]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intel-hda.c
Merge remote-tracking branch 'qemu-kvm/uq/master' into staging
[mirror_qemu.git] / hw / intel-hda.c
1 /*
2 * Copyright (C) 2010 Red Hat, Inc.
3 *
4 * written by Gerd Hoffmann <kraxel@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "hw.h"
21 #include "pci.h"
22 #include "msi.h"
23 #include "qemu-timer.h"
24 #include "audiodev.h"
25 #include "intel-hda.h"
26 #include "intel-hda-defs.h"
27
28 /* --------------------------------------------------------------------- */
29 /* hda bus */
30
31 static struct BusInfo hda_codec_bus_info = {
32 .name = "HDA",
33 .size = sizeof(HDACodecBus),
34 .props = (Property[]) {
35 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
36 DEFINE_PROP_END_OF_LIST()
37 }
38 };
39
40 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
41 hda_codec_response_func response,
42 hda_codec_xfer_func xfer)
43 {
44 qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
45 bus->response = response;
46 bus->xfer = xfer;
47 }
48
49 static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
50 {
51 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
52 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
53 HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
54
55 dev->info = info;
56 if (dev->cad == -1) {
57 dev->cad = bus->next_cad;
58 }
59 if (dev->cad >= 15) {
60 return -1;
61 }
62 bus->next_cad = dev->cad + 1;
63 return info->init(dev);
64 }
65
66 static int hda_codec_dev_exit(DeviceState *qdev)
67 {
68 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
69
70 if (dev->info->exit) {
71 dev->info->exit(dev);
72 }
73 return 0;
74 }
75
76 void hda_codec_register(HDACodecDeviceInfo *info)
77 {
78 info->qdev.init = hda_codec_dev_init;
79 info->qdev.exit = hda_codec_dev_exit;
80 info->qdev.bus_info = &hda_codec_bus_info;
81 qdev_register(&info->qdev);
82 }
83
84 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
85 {
86 DeviceState *qdev;
87 HDACodecDevice *cdev;
88
89 QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
90 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
91 if (cdev->cad == cad) {
92 return cdev;
93 }
94 }
95 return NULL;
96 }
97
98 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
99 {
100 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
101 bus->response(dev, solicited, response);
102 }
103
104 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
105 uint8_t *buf, uint32_t len)
106 {
107 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
108 return bus->xfer(dev, stnr, output, buf, len);
109 }
110
111 /* --------------------------------------------------------------------- */
112 /* intel hda emulation */
113
114 typedef struct IntelHDAStream IntelHDAStream;
115 typedef struct IntelHDAState IntelHDAState;
116 typedef struct IntelHDAReg IntelHDAReg;
117
118 typedef struct bpl {
119 uint64_t addr;
120 uint32_t len;
121 uint32_t flags;
122 } bpl;
123
124 struct IntelHDAStream {
125 /* registers */
126 uint32_t ctl;
127 uint32_t lpib;
128 uint32_t cbl;
129 uint32_t lvi;
130 uint32_t fmt;
131 uint32_t bdlp_lbase;
132 uint32_t bdlp_ubase;
133
134 /* state */
135 bpl *bpl;
136 uint32_t bentries;
137 uint32_t bsize, be, bp;
138 };
139
140 struct IntelHDAState {
141 PCIDevice pci;
142 const char *name;
143 HDACodecBus codecs;
144
145 /* registers */
146 uint32_t g_ctl;
147 uint32_t wake_en;
148 uint32_t state_sts;
149 uint32_t int_ctl;
150 uint32_t int_sts;
151 uint32_t wall_clk;
152
153 uint32_t corb_lbase;
154 uint32_t corb_ubase;
155 uint32_t corb_rp;
156 uint32_t corb_wp;
157 uint32_t corb_ctl;
158 uint32_t corb_sts;
159 uint32_t corb_size;
160
161 uint32_t rirb_lbase;
162 uint32_t rirb_ubase;
163 uint32_t rirb_wp;
164 uint32_t rirb_cnt;
165 uint32_t rirb_ctl;
166 uint32_t rirb_sts;
167 uint32_t rirb_size;
168
169 uint32_t dp_lbase;
170 uint32_t dp_ubase;
171
172 uint32_t icw;
173 uint32_t irr;
174 uint32_t ics;
175
176 /* streams */
177 IntelHDAStream st[8];
178
179 /* state */
180 int mmio_addr;
181 uint32_t rirb_count;
182 int64_t wall_base_ns;
183
184 /* debug logging */
185 const IntelHDAReg *last_reg;
186 uint32_t last_val;
187 uint32_t last_write;
188 uint32_t last_sec;
