]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intc/xive.c
Merge remote-tracking branch 'remotes/vivier2/tags/trivial-branch-pull-request' into...
[mirror_qemu.git] / hw / intc / xive.c
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
3 *
4 * Copyright (c) 2017-2018, IBM Corporation.
5 *
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "sysemu/cpus.h"
15 #include "sysemu/dma.h"
16 #include "hw/qdev-properties.h"
17 #include "monitor/monitor.h"
18 #include "hw/ppc/xive.h"
19 #include "hw/ppc/xive_regs.h"
20
21 /*
22 * XIVE Thread Interrupt Management context
23 */
24
25 /*
26 * Convert a priority number to an Interrupt Pending Buffer (IPB)
27 * register, which indicates a pending interrupt at the priority
28 * corresponding to the bit number
29 */
30 static uint8_t priority_to_ipb(uint8_t priority)
31 {
32 return priority > XIVE_PRIORITY_MAX ?
33 0 : 1 << (XIVE_PRIORITY_MAX - priority);
34 }
35
36 /*
37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
38 * Interrupt Priority Register (PIPR), which contains the priority of
39 * the most favored pending notification.
40 */
41 static uint8_t ipb_to_pipr(uint8_t ibp)
42 {
43 return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
44 }
45
46 static void ipb_update(uint8_t *regs, uint8_t priority)
47 {
48 regs[TM_IPB] |= priority_to_ipb(priority);
49 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
50 }
51
52 static uint8_t exception_mask(uint8_t ring)
53 {
54 switch (ring) {
55 case TM_QW1_OS:
56 return TM_QW1_NSR_EO;
57 case TM_QW3_HV_PHYS:
58 return TM_QW3_NSR_HE;
59 default:
60 g_assert_not_reached();
61 }
62 }
63
64 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
65 {
66 uint8_t *regs = &tctx->regs[ring];
67 uint8_t nsr = regs[TM_NSR];
68 uint8_t mask = exception_mask(ring);
69
70 qemu_irq_lower(tctx->output);
71
72 if (regs[TM_NSR] & mask) {
73 uint8_t cppr = regs[TM_PIPR];
74
75 regs[TM_CPPR] = cppr;
76
77 /* Reset the pending buffer bit */
78 regs[TM_IPB] &= ~priority_to_ipb(cppr);
79 regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
80
81 /* Drop Exception bit */
82 regs[TM_NSR] &= ~mask;
83 }
84
85 return (nsr << 8) | regs[TM_CPPR];
86 }
87
88 static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
89 {
90 uint8_t *regs = &tctx->regs[ring];
91
92 if (regs[TM_PIPR] < regs[TM_CPPR]) {
93 switch (ring) {
94 case TM_QW1_OS:
95 regs[TM_NSR] |= TM_QW1_NSR_EO;
96 break;
97 case TM_QW3_HV_PHYS:
98 regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
99 break;
100 default:
101 g_assert_not_reached();
102 }
103 qemu_irq_raise(tctx->output);
104 }
105 }
106
107 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
108 {
109 if (cppr > XIVE_PRIORITY_MAX) {
110 cppr = 0xff;
111 }
112
113 tctx->regs[ring + TM_CPPR] = cppr;
114
115 /* CPPR has changed, check if we need to raise a pending exception */
116 xive_tctx_notify(tctx, ring);
117 }
118
119 /*
120 * XIVE Thread Interrupt Management Area (TIMA)
121 */
122
123 static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
124 uint64_t value, unsigned size)
125 {
126 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
127 }
128
129 static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
130 {
131 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
132 }
133
134 static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
135 unsigned size)
136 {
137 uint64_t ret;
138
139 ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
140 tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
141 return ret;
142 }
143
144 static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
145 uint64_t value, unsigned size)
146 {
147 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
148 }
149
150 static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
151 {
152 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
153 }
154
155 /*
156 * Define an access map for each page of the TIMA that we will use in
157 * the memory region ops to filter values when doing loads and stores
158 * of raw registers values
159 *
160 * Registers accessibility bits :
161 *
162 * 0x0 - no access
163 * 0x1 - write only
164 * 0x2 - read only
165 * 0x3 - read/write
166 */
167
168 static const uint8_t xive_tm_hw_view[] = {
169 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
170 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
171 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
172 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 3, 3, 3, 0,
173 };
174
175 static const uint8_t xive_tm_hv_view[] = {
176 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
177 /* QW-1 OS */ 3, 3, 3, 3, 3, 3, 0, 3, 3, 3, 3, 3, 0, 0, 0, 0,
178 /* QW-2 POOL */ 0, 0, 3, 3, 0, 0, 0, 0, 0, 3, 3, 3, 0, 0, 0, 0,
179 /* QW-3 PHYS */ 3, 3, 3, 3, 0, 3, 0, 3, 3, 0, 0, 3, 0, 0, 0, 0,
180 };
181
182 static const uint8_t xive_tm_os_view[] = {
183 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0,
184 /* QW-1 OS */ 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0,
185 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
186 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
187 };
188
189 static const uint8_t xive_tm_user_view[] = {
190 /* QW-0 User */ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
191 /* QW-1 OS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
192 /* QW-2 POOL */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
193 /* QW-3 PHYS */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
194 };
195
196 /*
197 * Overall TIMA access map for the thread interrupt management context
198 * registers
199 */
200 static const uint8_t *xive_tm_views[] = {
201 [XIVE_TM_HW_PAGE] = xive_tm_hw_view,
202 [XIVE_TM_HV_PAGE] = xive_tm_hv_view,
203 [XIVE_TM_OS_PAGE] = xive_tm_os_view,
204 [XIVE_TM_USER_PAGE] = xive_tm_user_view,
205 };
206
207 /*
208 * Computes a register access mask for a given offset in the TIMA
209 */
210 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
211 {
212 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
213 uint8_t reg_offset = offset & 0x3F;
214 uint8_t reg_mask = write ? 0x1 : 0x2;
