
556 */
557
558 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
559 {
560 uint8_t old_pq = *pq & 0x3;
561
562 *pq &= ~0x3;
563 *pq |= value & 0x3;
564
565 return old_pq;
566 }
567
568 static bool xive_esb_trigger(uint8_t *pq)
569 {
570 uint8_t old_pq = *pq & 0x3;
571
572 switch (old_pq) {
573 case XIVE_ESB_RESET:
574 xive_esb_set(pq, XIVE_ESB_PENDING);
575 return true;
576 case XIVE_ESB_PENDING:
577 case XIVE_ESB_QUEUED:
578 xive_esb_set(pq, XIVE_ESB_QUEUED);
579 return false;
580 case XIVE_ESB_OFF:
581 xive_esb_set(pq, XIVE_ESB_OFF);
582 return false;
583 default:
584 g_assert_not_reached();
585 }
586 }
587
588 static bool xive_esb_eoi(uint8_t *pq)
589 {
590 uint8_t old_pq = *pq & 0x3;
591
592 switch (old_pq) {
593 case XIVE_ESB_RESET:
594 case XIVE_ESB_PENDING:
595 xive_esb_set(pq, XIVE_ESB_RESET);
596 return false;
597 case XIVE_ESB_QUEUED:
598 xive_esb_set(pq, XIVE_ESB_PENDING);
599 return true;
600 case XIVE_ESB_OFF:
601 xive_esb_set(pq, XIVE_ESB_OFF);
602 return false;
603 default:
604 g_assert_not_reached();
605 }
606 }
607
608 /*
609 * XIVE Interrupt Source (or IVSE)
610 */
611
612 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
613 {
614 assert(srcno < xsrc->nr_irqs);
615
616 return xsrc->status[srcno] & 0x3;
617 }
618
619 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
620 {
621 assert(srcno < xsrc->nr_irqs);
622
623 return xive_esb_set(&xsrc->status[srcno], pq);
624 }
625
626 /*
627 * Returns whether the event notification should be forwarded.
628 */
629 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
630 {
631 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
632
633 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
634
635 switch (old_pq) {
636 case XIVE_ESB_RESET:
637 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
638 return true;
639 default:
640 return false;
641 }
642 }
643
644 /*
645 * Returns whether the event notification should be forwarded.
646 */
647 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
648 {
649 bool ret;
650
651 assert(srcno < xsrc->nr_irqs);
652
653 ret = xive_esb_trigger(&xsrc->status[srcno]);
654
655 if (xive_source_irq_is_lsi(xsrc, srcno) &&
656 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
657 qemu_log_mask(LOG_GUEST_ERROR,
658 "XIVE: queued an event on LSI IRQ %d\n", srcno);
659 }
660
661 return ret;
662 }
663
664 /*
665 * Returns whether the event notification should be forwarded.