189 uint32_t repeat_count;
190
191 /* properties */
192 uint32_t debug;
193 uint32_t msi;
194 };
195
196 struct IntelHDAReg {
197 const char *name; /* register name */
198 uint32_t size; /* size in bytes */
199 uint32_t reset; /* reset value */
200 uint32_t wmask; /* write mask */
201 uint32_t wclear; /* write 1 to clear bits */
202 uint32_t offset; /* location in IntelHDAState */
203 uint32_t shift; /* byte access entries for dwords */
204 uint32_t stream;
205 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
206 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
207 };
208
209 static void intel_hda_reset(DeviceState *dev);
210
211 /* --------------------------------------------------------------------- */
212
213 static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
214 {
215 target_phys_addr_t addr;
216
217 #if TARGET_PHYS_ADDR_BITS == 32
218 addr = lbase;
219 #else
220 addr = ubase;
221 addr <<= 32;
222 addr |= lbase;
223 #endif
224 return addr;
225 }
226
227 static void stl_phys_le(target_phys_addr_t addr, uint32_t value)
228 {
229 uint32_t value_le = cpu_to_le32(value);
230 cpu_physical_memory_write(addr, (uint8_t*)(&value_le), sizeof(value_le));
231 }
232
233 static uint32_t ldl_phys_le(target_phys_addr_t addr)
234 {
235 uint32_t value_le;
236 cpu_physical_memory_read(addr, (uint8_t*)(&value_le), sizeof(value_le));
237 return le32_to_cpu(value_le);
238 }
239
240 static void intel_hda_update_int_sts(IntelHDAState *d)
241 {
242 uint32_t sts = 0;
243 uint32_t i;
244
245 /* update controller status */
246 if (d->rirb_sts & ICH6_RBSTS_IRQ) {
247 sts |= (1 << 30);
248 }
249 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
250 sts |= (1 << 30);
251 }
252 if (d->state_sts & d->wake_en) {
253 sts |= (1 << 30);
254 }
255
256 /* update stream status */
257 for (i = 0; i < 8; i++) {
258 /* buffer completion interrupt */
259 if (d->st[i].ctl & (1 << 26)) {
260 sts |= (1 << i);
261 }
262 }
263
264 /* update global status */
265 if (sts & d->int_ctl) {
266 sts |= (1 << 31);
267 }
268
269 d->int_sts = sts;
270 }
271
272 static void intel_hda_update_irq(IntelHDAState *d)
273 {
274 int msi = d->msi && msi_enabled(&d->pci);
275 int level;
276
277 intel_hda_update_int_sts(d);
278 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
279 level = 1;
280 } else {
281 level = 0;
282 }
283 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
284 level, msi ? "msi" : "intx");
285 if (msi) {
286 if (level) {
287 msi_notify(&d->pci, 0);
288 }
289 } else {
290 qemu_set_irq(d->pci.irq[0], level);
291 }
292 }
293
294 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
295 {
296 uint32_t cad, nid, data;
297 HDACodecDevice *codec;
298
299 cad = (verb >> 28) & 0x0f;
300 if (verb & (1 << 27)) {
301 /* indirect node addressing, not specified in HDA 1.0 */
302 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
303 return -1;
304 }
305 nid = (verb >> 20) & 0x7f;
306 data = verb & 0xfffff;
307
308 codec = hda_codec_find(&d->codecs, cad);
309 if (codec == NULL) {
310 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
311 return -1;
312 }
313 codec->info->command(codec, nid, data);
314 return 0;
315 }
316
317 static void intel_hda_corb_run(IntelHDAState *d)
318 {
319 target_phys_addr_t addr;
320 uint32_t rp, verb;
321
322 if (d->ics & ICH6_IRS_BUSY) {
323 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
324 intel_hda_send_command(d, d->icw);
325 return;
326 }
327
328 for (;;) {
329 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
330 dprint(d, 2, "%s: !run\n", __FUNCTION__);
331 return;
332 }
333 if ((d->corb_rp & 0xff) == d->corb_wp) {
334 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
335 return;
336 }
337 if (d->rirb_count == d->rirb_cnt) {
338 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
339 return;
340 }
341
342 rp = (d->corb_rp + 1) & 0xff;
343 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
344 verb = ldl_phys_le(addr + 4*rp);
345 d->corb_rp = rp;
346
347 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
348 intel_hda_send_command(d, verb);
349 }
350 }
351
352 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
353 {
354 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