215 uint64_t mask = 0x0;
216 int i;
217
218 for (i = 0; i < size; i++) {
219 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
220 mask |= (uint64_t) 0xff << (8 * (size - i - 1));
221 }
222 }
223
224 return mask;
225 }
226
227 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
228 unsigned size)
229 {
230 uint8_t ring_offset = offset & 0x30;
231 uint8_t reg_offset = offset & 0x3F;
232 uint64_t mask = xive_tm_mask(offset, size, true);
233 int i;
234
235 /*
236 * Only 4 or 8 bytes stores are allowed and the User ring is
237 * excluded
238 */
239 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
240 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
241 HWADDR_PRIx"\n", offset);
242 return;
243 }
244
245 /*
246 * Use the register offset for the raw values and filter out
247 * reserved values
248 */
249 for (i = 0; i < size; i++) {
250 uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
251 if (byte_mask) {
252 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
253 byte_mask;
254 }
255 }
256 }
257
258 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
259 {
260 uint8_t ring_offset = offset & 0x30;
261 uint8_t reg_offset = offset & 0x3F;
262 uint64_t mask = xive_tm_mask(offset, size, false);
263 uint64_t ret;
264 int i;
265
266 /*
267 * Only 4 or 8 bytes loads are allowed and the User ring is
268 * excluded
269 */
270 if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
271 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
272 HWADDR_PRIx"\n", offset);
273 return -1;
274 }
275
276 /* Use the register offset for the raw values */
277 ret = 0;
278 for (i = 0; i < size; i++) {
279 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
280 }
281
282 /* filter out reserved values */
283 return ret & mask;
284 }
285
286 /*
287 * The TM context is mapped twice within each page. Stores and loads
288 * to the first mapping below 2K write and read the specified values
289 * without modification. The second mapping above 2K performs specific
290 * state changes (side effects) in addition to setting/returning the
291 * interrupt management area context of the processor thread.
292 */
293 static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
294 {
295 return xive_tctx_accept(tctx, TM_QW1_OS);
296 }
297
298 static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
299 uint64_t value, unsigned size)
300 {
301 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
302 }
303
304 /*
305 * Adjust the IPB to allow a CPU to process event queues of other
306 * priorities during one physical interrupt cycle.
307 */
308 static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
309 uint64_t value, unsigned size)
310 {
311 ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
312 xive_tctx_notify(tctx, TM_QW1_OS);
313 }
314
315 /*
316 * Define a mapping of "special" operations depending on the TIMA page
317 * offset and the size of the operation.
318 */
319 typedef struct XiveTmOp {
320 uint8_t page_offset;
321 uint32_t op_offset;
322 unsigned size;
323 void (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
324 unsigned size);
325 uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
326 } XiveTmOp;
327
328 static const XiveTmOp xive_tm_operations[] = {
329 /*
330 * MMIOs below 2K : raw values and special operations without side
331 * effects
332 */
333 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, NULL },
334 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
335 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
336 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
337
338 /* MMIOs above 2K : special operations with side effects */
339 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, xive_tm_ack_os_reg },
340 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
341 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, xive_tm_ack_hv_reg },
342 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, xive_tm_pull_pool_ctx },
343 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, xive_tm_pull_pool_ctx },
344 };
345
346 static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
347 {
348 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
349 uint32_t op_offset = offset & 0xFFF;
350 int i;
351
352 for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
353 const XiveTmOp *xto = &xive_tm_operations[i];
354
355 /* Accesses done from a more privileged TIMA page is allowed */
356 if (xto->page_offset >= page_offset &&
357 xto->op_offset == op_offset &&
358 xto->size == size &&
359 ((write && xto->write_handler) || (!write && xto->read_handler))) {
360 return xto;
361 }
362 }
363 return NULL;
364 }
365
366 /*
367 * TIMA MMIO handlers
368 */
369 void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
370 unsigned size)
371 {
372 const XiveTmOp *xto;
373
374 /*
375 * TODO: check V bit in Q[0-3]W2
376 */
377
378 /*
379 * First, check for special operations in the 2K region
380 */
381 if (offset & 0x800) {
382 xto = xive_tm_find_op(offset, size, true);
383 if (!xto) {
384 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
385 "@%"HWADDR_PRIx"\n", offset);
386 } else {
387 xto->write_handler(tctx, offset, value, size);
388 }
389 return;
390 }
391
392 /*
393 * Then, for special operations in the region below 2K.
394 */
395 xto = xive_tm_find_op(offset, size, true);
396 if (xto) {
397 xto->write_handler(tctx, offset, value, size);
398 return;
399 }
400
401 /*
402 * Finish with raw access to the register values
403 */
404 xive_tm_raw_write(tctx, offset, value, size);
405 }
406
407 uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
408 {
409 const XiveTmOp *xto;
410
411 /*
412 * TODO: check V bit in Q[0-3]W2
413 */
414
415 /*
416 * First, check for special operations in the 2K region
417 */
418 if (offset & 0x800) {
419 xto = xive_tm_find_op(offset, size, false);
420 if (!xto) {
421 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
422 "@%"HWADDR_PRIx"\n", offset);
423 return -1;
424 }
425 return xto->read_handler(tctx, offset, size);
426 }
427
428 /*
429 * Then, for special operations in the region below 2K.