666 */
667 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
668 {
669 bool ret;
670
671 assert(srcno < xsrc->nr_irqs);
672
673 ret = xive_esb_eoi(&xsrc->status[srcno]);
674
675 /*
676 * LSI sources do not set the Q bit but they can still be
677 * asserted, in which case we should forward a new event
678 * notification
679 */
680 if (xive_source_irq_is_lsi(xsrc, srcno) &&
681 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
682 ret = xive_source_lsi_trigger(xsrc, srcno);
683 }
684
685 return ret;
686 }
687
688 /*
689 * Forward the source event notification to the Router
690 */
691 static void xive_source_notify(XiveSource *xsrc, int srcno)
692 {
693 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
694
695 if (xnc->notify) {
696 xnc->notify(xsrc->xive, srcno);
697 }
698 }
699
700 /*
701 * In a two pages ESB MMIO setting, even page is the trigger page, odd
702 * page is for management
703 */
704 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
705 {
706 return !((addr >> shift) & 1);
707 }
708
709 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
710 {
711 return xive_source_esb_has_2page(xsrc) &&
712 addr_is_even(addr, xsrc->esb_shift - 1);
713 }
714
715 /*
716 * ESB MMIO loads
717 * Trigger page Management/EOI page
718 *
719 * ESB MMIO setting 2 pages 1 or 2 pages
720 *
721 * 0x000 .. 0x3FF -1 EOI and return 0|1
722 * 0x400 .. 0x7FF -1 EOI and return 0|1
723 * 0x800 .. 0xBFF -1 return PQ
724 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
725 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
726 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
727 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
728 */
729 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
730 {
731 XiveSource *xsrc = XIVE_SOURCE(opaque);
732 uint32_t offset = addr & 0xFFF;
733 uint32_t srcno = addr >> xsrc->esb_shift;
734 uint64_t ret = -1;
735
736 /* In a two pages ESB MMIO setting, trigger page should not be read */
737 if (xive_source_is_trigger_page(xsrc, addr)) {
738 qemu_log_mask(LOG_GUEST_ERROR,
739 "XIVE: invalid load on IRQ %d trigger page at "
740 "0x%"HWADDR_PRIx"\n", srcno, addr);
741 return -1;
742 }
743
744 switch (offset) {
745 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
746 ret = xive_source_esb_eoi(xsrc, srcno);
747
748 /* Forward the source event notification for routing */
749 if (ret) {
750 xive_source_notify(xsrc, srcno);
751 }
752 break;
753
754 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
755 ret = xive_source_esb_get(xsrc, srcno);
756 break;
757
758 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
759 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
760 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
761 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
762 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
763 break;
764 default:
765 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
766 offset);
767 }
768
769 return ret;
770 }
771
772 /*
773 * ESB MMIO stores
774 * Trigger page Management/EOI page
775 *
776 * ESB MMIO setting 2 pages 1 or 2 pages
777 *
778 * 0x000 .. 0x3FF Trigger Trigger
779 * 0x400 .. 0x7FF Trigger EOI
780 * 0x800 .. 0xBFF Trigger undefined
781 * 0xC00 .. 0xCFF Trigger PQ=00
782 * 0xD00 .. 0xDFF Trigger PQ=01
783 * 0xE00 .. 0xDFF Trigger PQ=10
784 * 0xF00 .. 0xDFF Trigger PQ=11
785 */
786 static void xive_source_esb_write(void *opaque, hwaddr addr,
787 uint64_t value, unsigned size)
788 {
789 XiveSource *xsrc = XIVE_SOURCE(opaque);
790 uint32_t offset = addr & 0xFFF;
791 uint32_t srcno = addr >> xsrc->esb_shift;
792 bool notify = false;
793
794 /* In a two pages ESB MMIO setting, trigger page only triggers */
795 if (xive_source_is_trigger_page(xsrc, addr)) {
796 notify = xive_source_esb_trigger(xsrc, srcno);
797 goto out;
798 }
799
800 switch (offset) {
801 case 0 ... 0x3FF:
802 notify = xive_source_esb_trigger(xsrc, srcno);
803 break;
804
805 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
806 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
807 qemu_log_mask(LOG_GUEST_ERROR,
808 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
809 return;
810 }
811
812 notify = xive_source_esb_eoi(xsrc, srcno);
813 break;
814
815 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
816 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
817 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
818 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
819 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
820 break;
821
822 default:
823 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
824 offset);
825 return;
826 }
827
828 out:
829 /* Forward the source event notification for routing */
830 if (notify) {
831 xive_source_notify(xsrc, srcno);
832 }
833 }
834
835 static const MemoryRegionOps xive_source_esb_ops = {
836 .read = xive_source_esb_read,
837 .write = xive_source_esb_write,
838 .endianness = DEVICE_BIG_ENDIAN,
839 .valid = {
840 .min_access_size = 8,
841 .max_access_size = 8,
842 },
843 .impl = {
844 .min_access_size = 8,
845 .max_access_size = 8,
846 },
847 };
848
849 void xive_source_set_irq(void *opaque, int srcno, int val)
850 {
851 XiveSource *xsrc = XIVE_SOURCE(opaque);
852 bool notify = false;
853
854 if (xive_source_irq_is_lsi(xsrc, srcno)) {
855 if (val) {
856 notify = xive_source_lsi_trigger(xsrc, srcno);
857 } else {
858 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
859 }
860 } else {
861 if (val) {
862 notify = xive_source_esb_trigger(xsrc, srcno);
863 }
864 }
865
866 /* Forward the source event notification for routing */
867 if (notify) {
868 xive_source_notify(xsrc, srcno);
869 }
870 }
871
872 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
873 {
874 int i;
875
876 for (i = 0; i < xsrc->nr_irqs; i++) {
877 uint8_t pq = xive_source_esb_get(xsrc, i);
878
879 if (pq == XIVE_ESB_OFF) {
880 continue;
881 }
882
883 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
884 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
885 pq & XIVE_ESB_VAL_P ? 'P' : '-',
886 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
887 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
888 }
889 }
890
891 static void xive_source_reset(void *dev)
892 {
893 XiveSource *xsrc = XIVE_SOURCE(dev);
894
895 /* Do not clear the LSI bitmap */
896
897 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
898 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
899 }
900
901 static void xive_source_realize(DeviceState *dev, Error **errp)
902 {
903 XiveSource *xsrc = XIVE_SOURCE(dev);
904 Object *obj;
905 Error *local_err = NULL;
906
907 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
908 if (!obj) {
909 error_propagate(errp, local_err);
910 error_prepend(errp, "required link 'xive' not found: ");
911 return;
912 }
913
914 xsrc->xive = XIVE_NOTIFIER(obj);
915
916 if (!xsrc->nr_irqs) {
917 error_setg(errp, "Number of interrupt needs to be greater than 0");
918 return;
919 }
920
921 if (xsrc->esb_shift != XIVE_ESB_4K &&
922 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
923 xsrc->esb_shift != XIVE_ESB_64K &&
924 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
925 error_setg(errp, "Invalid ESB shift setting");
926 return;
927 }
928
929 xsrc->status = g_malloc0(xsrc->nr_irqs);
930 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
931
932 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
933 &xive_source_esb_ops, xsrc, "xive.esb",
934 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
935
936 qemu_register_reset(xive_source_reset, dev);
937 }
938
939 static const VMStateDescription vmstate_xive_source = {
940 .name = TYPE_XIVE_SOURCE,
941 .version_id = 1,
942 .minimum_version_id = 1,
943 .fields = (VMStateField[]) {
944 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
945 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
946 VMSTATE_END_OF_LIST()
947 },
948 };
949
950 /*
951 * The default XIVE interrupt source setting for the ESB MMIOs is two
952 * 64k pages without Store EOI, to be in sync with KVM.
953 */
954 static Property xive_source_properties[] = {
955 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
956 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
957 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
958 DEFINE_PROP_END_OF_LIST(),
959 };
960
961 static void xive_source_class_init(ObjectClass *klass, void *data)
962 {
963 DeviceClass *dc = DEVICE_CLASS(klass);
964
965 dc->desc = "XIVE Interrupt Source";
966 dc->props = xive_source_properties;
967 dc->realize = xive_source_realize;
968 dc->vmsd = &vmstate_xive_source;
969 }
970
971 static const TypeInfo xive_source_info = {
972 .name = TYPE_XIVE_SOURCE,
973 .parent = TYPE_DEVICE,
974 .instance_size = sizeof(XiveSource),
975 .class_init = xive_source_class_init,
976 };
977
978 /*
979 * XiveEND helpers
980 */
981
982 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
983 {
984 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
985 | be32_to_cpu(end->w3);
986 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
987 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