355 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
356 target_phys_addr_t addr;
357 uint32_t wp, ex;
358
359 if (d->ics & ICH6_IRS_BUSY) {
360 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
361 __FUNCTION__, response, dev->cad);
362 d->irr = response;
363 d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
364 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
365 return;
366 }
367
368 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
369 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
370 return;
371 }
372
373 ex = (solicited ? 0 : (1 << 4)) | dev->cad;
374 wp = (d->rirb_wp + 1) & 0xff;
375 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
376 stl_phys_le(addr + 8*wp, response);
377 stl_phys_le(addr + 8*wp + 4, ex);
378 d->rirb_wp = wp;
379
380 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
381 __FUNCTION__, wp, response, ex);
382
383 d->rirb_count++;
384 if (d->rirb_count == d->rirb_cnt) {
385 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
386 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
387 d->rirb_sts |= ICH6_RBSTS_IRQ;
388 intel_hda_update_irq(d);
389 }
390 } else if ((d->corb_rp & 0xff) == d->corb_wp) {
391 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
392 d->rirb_count, d->rirb_cnt);
393 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
394 d->rirb_sts |= ICH6_RBSTS_IRQ;
395 intel_hda_update_irq(d);
396 }
397 }
398 }
399
400 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
401 uint8_t *buf, uint32_t len)
402 {
403 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
404 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
405 IntelHDAStream *st = NULL;
406 target_phys_addr_t addr;
407 uint32_t s, copy, left;
408 bool irq = false;
409
410 for (s = 0; s < ARRAY_SIZE(d->st); s++) {
411 if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
412 st = d->st + s;
413 break;
414 }
415 }
416 if (st == NULL) {
417 return false;
418 }
419 if (st->bpl == NULL) {
420 return false;
421 }
422 if (st->ctl & (1 << 26)) {
423 /*
424 * Wait with the next DMA xfer until the guest
425 * has acked the buffer completion interrupt
426 */
427 return false;
428 }
429
430 left = len;
431 while (left > 0) {
432 copy = left;
433 if (copy > st->bsize - st->lpib)
434 copy = st->bsize - st->lpib;
435 if (copy > st->bpl[st->be].len - st->bp)
436 copy = st->bpl[st->be].len - st->bp;
437
438 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
439 st->be, st->bp, st->bpl[st->be].len, copy);
440
441 cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
442 buf, copy, !output);
443 st->lpib += copy;
444 st->bp += copy;
445 buf += copy;
446 left -= copy;
447
448 if (st->bpl[st->be].len == st->bp) {
449 /* bpl entry filled */
450 if (st->bpl[st->be].flags & 0x01) {
451 irq = true;
452 }
453 st->bp = 0;
454 st->be++;
455 if (st->be == st->bentries) {
456 /* bpl wrap around */
457 st->be = 0;
458 st->lpib = 0;
459 }
460 }
461 }
462 if (d->dp_lbase & 0x01) {
463 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
464 stl_phys_le(addr + 8*s, st->lpib);
465 }
466 dprint(d, 3, "dma: --\n");
467
468 if (irq) {
469 st->ctl |= (1 << 26); /* buffer completion interrupt */
470 intel_hda_update_irq(d);
471 }
472 return true;
473 }
474
475 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
476 {
477 target_phys_addr_t addr;
478 uint8_t buf[16];
479 uint32_t i;
480
481 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
482 st->bentries = st->lvi +1;
483 qemu_free(st->bpl);
484 st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
485 for (i = 0; i < st->bentries; i++, addr += 16) {
486 cpu_physical_memory_read(addr, buf, 16);
487 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
488 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
489 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
490 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
491 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
492 }
493
494 st->bsize = st->cbl;
495 st->lpib = 0;
496 st->be = 0;
497 st->bp = 0;
498 }
499
500 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
501 {
502 DeviceState *qdev;
503 HDACodecDevice *cdev;
504