430 */
431 xto = xive_tm_find_op(offset, size, false);
432 if (xto) {
433 return xto->read_handler(tctx, offset, size);
434 }
435
436 /*
437 * Finish with raw access to the register values
438 */
439 return xive_tm_raw_read(tctx, offset, size);
440 }
441
442 static void xive_tm_write(void *opaque, hwaddr offset,
443 uint64_t value, unsigned size)
444 {
445 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
446
447 xive_tctx_tm_write(tctx, offset, value, size);
448 }
449
450 static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
451 {
452 XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
453
454 return xive_tctx_tm_read(tctx, offset, size);
455 }
456
457 const MemoryRegionOps xive_tm_ops = {
458 .read = xive_tm_read,
459 .write = xive_tm_write,
460 .endianness = DEVICE_BIG_ENDIAN,
461 .valid = {
462 .min_access_size = 1,
463 .max_access_size = 8,
464 },
465 .impl = {
466 .min_access_size = 1,
467 .max_access_size = 8,
468 },
469 };
470
471 static inline uint32_t xive_tctx_word2(uint8_t *ring)
472 {
473 return *((uint32_t *) &ring[TM_WORD2]);
474 }
475
476 static char *xive_tctx_ring_print(uint8_t *ring)
477 {
478 uint32_t w2 = xive_tctx_word2(ring);
479
480 return g_strdup_printf("%02x %02x %02x %02x %02x "
481 "%02x %02x %02x %08x",
482 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
483 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
484 be32_to_cpu(w2));
485 }
486
487 static const char * const xive_tctx_ring_names[] = {
488 "USER", "OS", "POOL", "PHYS",
489 };
490
491 void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
492 {
493 int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
494 int i;
495
496 monitor_printf(mon, "CPU[%04x]: QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
497 " W2\n", cpu_index);
498
499 for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
500 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
501 monitor_printf(mon, "CPU[%04x]: %4s %s\n", cpu_index,
502 xive_tctx_ring_names[i], s);
503 g_free(s);
504 }
505 }
506
507 static void xive_tctx_reset(void *dev)
508 {
509 XiveTCTX *tctx = XIVE_TCTX(dev);
510
511 memset(tctx->regs, 0, sizeof(tctx->regs));
512
513 /* Set some defaults */
514 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
515 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
516 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
517
518 /*
519 * Initialize PIPR to 0xFF to avoid phantom interrupts when the
520 * CPPR is first set.
521 */
522 tctx->regs[TM_QW1_OS + TM_PIPR] =
523 ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
524 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
525 ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
526 }
527
528 static void xive_tctx_realize(DeviceState *dev, Error **errp)
529 {
530 XiveTCTX *tctx = XIVE_TCTX(dev);
531 PowerPCCPU *cpu;
532 CPUPPCState *env;
533 Object *obj;
534 Error *local_err = NULL;
535
536 obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
537 if (!obj) {
538 error_propagate(errp, local_err);
539 error_prepend(errp, "required link 'cpu' not found: ");
540 return;
541 }
542
543 cpu = POWERPC_CPU(obj);
544 tctx->cs = CPU(obj);
545
546 env = &cpu->env;
547 switch (PPC_INPUT(env)) {
548 case PPC_FLAGS_INPUT_POWER9:
549 tctx->output = env->irq_inputs[POWER9_INPUT_INT];
550 break;
551
552 default:
553 error_setg(errp, "XIVE interrupt controller does not support "
554 "this CPU bus model");
555 return;
556 }
557
558 qemu_register_reset(xive_tctx_reset, dev);
559 }
560
561 static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
562 {
563 qemu_unregister_reset(xive_tctx_reset, dev);
564 }
565
566 static const VMStateDescription vmstate_xive_tctx = {
567 .name = TYPE_XIVE_TCTX,
568 .version_id = 1,
569 .minimum_version_id = 1,
570 .fields = (VMStateField[]) {
571 VMSTATE_BUFFER(regs, XiveTCTX),
572 VMSTATE_END_OF_LIST()
573 },
574 };
575
576 static void xive_tctx_class_init(ObjectClass *klass, void *data)
577 {
578 DeviceClass *dc = DEVICE_CLASS(klass);
579
580 dc->desc = "XIVE Interrupt Thread Context";
581 dc->realize = xive_tctx_realize;
582 dc->unrealize = xive_tctx_unrealize;
583 dc->vmsd = &vmstate_xive_tctx;
584 }
585
586 static const TypeInfo xive_tctx_info = {
587 .name = TYPE_XIVE_TCTX,
588 .parent = TYPE_DEVICE,
589 .instance_size = sizeof(XiveTCTX),
590 .class_init = xive_tctx_class_init,
591 };
592
593 Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
594 {
595 Error *local_err = NULL;
596 Object *obj;
597
598 obj = object_new(TYPE_XIVE_TCTX);
599 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
600 object_unref(obj);
601 object_property_add_const_link(obj, "cpu", cpu, &error_abort);
602 object_property_set_bool(obj, true, "realized", &local_err);
603 if (local_err) {
604 goto error;
605 }
606
607 return obj;
608
609 error:
610 object_unparent(obj);
611 error_propagate(errp, local_err);
612 return NULL;
613 }
614
615 /*
616 * XIVE ESB helpers
617 */
618
619 static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
620 {
621 uint8_t old_pq = *pq & 0x3;
622
623 *pq &= ~0x3;
624 *pq |= value & 0x3;
625
626 return old_pq;
627 }
628
629 static bool xive_esb_trigger(uint8_t *pq)
630 {
631 uint8_t old_pq = *pq & 0x3;
632
633 switch (old_pq) {
634 case XIVE_ESB_RESET:
635 xive_esb_set(pq, XIVE_ESB_PENDING);
636 return true;
637 case XIVE_ESB_PENDING:
638 case XIVE_ESB_QUEUED:
639 xive_esb_set(pq, XIVE_ESB_QUEUED);
640 return false;
641 case XIVE_ESB_OFF:
642 xive_esb_set(pq, XIVE_ESB_OFF);
643 return false;
644 default:
645 g_assert_not_reached();
646 }
647 }
648
649 static bool xive_esb_eoi(uint8_t *pq)
650 {
651 uint8_t old_pq = *pq & 0x3;
652
653 switch (old_pq) {
654 case XIVE_ESB_RESET:
655 case XIVE_ESB_PENDING:
656 xive_esb_set(pq, XIVE_ESB_RESET);
657 return false;
658 case XIVE_ESB_QUEUED:
659 xive_esb_set(pq, XIVE_ESB_PENDING);
660 return true;
661 case XIVE_ESB_OFF:
662 xive_esb_set(pq, XIVE_ESB_OFF);
663 return false;
664 default:
665 g_assert_not_reached();
666 }
667 }
668
669 /*
670 * XIVE Interrupt Source (or IVSE)
671 */
672
673 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
674 {
675 assert(srcno < xsrc->nr_irqs);
676
677 return xsrc->status[srcno] & 0x3;
678 }
679
680 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
681 {
682 assert(srcno < xsrc->nr_irqs);
683
684 return xive_esb_set(&xsrc->status[srcno], pq);
685 }
686
687 /*
688 * Returns whether the event notification should be forwarded.