988 uint32_t qentries = 1 << (qsize + 10);
989 int i;
990
991 /*
992 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
993 */
994 monitor_printf(mon, " [ ");
995 qindex = (qindex - (width - 1)) & (qentries - 1);
996 for (i = 0; i < width; i++) {
997 uint64_t qaddr = qaddr_base + (qindex << 2);
998 uint32_t qdata = -1;
999
1000 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1001 sizeof(qdata))) {
1002 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1003 HWADDR_PRIx "\n", qaddr);
1004 return;
1005 }
1006 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1007 be32_to_cpu(qdata));
1008 qindex = (qindex + 1) & (qentries - 1);
1009 }
1010 }
1011
1012 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1013 {
1014 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1015 | be32_to_cpu(end->w3);
1016 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1017 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1018 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1019 uint32_t qentries = 1 << (qsize + 10);
1020
1021 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1022 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1023
1024 if (!xive_end_is_valid(end)) {
1025 return;
1026 }
1027
1028 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1029 "% 6d/%5d ^%d", end_idx,
1030 xive_end_is_valid(end) ? 'v' : '-',
1031 xive_end_is_enqueue(end) ? 'q' : '-',
1032 xive_end_is_notify(end) ? 'n' : '-',
1033 xive_end_is_backlog(end) ? 'b' : '-',
1034 xive_end_is_escalate(end) ? 'e' : '-',
1035 priority, nvt, qaddr_base, qindex, qentries, qgen);
1036
1037 xive_end_queue_pic_print_info(end, 6, mon);
1038 monitor_printf(mon, "]\n");
1039 }
1040
1041 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1042 {
1043 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1044 | be32_to_cpu(end->w3);
1045 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1046 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1047 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1048
1049 uint64_t qaddr = qaddr_base + (qindex << 2);
1050 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1051 uint32_t qentries = 1 << (qsize + 10);
1052
1053 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1054 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1055 HWADDR_PRIx "\n", qaddr);
1056 return;
1057 }
1058
1059 qindex = (qindex + 1) & (qentries - 1);
1060 if (qindex == 0) {
1061 qgen ^= 1;
1062 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1063 }
1064 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1065 }
1066
1067 /*
1068 * XIVE Router (aka. Virtualization Controller or IVRE)
1069 */
1070
1071 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1072 XiveEAS *eas)
1073 {
1074 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1075
1076 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1077 }
1078
1079 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1080 XiveEND *end)
1081 {
1082 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1083
1084 return xrc->get_end(xrtr, end_blk, end_idx, end);
1085 }
1086
1087 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1088 XiveEND *end, uint8_t word_number)
1089 {
1090 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1091
1092 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1093 }
1094
1095 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1096 XiveNVT *nvt)
1097 {
1098 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1099
1100 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1101 }
1102
1103 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1104 XiveNVT *nvt, uint8_t word_number)
1105 {
1106 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1107
1108 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1109 }
1110
1111 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1112 {
1113 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1114
1115 return xrc->get_tctx(xrtr, cs);
1116 }
1117
1118 /*
1119 * The thread context register words are in big-endian format.
1120 */
1121 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1122 uint8_t nvt_blk, uint32_t nvt_idx,
1123 bool cam_ignore, uint32_t logic_serv)
1124 {
1125 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1126 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1127 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1128 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1129
1130 /*
1131 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1132 * identifier are ignored in the "CAM" match.