505 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
506 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
507 if (cdev->info->stream) {
508 cdev->info->stream(cdev, stream, running);
509 }
510 }
511 }
512
513 /* --------------------------------------------------------------------- */
514
515 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
516 {
517 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
518 intel_hda_reset(&d->pci.qdev);
519 }
520 }
521
522 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
523 {
524 intel_hda_update_irq(d);
525 }
526
527 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
528 {
529 intel_hda_update_irq(d);
530 }
531
532 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
533 {
534 intel_hda_update_irq(d);
535 }
536
537 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
538 {
539 int64_t ns;
540
541 ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
542 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
543 }
544
545 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
546 {
547 intel_hda_corb_run(d);
548 }
549
550 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
551 {
552 intel_hda_corb_run(d);
553 }
554
555 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
556 {
557 if (d->rirb_wp & ICH6_RIRBWP_RST) {
558 d->rirb_wp = 0;
559 }
560 }
561
562 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
563 {
564 intel_hda_update_irq(d);
565
566 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
567 /* cleared ICH6_RBSTS_IRQ */
568 d->rirb_count = 0;
569 intel_hda_corb_run(d);
570 }
571 }
572
573 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
574 {
575 if (d->ics & ICH6_IRS_BUSY) {
576 intel_hda_corb_run(d);
577 }
578 }
579
580 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
581 {
582 IntelHDAStream *st = d->st + reg->stream;
583
584 if (st->ctl & 0x01) {
585 /* reset */
586 dprint(d, 1, "st #%d: reset\n", reg->stream);
587 st->ctl = 0;
588 }
589 if ((st->ctl & 0x02) != (old & 0x02)) {
590 uint32_t stnr = (st->ctl >> 20) & 0x0f;
591 /* run bit flipped */
592 if (st->ctl & 0x02) {
593 /* start */
594 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
595 reg->stream, stnr, st->cbl);
596 intel_hda_parse_bdl(d, st);
597 intel_hda_notify_codecs(d, stnr, true);
598 } else {
599 /* stop */
600 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
601 intel_hda_notify_codecs(d, stnr, false);
602 }
603 }
604 intel_hda_update_irq(d);
605 }
606
607 /* --------------------------------------------------------------------- */
608
609 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
610
611 static const struct IntelHDAReg regtab[] = {
612 /* global */
613 [ ICH6_REG_GCAP ] = {
614 .name = "GCAP",
615 .size = 2,
616 .reset = 0x4401,
617 },
618 [ ICH6_REG_VMIN ] = {
619 .name = "VMIN",
620 .size = 1,
621 },
622 [ ICH6_REG_VMAJ ] = {
623 .name = "VMAJ",
624 .size = 1,
625 .reset = 1,
626 },
627 [ ICH6_REG_OUTPAY ] = {
628 .name = "OUTPAY",
629 .size = 2,
630 .reset = 0x3c,
631 },
632 [ ICH6_REG_INPAY ] = {
633 .name = "INPAY",
634 .size = 2,
635 .reset = 0x1d,
636 },
637 [ ICH6_REG_GCTL ] = {
638 .name = "GCTL",
639 .size = 4,
640 .wmask = 0x0103,
641 .offset = offsetof(IntelHDAState, g_ctl),
642 .whandler = intel_hda_set_g_ctl,
643 },
644 [ ICH6_REG_WAKEEN ] = {
645 .name = "WAKEEN",
646 .size = 2,
647 .wmask = 0x7fff,
648 .offset = offsetof(IntelHDAState, wake_en),
649 .whandler = intel_hda_set_wake_en,
650 },
651 [ ICH6_REG_STATESTS ] = {
652 .name = "STATESTS",
653 .size = 2,
654 .wmask = 0x7fff,
655 .wclear = 0x7fff,
656 .offset = offsetof(IntelHDAState, state_sts),
657 .whandler = intel_hda_set_state_sts,
658 },
659
660 /* interrupts */
661 [ ICH6_REG_INTCTL ] = {
662 .name = "INTCTL",
663 .size = 4,
664 .wmask = 0xc00000ff,
665 .offset = offsetof(IntelHDAState, int_ctl),
666 .whandler = intel_hda_set_int_ctl,
667 },
668 [ ICH6_REG_INTSTS ] = {
669 .name = "INTSTS",
670 .size = 4,
671 .wmask = 0xc00000ff,
672 .wclear = 0xc00000ff,
673 .offset = offsetof(IntelHDAState, int_sts),
674 },
675
676 /* misc */
677 [ ICH6_REG_WALLCLK ] = {
678 .name = "WALLCLK",
679 .size = 4,
680 .offset = offsetof(IntelHDAState, wall_clk),