689 */
690 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
691 {
692 uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
693
694 xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
695
696 switch (old_pq) {
697 case XIVE_ESB_RESET:
698 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
699 return true;
700 default:
701 return false;
702 }
703 }
704
705 /*
706 * Returns whether the event notification should be forwarded.
707 */
708 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
709 {
710 bool ret;
711
712 assert(srcno < xsrc->nr_irqs);
713
714 ret = xive_esb_trigger(&xsrc->status[srcno]);
715
716 if (xive_source_irq_is_lsi(xsrc, srcno) &&
717 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
718 qemu_log_mask(LOG_GUEST_ERROR,
719 "XIVE: queued an event on LSI IRQ %d\n", srcno);
720 }
721
722 return ret;
723 }
724
725 /*
726 * Returns whether the event notification should be forwarded.
727 */
728 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
729 {
730 bool ret;
731
732 assert(srcno < xsrc->nr_irqs);
733
734 ret = xive_esb_eoi(&xsrc->status[srcno]);
735
736 /*
737 * LSI sources do not set the Q bit but they can still be
738 * asserted, in which case we should forward a new event
739 * notification
740 */
741 if (xive_source_irq_is_lsi(xsrc, srcno) &&
742 xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
743 ret = xive_source_lsi_trigger(xsrc, srcno);
744 }
745
746 return ret;
747 }
748
749 /*
750 * Forward the source event notification to the Router
751 */
752 static void xive_source_notify(XiveSource *xsrc, int srcno)
753 {
754 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
755
756 if (xnc->notify) {
757 xnc->notify(xsrc->xive, srcno);
758 }
759 }
760
761 /*
762 * In a two pages ESB MMIO setting, even page is the trigger page, odd
763 * page is for management
764 */
765 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
766 {
767 return !((addr >> shift) & 1);
768 }
769
770 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
771 {
772 return xive_source_esb_has_2page(xsrc) &&
773 addr_is_even(addr, xsrc->esb_shift - 1);
774 }
775
776 /*
777 * ESB MMIO loads
778 * Trigger page Management/EOI page
779 *
780 * ESB MMIO setting 2 pages 1 or 2 pages
781 *
782 * 0x000 .. 0x3FF -1 EOI and return 0|1
783 * 0x400 .. 0x7FF -1 EOI and return 0|1
784 * 0x800 .. 0xBFF -1 return PQ
785 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00
786 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01
787 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10
788 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11
789 */
790 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
791 {
792 XiveSource *xsrc = XIVE_SOURCE(opaque);
793 uint32_t offset = addr & 0xFFF;
794 uint32_t srcno = addr >> xsrc->esb_shift;
795 uint64_t ret = -1;
796
797 /* In a two pages ESB MMIO setting, trigger page should not be read */
798 if (xive_source_is_trigger_page(xsrc, addr)) {
799 qemu_log_mask(LOG_GUEST_ERROR,
800 "XIVE: invalid load on IRQ %d trigger page at "
801 "0x%"HWADDR_PRIx"\n", srcno, addr);
802 return -1;
803 }
804
805 switch (offset) {
806 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
807 ret = xive_source_esb_eoi(xsrc, srcno);
808
809 /* Forward the source event notification for routing */
810 if (ret) {
811 xive_source_notify(xsrc, srcno);
812 }
813 break;
814
815 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
816 ret = xive_source_esb_get(xsrc, srcno);
817 break;
818
819 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
820 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
821 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
822 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
823 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
824 break;
825 default:
826 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
827 offset);
828 }
829
830 return ret;
831 }
832
833 /*
834 * ESB MMIO stores
835 * Trigger page Management/EOI page
836 *
837 * ESB MMIO setting 2 pages 1 or 2 pages
838 *
839 * 0x000 .. 0x3FF Trigger Trigger
840 * 0x400 .. 0x7FF Trigger EOI
841 * 0x800 .. 0xBFF Trigger undefined
842 * 0xC00 .. 0xCFF Trigger PQ=00
843 * 0xD00 .. 0xDFF Trigger PQ=01
844 * 0xE00 .. 0xDFF Trigger PQ=10
845 * 0xF00 .. 0xDFF Trigger PQ=11
846 */
847 static void xive_source_esb_write(void *opaque, hwaddr addr,
848 uint64_t value, unsigned size)
849 {
850 XiveSource *xsrc = XIVE_SOURCE(opaque);
851 uint32_t offset = addr & 0xFFF;