1133 */
1134
1135 if (format == 0) {
1136 if (cam_ignore == true) {
1137 /*
1138 * F=0 & i=1: Logical server notification (bits ignored at
1139 * the end of the NVT identifier)
1140 */
1141 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1142 nvt_blk, nvt_idx);
1143 return -1;
1144 }
1145
1146 /* F=0 & i=0: Specific NVT notification */
1147
1148 /* TODO (PowerNV) : PHYS ring */
1149
1150 /* HV POOL ring */
1151 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1152 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1153 return TM_QW2_HV_POOL;
1154 }
1155
1156 /* OS ring */
1157 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1158 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1159 return TM_QW1_OS;
1160 }
1161 } else {
1162 /* F=1 : User level Event-Based Branch (EBB) notification */
1163
1164 /* USER ring */
1165 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1166 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1167 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1168 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1169 return TM_QW0_USER;
1170 }
1171 }
1172 return -1;
1173 }
1174
1175 typedef struct XiveTCTXMatch {
1176 XiveTCTX *tctx;
1177 uint8_t ring;
1178 } XiveTCTXMatch;
1179
1180 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1181 uint8_t nvt_blk, uint32_t nvt_idx,
1182 bool cam_ignore, uint8_t priority,
1183 uint32_t logic_serv, XiveTCTXMatch *match)
1184 {
1185 CPUState *cs;
1186
1187 /*
1188 * TODO (PowerNV): handle chip_id overwrite of block field for
1189 * hardwired CAM compares
1190 */
1191
1192 CPU_FOREACH(cs) {
1193 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1194 int ring;
1195
1196 /*
1197 * HW checks that the CPU is enabled in the Physical Thread
1198 * Enable Register (PTER).
1199 */
1200
1201 /*
1202 * Check the thread context CAM lines and record matches. We
1203 * will handle CPU exception delivery later
1204 */
1205 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1206 cam_ignore, logic_serv);
1207 /*
1208 * Save the context and follow on to catch duplicates, that we
1209 * don't support yet.
1210 */
1211 if (ring != -1) {
1212 if (match->tctx) {
1213 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1214 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1215 return false;
1216 }
1217
1218 match->ring = ring;
1219 match->tctx = tctx;
1220 }
1221 }
1222
1223 if (!match->tctx) {
1224 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1225 nvt_blk, nvt_idx);
1226 return false;
1227 }
1228
1229 return true;
1230 }
1231
1232 /*
1233 * This is our simple Xive Presenter Engine model. It is merged in the
1234 * Router as it does not require an extra object.
1235 *
1236 * It receives notification requests sent by the IVRE to find one
1237 * matching NVT (or more) dispatched on the processor threads. In case
1238 * of a single NVT notification, the process is abreviated and the
1239 * thread is signaled if a match is found. In case of a logical server
1240 * notification (bits ignored at the end of the NVT identifier), the
1241 * IVPE and IVRE select a winning thread using different filters. This
1242 * involves 2 or 3 exchanges on the PowerBus that the model does not
1243 * support.
1244 *
1245 * The parameters represent what is sent on the PowerBus
1246 */
1247 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1248 uint8_t nvt_blk, uint32_t nvt_idx,
1249 bool cam_ignore, uint8_t priority,
1250 uint32_t logic_serv)
1251 {
1252 XiveNVT nvt;
1253 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1254 bool found;
1255
1256 /* NVT cache lookup */
1257 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1258 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1259 nvt_blk, nvt_idx);
1260 return;
1261 }
1262
1263 if (!xive_nvt_is_valid(&nvt)) {
1264 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1265 nvt_blk, nvt_idx);
1266 return;
1267 }
1268
1269 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1270 priority, logic_serv, &match);
1271 if (found) {
1272 ipb_update(&match.tctx->regs[match.ring], priority);
1273 xive_tctx_notify(match.tctx, match.ring);
1274 return;
1275 }
1276
1277 /* Record the IPB in the associated NVT structure */
1278 ipb_update((uint8_t *) &nvt.w4, priority);
1279 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1280
1281 /*
1282 * If no matching NVT is dispatched on a HW thread :
1283 * - update the NVT structure if backlog is activated
1284 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1285 * activated
1286 */
1287 }
1288
1289 /*
1290 * An END trigger can come from an event trigger (IPI or HW) or from
1291 * another chip. We don't model the PowerBus but the END trigger
1292 * message has the same parameters than in the function below.