681 .rhandler = intel_hda_get_wall_clk,
682 },
683 [ ICH6_REG_WALLCLK + 0x2000 ] = {
684 .name = "WALLCLK(alias)",
685 .size = 4,
686 .offset = offsetof(IntelHDAState, wall_clk),
687 .rhandler = intel_hda_get_wall_clk,
688 },
689
690 /* dma engine */
691 [ ICH6_REG_CORBLBASE ] = {
692 .name = "CORBLBASE",
693 .size = 4,
694 .wmask = 0xffffff80,
695 .offset = offsetof(IntelHDAState, corb_lbase),
696 },
697 [ ICH6_REG_CORBUBASE ] = {
698 .name = "CORBUBASE",
699 .size = 4,
700 .wmask = 0xffffffff,
701 .offset = offsetof(IntelHDAState, corb_ubase),
702 },
703 [ ICH6_REG_CORBWP ] = {
704 .name = "CORBWP",
705 .size = 2,
706 .wmask = 0xff,
707 .offset = offsetof(IntelHDAState, corb_wp),
708 .whandler = intel_hda_set_corb_wp,
709 },
710 [ ICH6_REG_CORBRP ] = {
711 .name = "CORBRP",
712 .size = 2,
713 .wmask = 0x80ff,
714 .offset = offsetof(IntelHDAState, corb_rp),
715 },
716 [ ICH6_REG_CORBCTL ] = {
717 .name = "CORBCTL",
718 .size = 1,
719 .wmask = 0x03,
720 .offset = offsetof(IntelHDAState, corb_ctl),
721 .whandler = intel_hda_set_corb_ctl,
722 },
723 [ ICH6_REG_CORBSTS ] = {
724 .name = "CORBSTS",
725 .size = 1,
726 .wmask = 0x01,
727 .wclear = 0x01,
728 .offset = offsetof(IntelHDAState, corb_sts),
729 },
730 [ ICH6_REG_CORBSIZE ] = {
731 .name = "CORBSIZE",
732 .size = 1,
733 .reset = 0x42,
734 .offset = offsetof(IntelHDAState, corb_size),
735 },
736 [ ICH6_REG_RIRBLBASE ] = {
737 .name = "RIRBLBASE",
738 .size = 4,
739 .wmask = 0xffffff80,
740 .offset = offsetof(IntelHDAState, rirb_lbase),
741 },
742 [ ICH6_REG_RIRBUBASE ] = {
743 .name = "RIRBUBASE",
744 .size = 4,
745 .wmask = 0xffffffff,
746 .offset = offsetof(IntelHDAState, rirb_ubase),
747 },
748 [ ICH6_REG_RIRBWP ] = {
749 .name = "RIRBWP",
750 .size = 2,
751 .wmask = 0x8000,
752 .offset = offsetof(IntelHDAState, rirb_wp),
753 .whandler = intel_hda_set_rirb_wp,
754 },
755 [ ICH6_REG_RINTCNT ] = {
756 .name = "RINTCNT",
757 .size = 2,
758 .wmask = 0xff,
759 .offset = offsetof(IntelHDAState, rirb_cnt),
760 },
761 [ ICH6_REG_RIRBCTL ] = {
762 .name = "RIRBCTL",
763 .size = 1,
764 .wmask = 0x07,
765 .offset = offsetof(IntelHDAState, rirb_ctl),
766 },
767 [ ICH6_REG_RIRBSTS ] = {
768 .name = "RIRBSTS",
769 .size = 1,
770 .wmask = 0x05,
771 .wclear = 0x05,
772 .offset = offsetof(IntelHDAState, rirb_sts),
773 .whandler = intel_hda_set_rirb_sts,
774 },
775 [ ICH6_REG_RIRBSIZE ] = {
776 .name = "RIRBSIZE",
777 .size = 1,
778 .reset = 0x42,
779 .offset = offsetof(IntelHDAState, rirb_size),
780 },
781
782 [ ICH6_REG_DPLBASE ] = {
783 .name = "DPLBASE",
784 .size = 4,
785 .wmask = 0xffffff81,
786 .offset = offsetof(IntelHDAState, dp_lbase),
787 },
788 [ ICH6_REG_DPUBASE ] = {
789 .name = "DPUBASE",
790 .size = 4,
791 .wmask = 0xffffffff,
792 .offset = offsetof(IntelHDAState, dp_ubase),
793 },
794
795 [ ICH6_REG_IC ] = {
796 .name = "ICW",
797 .size = 4,
798 .wmask = 0xffffffff,
799 .offset = offsetof(IntelHDAState, icw),
800 },
801 [ ICH6_REG_IR ] = {
802 .name = "IRR",
803 .size = 4,
804 .offset = offsetof(IntelHDAState, irr),
805 },
806 [ ICH6_REG_IRS ] = {
807 .name = "ICS",
808 .size = 2,
809 .wmask = 0x0003,
810 .wclear = 0x0002,
811 .offset = offsetof(IntelHDAState, ics),
812 .whandler = intel_hda_set_ics,
813 },
814
815 #define HDA_STREAM(_t, _i) \
816 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
817 .stream = _i, \
818 .name = _t stringify(_i) " CTL", \
819 .size = 4, \
820 .wmask = 0x1cff001f, \
821 .offset = offsetof(IntelHDAState, st[_i].ctl), \
822 .whandler = intel_hda_set_st_ctl, \
823 }, \
824 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
825 .stream = _i, \
826 .name = _t stringify(_i) " CTL(stnr)", \
827 .size = 1, \
828 .shift = 16, \
829 .wmask = 0x00ff0000, \
830 .offset = offsetof(IntelHDAState, st[_i].ctl), \
831 .whandler = intel_hda_set_st_ctl, \
832 }, \
833 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
834 .stream = _i, \
835 .name = _t stringify(_i) " CTL(sts)", \
836 .size = 1, \
837 .shift = 24, \
838 .wmask = 0x1c000000, \
839 .wclear = 0x1c000000, \
840 .offset = offsetof(IntelHDAState, st[_i].ctl), \
841 .whandler = intel_hda_set_st_ctl, \
842 }, \
843 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