852 uint32_t srcno = addr >> xsrc->esb_shift;
853 bool notify = false;
854
855 /* In a two pages ESB MMIO setting, trigger page only triggers */
856 if (xive_source_is_trigger_page(xsrc, addr)) {
857 notify = xive_source_esb_trigger(xsrc, srcno);
858 goto out;
859 }
860
861 switch (offset) {
862 case 0 ... 0x3FF:
863 notify = xive_source_esb_trigger(xsrc, srcno);
864 break;
865
866 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
867 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
868 qemu_log_mask(LOG_GUEST_ERROR,
869 "XIVE: invalid Store EOI for IRQ %d\n", srcno);
870 return;
871 }
872
873 notify = xive_source_esb_eoi(xsrc, srcno);
874 break;
875
876 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
877 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
878 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
879 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
880 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
881 break;
882
883 default:
884 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
885 offset);
886 return;
887 }
888
889 out:
890 /* Forward the source event notification for routing */
891 if (notify) {
892 xive_source_notify(xsrc, srcno);
893 }
894 }
895
896 static const MemoryRegionOps xive_source_esb_ops = {
897 .read = xive_source_esb_read,
898 .write = xive_source_esb_write,
899 .endianness = DEVICE_BIG_ENDIAN,
900 .valid = {
901 .min_access_size = 8,
902 .max_access_size = 8,
903 },
904 .impl = {
905 .min_access_size = 8,
906 .max_access_size = 8,
907 },
908 };
909
910 void xive_source_set_irq(void *opaque, int srcno, int val)
911 {
912 XiveSource *xsrc = XIVE_SOURCE(opaque);
913 bool notify = false;
914
915 if (xive_source_irq_is_lsi(xsrc, srcno)) {
916 if (val) {
917 notify = xive_source_lsi_trigger(xsrc, srcno);
918 } else {
919 xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
920 }
921 } else {
922 if (val) {
923 notify = xive_source_esb_trigger(xsrc, srcno);
924 }
925 }
926
927 /* Forward the source event notification for routing */
928 if (notify) {
929 xive_source_notify(xsrc, srcno);
930 }
931 }
932
933 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
934 {
935 int i;
936
937 for (i = 0; i < xsrc->nr_irqs; i++) {
938 uint8_t pq = xive_source_esb_get(xsrc, i);
939
940 if (pq == XIVE_ESB_OFF) {
941 continue;
942 }
943
944 monitor_printf(mon, " %08x %s %c%c%c\n", i + offset,
945 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
946 pq & XIVE_ESB_VAL_P ? 'P' : '-',
947 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
948 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
949 }
950 }
951
952 static void xive_source_reset(void *dev)
953 {
954 XiveSource *xsrc = XIVE_SOURCE(dev);
955
956 /* Do not clear the LSI bitmap */
957
958 /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
959 memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
960 }
961
962 static void xive_source_realize(DeviceState *dev, Error **errp)
963 {
964 XiveSource *xsrc = XIVE_SOURCE(dev);
965 Object *obj;
966 Error *local_err = NULL;
967
968 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
969 if (!obj) {
970 error_propagate(errp, local_err);
971 error_prepend(errp, "required link 'xive' not found: ");
972 return;
973 }
974
975 xsrc->xive = XIVE_NOTIFIER(obj);
976
977 if (!xsrc->nr_irqs) {
978 error_setg(errp, "Number of interrupt needs to be greater than 0");
979 return;
980 }
981
982 if (xsrc->esb_shift != XIVE_ESB_4K &&
983 xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
984 xsrc->esb_shift != XIVE_ESB_64K &&
985 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
986 error_setg(errp, "Invalid ESB shift setting");
987 return;
988 }
989
990 xsrc->status = g_malloc0(xsrc->nr_irqs);
991 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
992
993 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
994 &xive_source_esb_ops, xsrc, "xive.esb",
995 (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
996
997 qemu_register_reset(xive_source_reset, dev);
998 }
999
1000 static const VMStateDescription vmstate_xive_source = {
1001 .name = TYPE_XIVE_SOURCE,
1002 .version_id = 1,
1003 .minimum_version_id = 1,
1004 .fields = (VMStateField[]) {
1005 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1006 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1007 VMSTATE_END_OF_LIST()
1008 },
1009 };
1010
1011 /*
1012 * The default XIVE interrupt source setting for the ESB MMIOs is two
1013 * 64k pages without Store EOI, to be in sync with KVM.