1293 */
1294 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1295 uint32_t end_idx, uint32_t end_data)
1296 {
1297 XiveEND end;
1298 uint8_t priority;
1299 uint8_t format;
1300
1301 /* END cache lookup */
1302 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1303 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1304 end_idx);
1305 return;
1306 }
1307
1308 if (!xive_end_is_valid(&end)) {
1309 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1310 end_blk, end_idx);
1311 return;
1312 }
1313
1314 if (xive_end_is_enqueue(&end)) {
1315 xive_end_enqueue(&end, end_data);
1316 /* Enqueuing event data modifies the EQ toggle and index */
1317 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1318 }
1319
1320 /*
1321 * The W7 format depends on the F bit in W6. It defines the type
1322 * of the notification :
1323 *
1324 * F=0 : single or multiple NVT notification
1325 * F=1 : User level Event-Based Branch (EBB) notification, no
1326 * priority
1327 */
1328 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1329 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1330
1331 /* The END is masked */
1332 if (format == 0 && priority == 0xff) {
1333 return;
1334 }
1335
1336 /*
1337 * Check the END ESn (Event State Buffer for notification) for
1338 * even futher coalescing in the Router
1339 */
1340 if (!xive_end_is_notify(&end)) {
1341 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1342 bool notify = xive_esb_trigger(&pq);
1343
1344 if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1345 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1346 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1347 }
1348
1349 /* ESn[Q]=1 : end of notification */
1350 if (!notify) {
1351 return;
1352 }
1353 }
1354
1355 /*
1356 * Follows IVPE notification
1357 */
1358 xive_presenter_notify(xrtr, format,
1359 xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1360 xive_get_field32(END_W6_NVT_INDEX, end.w6),
1361 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1362 priority,
1363 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1364
1365 /* TODO: Auto EOI. */
1366 }
1367
1368 static void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1369 {
1370 XiveRouter *xrtr = XIVE_ROUTER(xn);
1371 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1372 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1373 XiveEAS eas;
1374
1375 /* EAS cache lookup */
1376 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1377 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1378 return;
1379 }
1380
1381 /*
1382 * The IVRE checks the State Bit Cache at this point. We skip the
1383 * SBC lookup because the state bits of the sources are modeled
1384 * internally in QEMU.
1385 */
1386
1387 if (!xive_eas_is_valid(&eas)) {
1388 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1389 return;
1390 }
1391
1392 if (xive_eas_is_masked(&eas)) {
1393 /* Notification completed */
1394 return;
1395 }
1396
1397 /*
1398 * The event trigger becomes an END trigger
1399 */
1400 xive_router_end_notify(xrtr,
1401 xive_get_field64(EAS_END_BLOCK, eas.w),
1402 xive_get_field64(EAS_END_INDEX, eas.w),
1403 xive_get_field64(EAS_END_DATA, eas.w));
1404 }
1405
1406 static void xive_router_class_init(ObjectClass *klass, void *data)
1407 {
1408 DeviceClass *dc = DEVICE_CLASS(klass);
1409 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1410
1411 dc->desc = "XIVE Router Engine";
1412 xnc->notify = xive_router_notify;
1413 }
1414
1415 static const TypeInfo xive_router_info = {
1416 .name = TYPE_XIVE_ROUTER,
1417 .parent = TYPE_SYS_BUS_DEVICE,
1418 .abstract = true,
1419 .class_size = sizeof(XiveRouterClass),
1420 .class_init = xive_router_class_init,
1421 .interfaces = (InterfaceInfo[]) {
1422 { TYPE_XIVE_NOTIFIER },
1423 { }
1424 }
1425 };
1426
1427 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1428 {
1429 if (!xive_eas_is_valid(eas)) {
1430 return;
1431 }
1432
1433 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1434 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1435 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1436 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1437 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1438 }
1439
1440 /*
1441 * END ESB MMIO loads
1442 */
1443 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1444 {
1445 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1446 uint32_t offset = addr & 0xFFF;
1447 uint8_t end_blk;