844 .stream = _i, \
845 .name = _t stringify(_i) " LPIB", \
846 .size = 4, \
847 .offset = offsetof(IntelHDAState, st[_i].lpib), \
848 }, \
849 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
850 .stream = _i, \
851 .name = _t stringify(_i) " LPIB(alias)", \
852 .size = 4, \
853 .offset = offsetof(IntelHDAState, st[_i].lpib), \
854 }, \
855 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
856 .stream = _i, \
857 .name = _t stringify(_i) " CBL", \
858 .size = 4, \
859 .wmask = 0xffffffff, \
860 .offset = offsetof(IntelHDAState, st[_i].cbl), \
861 }, \
862 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
863 .stream = _i, \
864 .name = _t stringify(_i) " LVI", \
865 .size = 2, \
866 .wmask = 0x00ff, \
867 .offset = offsetof(IntelHDAState, st[_i].lvi), \
868 }, \
869 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
870 .stream = _i, \
871 .name = _t stringify(_i) " FIFOS", \
872 .size = 2, \
873 .reset = HDA_BUFFER_SIZE, \
874 }, \
875 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
876 .stream = _i, \
877 .name = _t stringify(_i) " FMT", \
878 .size = 2, \
879 .wmask = 0x7f7f, \
880 .offset = offsetof(IntelHDAState, st[_i].fmt), \
881 }, \
882 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
883 .stream = _i, \
884 .name = _t stringify(_i) " BDLPL", \
885 .size = 4, \
886 .wmask = 0xffffff80, \
887 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
888 }, \
889 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
890 .stream = _i, \
891 .name = _t stringify(_i) " BDLPU", \
892 .size = 4, \
893 .wmask = 0xffffffff, \
894 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
895 }, \
896
897 HDA_STREAM("IN", 0)
898 HDA_STREAM("IN", 1)
899 HDA_STREAM("IN", 2)
900 HDA_STREAM("IN", 3)
901
902 HDA_STREAM("OUT", 4)
903 HDA_STREAM("OUT", 5)
904 HDA_STREAM("OUT", 6)
905 HDA_STREAM("OUT", 7)
906
907 };
908
909 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
910 {
911 const IntelHDAReg *reg;
912
913 if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
914 goto noreg;
915 }
916 reg = regtab+addr;
917 if (reg->name == NULL) {
918 goto noreg;
919 }
920 return reg;
921
922 noreg:
923 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
924 return NULL;
925 }
926
927 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
928 {
929 uint8_t *addr = (void*)d;
930
931 addr += reg->offset;
932 return (uint32_t*)addr;
933 }
934
935 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
936 uint32_t wmask)
937 {
938 uint32_t *addr;
939 uint32_t old;
940
941 if (!reg) {
942 return;
943 }
944
945 if (d->debug) {
946 time_t now = time(NULL);
947 if (d->last_write && d->last_reg == reg && d->last_val == val) {
948 d->repeat_count++;
949 if (d->last_sec != now) {
950 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
951 d->last_sec = now;
952 d->repeat_count = 0;
953 }
954 } else {
955 if (d->repeat_count) {
956 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
957 }
958 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
959 d->last_write = 1;
960 d->last_reg = reg;
961 d->last_val = val;
962 d->last_sec = now;
963 d->repeat_count = 0;
964 }
965 }
966 assert(reg->offset != 0);
967
968 addr = intel_hda_reg_addr(d, reg);
969 old = *addr;
970
971 if (reg->shift) {
972 val <<= reg->shift;
973 wmask <<= reg->shift;
974 }
975 wmask &= reg->wmask;
976 *addr &= ~wmask;
977 *addr |= wmask & val;
978 *addr &= ~(val & reg->wclear);
979
980 if (reg->whandler) {
981 reg->whandler(d, reg, old);
982 }
983 }
984
985 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
986 uint32_t rmask)
987 {
988 uint32_t *addr, ret;
989
990 if (!reg) {
991 return 0;
992 }
993
994 if (reg->rhandler) {
995 reg->rhandler(d, reg);
996 }
997
998 if (reg->offset == 0) {
999 /* constant read-only register */
1000 ret = reg->reset;
1001 } else {
1002 addr = intel_hda_reg_addr(d, reg);
1003 ret = *addr;
1004 if (reg->shift) {
1005 ret >>= reg->shift;
1006 }
1007 ret &= rmask;
1008 }
1009 if (d->debug) {
1010 time_t now = time(NULL);
1011 if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
1012 d->repeat_count++;
1013 if (d->last_sec != now) {
1014 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1015 d->last_sec = now;