1014 */
1015 static Property xive_source_properties[] = {
1016 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1017 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1018 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1019 DEFINE_PROP_END_OF_LIST(),
1020 };
1021
1022 static void xive_source_class_init(ObjectClass *klass, void *data)
1023 {
1024 DeviceClass *dc = DEVICE_CLASS(klass);
1025
1026 dc->desc = "XIVE Interrupt Source";
1027 dc->props = xive_source_properties;
1028 dc->realize = xive_source_realize;
1029 dc->vmsd = &vmstate_xive_source;
1030 }
1031
1032 static const TypeInfo xive_source_info = {
1033 .name = TYPE_XIVE_SOURCE,
1034 .parent = TYPE_DEVICE,
1035 .instance_size = sizeof(XiveSource),
1036 .class_init = xive_source_class_init,
1037 };
1038
1039 /*
1040 * XiveEND helpers
1041 */
1042
1043 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1044 {
1045 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1046 | be32_to_cpu(end->w3);
1047 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1048 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1049 uint32_t qentries = 1 << (qsize + 10);
1050 int i;
1051
1052 /*
1053 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1054 */
1055 monitor_printf(mon, " [ ");
1056 qindex = (qindex - (width - 1)) & (qentries - 1);
1057 for (i = 0; i < width; i++) {
1058 uint64_t qaddr = qaddr_base + (qindex << 2);
1059 uint32_t qdata = -1;
1060
1061 if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1062 sizeof(qdata))) {
1063 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1064 HWADDR_PRIx "\n", qaddr);
1065 return;
1066 }
1067 monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1068 be32_to_cpu(qdata));
1069 qindex = (qindex + 1) & (qentries - 1);
1070 }
1071 }
1072
1073 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1074 {
1075 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1076 | be32_to_cpu(end->w3);
1077 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1078 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1079 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1080 uint32_t qentries = 1 << (qsize + 10);
1081
1082 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1083 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1084
1085 if (!xive_end_is_valid(end)) {
1086 return;
1087 }
1088
1089 monitor_printf(mon, " %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1090 "% 6d/%5d ^%d", end_idx,
1091 xive_end_is_valid(end) ? 'v' : '-',
1092 xive_end_is_enqueue(end) ? 'q' : '-',
1093 xive_end_is_notify(end) ? 'n' : '-',
1094 xive_end_is_backlog(end) ? 'b' : '-',
1095 xive_end_is_escalate(end) ? 'e' : '-',
1096 priority, nvt, qaddr_base, qindex, qentries, qgen);
1097
1098 xive_end_queue_pic_print_info(end, 6, mon);
1099 monitor_printf(mon, "]\n");
1100 }
1101
1102 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1103 {
1104 uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1105 | be32_to_cpu(end->w3);
1106 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1107 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1108 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1109
1110 uint64_t qaddr = qaddr_base + (qindex << 2);
1111 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1112 uint32_t qentries = 1 << (qsize + 10);
1113
1114 if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1115 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1116 HWADDR_PRIx "\n", qaddr);
1117 return;
1118 }
1119
1120 qindex = (qindex + 1) & (qentries - 1);
1121 if (qindex == 0) {
1122 qgen ^= 1;
1123 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1124 }
1125 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1126 }
1127
1128 /*
1129 * XIVE Router (aka. Virtualization Controller or IVRE)
1130 */
1131
1132 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1133 XiveEAS *eas)
1134 {
1135 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1136
1137 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1138 }
1139
1140 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1141 XiveEND *end)
1142 {
1143 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1144
1145 return xrc->get_end(xrtr, end_blk, end_idx, end);
1146 }
1147
1148 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1149 XiveEND *end, uint8_t word_number)
1150 {
1151 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1152
1153 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1154 }
1155
1156 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1157 XiveNVT *nvt)
1158 {
1159 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1160
1161 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1162 }
1163
1164 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1165 XiveNVT *nvt, uint8_t word_number)
1166 {
1167 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1168
1169 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1170 }
1171
1172 XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1173 {
1174 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1175
1176 return xrc->get_tctx(xrtr, cs);
1177 }
1178
1179 /*
1180 * By default on P9, the HW CAM line (23bits) is hardwired to :
1181 *
1182 * 0x000||0b1||4Bit chip number||7Bit Thread number.
1183 *
1184 * When the block grouping is enabled, the CAM line is changed to :
1185 *
1186 * 4Bit chip number||0x001||7Bit Thread number.
1187 */
1188 static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1189 {
1190 return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1191 }
1192
1193 static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1194 uint8_t nvt_blk, uint32_t nvt_idx)
1195 {
1196 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1197 uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1198
1199 return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1200 hw_cam_line(nvt_blk, nvt_idx);
1201 }
1202
1203 /*
1204 * The thread context register words are in big-endian format.
1205 */
1206 static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1207 uint8_t nvt_blk, uint32_t nvt_idx,
1208 bool cam_ignore, uint32_t logic_serv)
1209 {
1210 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1211 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1212 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1213 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1214 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1215
1216 /*
1217 * TODO (PowerNV): ignore mode. The low order bits of the NVT
1218 * identifier are ignored in the "CAM" match.
1219 */
1220
1221 if (format == 0) {
1222 if (cam_ignore == true) {
1223 /*
1224 * F=0 & i=1: Logical server notification (bits ignored at
1225 * the end of the NVT identifier)
1226 */
1227 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1228 nvt_blk, nvt_idx);
1229 return -1;
1230 }
1231
1232 /* F=0 & i=0: Specific NVT notification */
1233
1234 /* PHYS ring */
1235 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1236 xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1237 return TM_QW3_HV_PHYS;
1238 }
1239
1240 /* HV POOL ring */
1241 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1242 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1243 return TM_QW2_HV_POOL;
1244 }
1245
1246 /* OS ring */
1247 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1248 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1249 return TM_QW1_OS;
1250 }
1251 } else {
1252 /* F=1 : User level Event-Based Branch (EBB) notification */
1253
1254 /* USER ring */
1255 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1256 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1257 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1258 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1259 return TM_QW0_USER;
1260 }
1261 }
1262 return -1;
1263 }
1264
1265 typedef struct XiveTCTXMatch {
1266 XiveTCTX *tctx;
1267 uint8_t ring;
1268 } XiveTCTXMatch;
1269
1270 static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1271 uint8_t nvt_blk, uint32_t nvt_idx,
1272 bool cam_ignore, uint8_t priority,
1273 uint32_t logic_serv, XiveTCTXMatch *match)
1274 {
1275 CPUState *cs;
1276
1277 /*
1278 * TODO (PowerNV): handle chip_id overwrite of block field for
1279 * hardwired CAM compares
1280 */
1281
1282 CPU_FOREACH(cs) {
1283 XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1284 int ring;
1285
1286 /*
1287 * HW checks that the CPU is enabled in the Physical Thread
1288 * Enable Register (PTER).