1448 uint32_t end_idx;
1449 XiveEND end;
1450 uint32_t end_esmask;
1451 uint8_t pq;
1452 uint64_t ret = -1;
1453
1454 end_blk = xsrc->block_id;
1455 end_idx = addr >> (xsrc->esb_shift + 1);
1456
1457 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1458 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1459 end_idx);
1460 return -1;
1461 }
1462
1463 if (!xive_end_is_valid(&end)) {
1464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1465 end_blk, end_idx);
1466 return -1;
1467 }
1468
1469 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1470 pq = xive_get_field32(end_esmask, end.w1);
1471
1472 switch (offset) {
1473 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1474 ret = xive_esb_eoi(&pq);
1475
1476 /* Forward the source event notification for routing ?? */
1477 break;
1478
1479 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1480 ret = pq;
1481 break;
1482
1483 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1484 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1485 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1486 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1487 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1488 break;
1489 default:
1490 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1491 offset);
1492 return -1;
1493 }
1494
1495 if (pq != xive_get_field32(end_esmask, end.w1)) {
1496 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1497 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1498 }
1499
1500 return ret;
1501 }
1502
1503 /*
1504 * END ESB MMIO stores are invalid
1505 */
1506 static void xive_end_source_write(void *opaque, hwaddr addr,
1507 uint64_t value, unsigned size)
1508 {
1509 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1510 HWADDR_PRIx"\n", addr);
1511 }
1512
1513 static const MemoryRegionOps xive_end_source_ops = {
1514 .read = xive_end_source_read,
1515 .write = xive_end_source_write,
1516 .endianness = DEVICE_BIG_ENDIAN,
1517 .valid = {
1518 .min_access_size = 8,
1519 .max_access_size = 8,
1520 },
1521 .impl = {
1522 .min_access_size = 8,
1523 .max_access_size = 8,
1524 },
1525 };
1526
1527 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1528 {
1529 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1530 Object *obj;
1531 Error *local_err = NULL;
1532
1533 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1534 if (!obj) {
1535 error_propagate(errp, local_err);
1536 error_prepend(errp, "required link 'xive' not found: ");
1537 return;
1538 }
1539
1540 xsrc->xrtr = XIVE_ROUTER(obj);
1541
1542 if (!xsrc->nr_ends) {
1543 error_setg(errp, "Number of interrupt needs to be greater than 0");
1544 return;
1545 }
1546
1547 if (xsrc->esb_shift != XIVE_ESB_4K &&
1548 xsrc->esb_shift != XIVE_ESB_64K) {
1549 error_setg(errp, "Invalid ESB shift setting");
1550 return;
1551 }
1552
1553 /*
1554 * Each END is assigned an even/odd pair of MMIO pages, the even page
1555 * manages the ESn field while the odd page manages the ESe field.
1556 */
1557 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1558 &xive_end_source_ops, xsrc, "xive.end",
1559 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1560 }
1561
1562 static Property xive_end_source_properties[] = {
1563 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1564 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1565 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1566 DEFINE_PROP_END_OF_LIST(),
1567 };
1568
1569 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1570 {
1571 DeviceClass *dc = DEVICE_CLASS(klass);
1572
1573 dc->desc = "XIVE END Source";
1574 dc->props = xive_end_source_properties;
1575 dc->realize = xive_end_source_realize;
1576 }
1577
1578 static const TypeInfo xive_end_source_info = {
1579 .name = TYPE_XIVE_END_SOURCE,
1580 .parent = TYPE_DEVICE,
1581 .instance_size = sizeof(XiveENDSource),
1582 .class_init = xive_end_source_class_init,
1583 };
1584
1585 /*
1586 * XIVE Notifier
1587 */
1588 static const TypeInfo xive_notifier_info = {
1589 .name = TYPE_XIVE_NOTIFIER,
1590 .parent = TYPE_INTERFACE,
1591 .class_size = sizeof(XiveNotifierClass),
1592 };
1593
1594 static void xive_register_types(void)
1595 {
1596 type_register_static(&xive_source_info);
1597 type_register_static(&xive_notifier_info);
1598 type_register_static(&xive_router_info);
1599 type_register_static(&xive_end_source_info);
1600 type_register_static(&xive_tctx_info);
1601 }
1602
1603 type_init(xive_register_types)