1016 d->repeat_count = 0;
1017 }
1018 } else {
1019 if (d->repeat_count) {
1020 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1021 }
1022 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1023 d->last_write = 0;
1024 d->last_reg = reg;
1025 d->last_val = ret;
1026 d->last_sec = now;
1027 d->repeat_count = 0;
1028 }
1029 }
1030 return ret;
1031 }
1032
1033 static void intel_hda_regs_reset(IntelHDAState *d)
1034 {
1035 uint32_t *addr;
1036 int i;
1037
1038 for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1039 if (regtab[i].name == NULL) {
1040 continue;
1041 }
1042 if (regtab[i].offset == 0) {
1043 continue;
1044 }
1045 addr = intel_hda_reg_addr(d, regtab + i);
1046 *addr = regtab[i].reset;
1047 }
1048 }
1049
1050 /* --------------------------------------------------------------------- */
1051
1052 static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1053 {
1054 IntelHDAState *d = opaque;
1055 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1056
1057 intel_hda_reg_write(d, reg, val, 0xff);
1058 }
1059
1060 static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1061 {
1062 IntelHDAState *d = opaque;
1063 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1064
1065 intel_hda_reg_write(d, reg, val, 0xffff);
1066 }
1067
1068 static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1069 {
1070 IntelHDAState *d = opaque;
1071 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1072
1073 intel_hda_reg_write(d, reg, val, 0xffffffff);
1074 }
1075
1076 static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1077 {
1078 IntelHDAState *d = opaque;
1079 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1080
1081 return intel_hda_reg_read(d, reg, 0xff);
1082 }
1083
1084 static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1085 {
1086 IntelHDAState *d = opaque;
1087 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1088
1089 return intel_hda_reg_read(d, reg, 0xffff);
1090 }
1091
1092 static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1093 {
1094 IntelHDAState *d = opaque;
1095 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1096
1097 return intel_hda_reg_read(d, reg, 0xffffffff);
1098 }
1099
1100 static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
1101 intel_hda_mmio_readb,
1102 intel_hda_mmio_readw,
1103 intel_hda_mmio_readl,
1104 };
1105
1106 static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
1107 intel_hda_mmio_writeb,
1108 intel_hda_mmio_writew,
1109 intel_hda_mmio_writel,
1110 };
1111
1112 /* --------------------------------------------------------------------- */
1113
1114 static void intel_hda_reset(DeviceState *dev)
1115 {
1116 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1117 DeviceState *qdev;
1118 HDACodecDevice *cdev;
1119
1120 intel_hda_regs_reset(d);
1121 d->wall_base_ns = qemu_get_clock_ns(vm_clock);
1122
1123 /* reset codecs */
1124 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1125 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1126 if (qdev->info->reset) {
1127 qdev->info->reset(qdev);
1128 }
1129 d->state_sts |= (1 << cdev->cad);
1130 }
1131 intel_hda_update_irq(d);
1132 }
1133
1134 static int intel_hda_init(PCIDevice *pci)
1135 {
1136 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1137 uint8_t *conf = d->pci.config;
1138
1139 d->name = d->pci.qdev.info->name;
1140
1141 pci_config_set_interrupt_pin(conf, 1);
1142
1143 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1144 conf[0x40] = 0x01;
1145
1146 d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
1147 intel_hda_mmio_write, d,
1148 DEVICE_NATIVE_ENDIAN);
1149 pci_register_bar_simple(&d->pci, 0, 0x4000, 0, d->mmio_addr);
1150 if (d->msi) {
1151 msi_init(&d->pci, 0x50, 1, true, false);
1152 }
1153
1154 hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1155 intel_hda_response, intel_hda_xfer);
1156
1157 return 0;
1158 }
1159
1160 static int intel_hda_exit(PCIDevice *pci)
1161 {
1162 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1163
1164 msi_uninit(&d->pci);
1165 cpu_unregister_io_memory(d->mmio_addr);
1166 return 0;
1167 }
1168
1169 static void intel_hda_write_config(PCIDevice *pci, uint32_t addr,