1289 */
1290
1291 /*
1292 * Check the thread context CAM lines and record matches. We
1293 * will handle CPU exception delivery later
1294 */
1295 ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1296 cam_ignore, logic_serv);
1297 /*
1298 * Save the context and follow on to catch duplicates, that we
1299 * don't support yet.
1300 */
1301 if (ring != -1) {
1302 if (match->tctx) {
1303 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1304 "context NVT %x/%x\n", nvt_blk, nvt_idx);
1305 return false;
1306 }
1307
1308 match->ring = ring;
1309 match->tctx = tctx;
1310 }
1311 }
1312
1313 if (!match->tctx) {
1314 qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1315 nvt_blk, nvt_idx);
1316 return false;
1317 }
1318
1319 return true;
1320 }
1321
1322 /*
1323 * This is our simple Xive Presenter Engine model. It is merged in the
1324 * Router as it does not require an extra object.
1325 *
1326 * It receives notification requests sent by the IVRE to find one
1327 * matching NVT (or more) dispatched on the processor threads. In case
1328 * of a single NVT notification, the process is abreviated and the
1329 * thread is signaled if a match is found. In case of a logical server
1330 * notification (bits ignored at the end of the NVT identifier), the
1331 * IVPE and IVRE select a winning thread using different filters. This
1332 * involves 2 or 3 exchanges on the PowerBus that the model does not
1333 * support.
1334 *
1335 * The parameters represent what is sent on the PowerBus
1336 */
1337 static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1338 uint8_t nvt_blk, uint32_t nvt_idx,
1339 bool cam_ignore, uint8_t priority,
1340 uint32_t logic_serv)
1341 {
1342 XiveNVT nvt;
1343 XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1344 bool found;
1345
1346 /* NVT cache lookup */
1347 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1348 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1349 nvt_blk, nvt_idx);
1350 return;
1351 }
1352
1353 if (!xive_nvt_is_valid(&nvt)) {
1354 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1355 nvt_blk, nvt_idx);
1356 return;
1357 }
1358
1359 found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1360 priority, logic_serv, &match);
1361 if (found) {
1362 ipb_update(&match.tctx->regs[match.ring], priority);
1363 xive_tctx_notify(match.tctx, match.ring);
1364 return;
1365 }
1366
1367 /* Record the IPB in the associated NVT structure */
1368 ipb_update((uint8_t *) &nvt.w4, priority);
1369 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1370
1371 /*
1372 * If no matching NVT is dispatched on a HW thread :
1373 * - update the NVT structure if backlog is activated
1374 * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1375 * activated
1376 */
1377 }
1378
1379 /*
1380 * An END trigger can come from an event trigger (IPI or HW) or from
1381 * another chip. We don't model the PowerBus but the END trigger
1382 * message has the same parameters than in the function below.
1383 */
1384 static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1385 uint32_t end_idx, uint32_t end_data)
1386 {
1387 XiveEND end;
1388 uint8_t priority;
1389 uint8_t format;
1390
1391 /* END cache lookup */
1392 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1393 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1394 end_idx);
1395 return;
1396 }
1397
1398 if (!xive_end_is_valid(&end)) {
1399 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1400 end_blk, end_idx);
1401 return;
1402 }
1403
1404 if (xive_end_is_enqueue(&end)) {
1405 xive_end_enqueue(&end, end_data);
1406 /* Enqueuing event data modifies the EQ toggle and index */
1407 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1408 }
1409
1410 /*
1411 * The W7 format depends on the F bit in W6. It defines the type
1412 * of the notification :
1413 *
1414 * F=0 : single or multiple NVT notification
1415 * F=1 : User level Event-Based Branch (EBB) notification, no
1416 * priority
1417 */
1418 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1419 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1420
1421 /* The END is masked */
1422 if (format == 0 && priority == 0xff) {
1423 return;
1424 }
1425
1426 /*
1427 * Check the END ESn (Event State Buffer for notification) for
1428 * even futher coalescing in the Router
1429 */
1430 if (!xive_end_is_notify(&end)) {
1431 uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1432 bool notify = xive_esb_trigger(&pq);
1433
1434 if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1435 end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1436 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1437 }
1438
1439 /* ESn[Q]=1 : end of notification */
1440 if (!notify) {
1441 return;
1442 }
1443 }
1444
1445 /*
1446 * Follows IVPE notification
1447 */
1448 xive_presenter_notify(xrtr, format,
1449 xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1450 xive_get_field32(END_W6_NVT_INDEX, end.w6),
1451 xive_get_field32(END_W7_F0_IGNORE, end.w7),
1452 priority,
1453 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1454
1455 /* TODO: Auto EOI. */
1456 }
1457
1458 void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1459 {
1460 XiveRouter *xrtr = XIVE_ROUTER(xn);
1461 uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1462 uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1463 XiveEAS eas;
1464
1465 /* EAS cache lookup */
1466 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1467 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1468 return;
1469 }
1470
1471 /*
1472 * The IVRE checks the State Bit Cache at this point. We skip the
1473 * SBC lookup because the state bits of the sources are modeled
1474 * internally in QEMU.