1170 uint32_t val, int len)
1171 {
1172 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1173
1174 pci_default_write_config(pci, addr, val, len);
1175 if (d->msi) {
1176 msi_write_config(pci, addr, val, len);
1177 }
1178 }
1179
1180 static int intel_hda_post_load(void *opaque, int version)
1181 {
1182 IntelHDAState* d = opaque;
1183 int i;
1184
1185 dprint(d, 1, "%s\n", __FUNCTION__);
1186 for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1187 if (d->st[i].ctl & 0x02) {
1188 intel_hda_parse_bdl(d, &d->st[i]);
1189 }
1190 }
1191 intel_hda_update_irq(d);
1192 return 0;
1193 }
1194
1195 static const VMStateDescription vmstate_intel_hda_stream = {
1196 .name = "intel-hda-stream",
1197 .version_id = 1,
1198 .fields = (VMStateField []) {
1199 VMSTATE_UINT32(ctl, IntelHDAStream),
1200 VMSTATE_UINT32(lpib, IntelHDAStream),
1201 VMSTATE_UINT32(cbl, IntelHDAStream),
1202 VMSTATE_UINT32(lvi, IntelHDAStream),
1203 VMSTATE_UINT32(fmt, IntelHDAStream),
1204 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1205 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1206 VMSTATE_END_OF_LIST()
1207 }
1208 };
1209
1210 static const VMStateDescription vmstate_intel_hda = {
1211 .name = "intel-hda",
1212 .version_id = 1,
1213 .post_load = intel_hda_post_load,
1214 .fields = (VMStateField []) {
1215 VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1216
1217 /* registers */
1218 VMSTATE_UINT32(g_ctl, IntelHDAState),
1219 VMSTATE_UINT32(wake_en, IntelHDAState),
1220 VMSTATE_UINT32(state_sts, IntelHDAState),
1221 VMSTATE_UINT32(int_ctl, IntelHDAState),
1222 VMSTATE_UINT32(int_sts, IntelHDAState),
1223 VMSTATE_UINT32(wall_clk, IntelHDAState),
1224 VMSTATE_UINT32(corb_lbase, IntelHDAState),
1225 VMSTATE_UINT32(corb_ubase, IntelHDAState),
1226 VMSTATE_UINT32(corb_rp, IntelHDAState),
1227 VMSTATE_UINT32(corb_wp, IntelHDAState),
1228 VMSTATE_UINT32(corb_ctl, IntelHDAState),
1229 VMSTATE_UINT32(corb_sts, IntelHDAState),
1230 VMSTATE_UINT32(corb_size, IntelHDAState),
1231 VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1232 VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1233 VMSTATE_UINT32(rirb_wp, IntelHDAState),
1234 VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1235 VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1236 VMSTATE_UINT32(rirb_sts, IntelHDAState),
1237 VMSTATE_UINT32(rirb_size, IntelHDAState),
1238 VMSTATE_UINT32(dp_lbase, IntelHDAState),
1239 VMSTATE_UINT32(dp_ubase, IntelHDAState),
1240 VMSTATE_UINT32(icw, IntelHDAState),
1241 VMSTATE_UINT32(irr, IntelHDAState),
1242 VMSTATE_UINT32(ics, IntelHDAState),
1243 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1244 vmstate_intel_hda_stream,
1245 IntelHDAStream),
1246
1247 /* additional state info */
1248 VMSTATE_UINT32(rirb_count, IntelHDAState),
1249 VMSTATE_INT64(wall_base_ns, IntelHDAState),
1250
1251 VMSTATE_END_OF_LIST()
1252 }
1253 };
1254
1255 static PCIDeviceInfo intel_hda_info = {
1256 .qdev.name = "intel-hda",
1257 .qdev.desc = "Intel HD Audio Controller",
1258 .qdev.size = sizeof(IntelHDAState),
1259 .qdev.vmsd = &vmstate_intel_hda,
1260 .qdev.reset = intel_hda_reset,
1261 .init = intel_hda_init,
1262 .exit = intel_hda_exit,
1263 .config_write = intel_hda_write_config,
1264 .vendor_id = PCI_VENDOR_ID_INTEL,
1265 .device_id = 0x2668,
1266 .revision = 1,
1267 .class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO,
1268 .qdev.props = (Property[]) {
1269 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1270 DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
1271 DEFINE_PROP_END_OF_LIST(),
1272 }
1273 };
1274
1275 static void intel_hda_register(void)
1276 {
1277 pci_qdev_register(&intel_hda_info);
1278 }
1279 device_init(intel_hda_register);
1280
1281 /*
1282 * create intel hda controller with codec attached to it,
1283 * so '-soundhw hda' works.
1284 */
1285 int intel_hda_and_codec_init(PCIBus *bus)
1286 {
1287 PCIDevice *controller;
1288 BusState *hdabus;
1289 DeviceState *codec;
1290
1291 controller = pci_create_simple(bus, -1, "intel-hda");
1292 hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1293 codec = qdev_create(hdabus, "hda-duplex");
1294 qdev_init_nofail(codec);
1295 return 0;
1296 }
1297