1475 */
1476
1477 if (!xive_eas_is_valid(&eas)) {
1478 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1479 return;
1480 }
1481
1482 if (xive_eas_is_masked(&eas)) {
1483 /* Notification completed */
1484 return;
1485 }
1486
1487 /*
1488 * The event trigger becomes an END trigger
1489 */
1490 xive_router_end_notify(xrtr,
1491 xive_get_field64(EAS_END_BLOCK, eas.w),
1492 xive_get_field64(EAS_END_INDEX, eas.w),
1493 xive_get_field64(EAS_END_DATA, eas.w));
1494 }
1495
1496 static void xive_router_class_init(ObjectClass *klass, void *data)
1497 {
1498 DeviceClass *dc = DEVICE_CLASS(klass);
1499 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1500
1501 dc->desc = "XIVE Router Engine";
1502 xnc->notify = xive_router_notify;
1503 }
1504
1505 static const TypeInfo xive_router_info = {
1506 .name = TYPE_XIVE_ROUTER,
1507 .parent = TYPE_SYS_BUS_DEVICE,
1508 .abstract = true,
1509 .class_size = sizeof(XiveRouterClass),
1510 .class_init = xive_router_class_init,
1511 .interfaces = (InterfaceInfo[]) {
1512 { TYPE_XIVE_NOTIFIER },
1513 { }
1514 }
1515 };
1516
1517 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1518 {
1519 if (!xive_eas_is_valid(eas)) {
1520 return;
1521 }
1522
1523 monitor_printf(mon, " %08x %s end:%02x/%04x data:%08x\n",
1524 lisn, xive_eas_is_masked(eas) ? "M" : " ",
1525 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w),
1526 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1527 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1528 }
1529
1530 /*
1531 * END ESB MMIO loads
1532 */
1533 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1534 {
1535 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1536 uint32_t offset = addr & 0xFFF;
1537 uint8_t end_blk;
1538 uint32_t end_idx;
1539 XiveEND end;
1540 uint32_t end_esmask;
1541 uint8_t pq;
1542 uint64_t ret = -1;
1543
1544 end_blk = xsrc->block_id;
1545 end_idx = addr >> (xsrc->esb_shift + 1);
1546
1547 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1548 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1549 end_idx);
1550 return -1;
1551 }
1552
1553 if (!xive_end_is_valid(&end)) {
1554 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1555 end_blk, end_idx);
1556 return -1;
1557 }
1558
1559 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1560 pq = xive_get_field32(end_esmask, end.w1);
1561
1562 switch (offset) {
1563 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1564 ret = xive_esb_eoi(&pq);
1565
1566 /* Forward the source event notification for routing ?? */
1567 break;
1568
1569 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1570 ret = pq;
1571 break;
1572
1573 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1574 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1575 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1576 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1577 ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1578 break;
1579 default:
1580 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1581 offset);
1582 return -1;
1583 }
1584
1585 if (pq != xive_get_field32(end_esmask, end.w1)) {
1586 end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1587 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1588 }
1589
1590 return ret;
1591 }
1592
1593 /*
1594 * END ESB MMIO stores are invalid
1595 */
1596 static void xive_end_source_write(void *opaque, hwaddr addr,
1597 uint64_t value, unsigned size)
1598 {
1599 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1600 HWADDR_PRIx"\n", addr);
1601 }
1602
1603 static const MemoryRegionOps xive_end_source_ops = {
1604 .read = xive_end_source_read,
1605 .write = xive_end_source_write,
1606 .endianness = DEVICE_BIG_ENDIAN,
1607 .valid = {
1608 .min_access_size = 8,
1609 .max_access_size = 8,
1610 },
1611 .impl = {
1612 .min_access_size = 8,
1613 .max_access_size = 8,
1614 },
1615 };
1616
1617 static void xive_end_source_realize(DeviceState *dev, Error **errp)
1618 {
1619 XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1620 Object *obj;
1621 Error *local_err = NULL;
1622
1623 obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1624 if (!obj) {
1625 error_propagate(errp, local_err);
1626 error_prepend(errp, "required link 'xive' not found: ");
1627 return;
1628 }
1629
1630 xsrc->xrtr = XIVE_ROUTER(obj);
1631
1632 if (!xsrc->nr_ends) {
1633 error_setg(errp, "Number of interrupt needs to be greater than 0");
1634 return;
1635 }
1636
1637 if (xsrc->esb_shift != XIVE_ESB_4K &&
1638 xsrc->esb_shift != XIVE_ESB_64K) {
1639 error_setg(errp, "Invalid ESB shift setting");
1640 return;
1641 }
1642
1643 /*
1644 * Each END is assigned an even/odd pair of MMIO pages, the even page
1645 * manages the ESn field while the odd page manages the ESe field.
1646 */
1647 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1648 &xive_end_source_ops, xsrc, "xive.end",
1649 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1650 }
1651
1652 static Property xive_end_source_properties[] = {
1653 DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1654 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1655 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1656 DEFINE_PROP_END_OF_LIST(),
1657 };
1658
1659 static void xive_end_source_class_init(ObjectClass *klass, void *data)
1660 {
1661 DeviceClass *dc = DEVICE_CLASS(klass);
1662
1663 dc->desc = "XIVE END Source";
1664 dc->props = xive_end_source_properties;
1665 dc->realize = xive_end_source_realize;
1666 }
1667
1668 static const TypeInfo xive_end_source_info = {
1669 .name = TYPE_XIVE_END_SOURCE,
1670 .parent = TYPE_DEVICE,
1671 .instance_size = sizeof(XiveENDSource),
1672 .class_init = xive_end_source_class_init,
1673 };
1674
1675 /*
1676 * XIVE Notifier
1677 */
1678 static const TypeInfo xive_notifier_info = {
1679 .name = TYPE_XIVE_NOTIFIER,
1680 .parent = TYPE_INTERFACE,
1681 .class_size = sizeof(XiveNotifierClass),
1682 };
1683
1684 static void xive_register_types(void)
1685 {
1686 type_register_static(&xive_source_info);
1687 type_register_static(&xive_notifier_info);
1688 type_register_static(&xive_router_info);
1689 type_register_static(&xive_end_source_info);
1690 type_register_static(&xive_tctx_info);
1691 }
1692
1693 type_init(xive_register_types)