]> git.proxmox.com Git - mirror_qemu.git/blob - hw/intel-hda.c
hda-codec: convert to QEMU Object Model
[mirror_qemu.git] / hw / intel-hda.c
1 /*
2 * Copyright (C) 2010 Red Hat, Inc.
3 *
4 * written by Gerd Hoffmann <kraxel@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "hw.h"
21 #include "pci.h"
22 #include "msi.h"
23 #include "qemu-timer.h"
24 #include "audiodev.h"
25 #include "intel-hda.h"
26 #include "intel-hda-defs.h"
27 #include "dma.h"
28
29 /* --------------------------------------------------------------------- */
30 /* hda bus */
31
32 static struct BusInfo hda_codec_bus_info = {
33 .name = "HDA",
34 .size = sizeof(HDACodecBus),
35 .props = (Property[]) {
36 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
37 DEFINE_PROP_END_OF_LIST()
38 }
39 };
40
41 void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
42 hda_codec_response_func response,
43 hda_codec_xfer_func xfer)
44 {
45 qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
46 bus->response = response;
47 bus->xfer = xfer;
48 }
49
50 static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
51 {
52 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
53 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
54 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
55
56 if (dev->cad == -1) {
57 dev->cad = bus->next_cad;
58 }
59 if (dev->cad >= 15) {
60 return -1;
61 }
62 bus->next_cad = dev->cad + 1;
63 return cdc->init(dev);
64 }
65
66 static int hda_codec_dev_exit(DeviceState *qdev)
67 {
68 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
69 HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
70
71 if (cdc->exit) {
72 cdc->exit(dev);
73 }
74 return 0;
75 }
76
77 void hda_codec_register(DeviceInfo *info)
78 {
79 info->init = hda_codec_dev_init;
80 info->exit = hda_codec_dev_exit;
81 info->bus_info = &hda_codec_bus_info;
82 qdev_register(info);
83 }
84
85 HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
86 {
87 DeviceState *qdev;
88 HDACodecDevice *cdev;
89
90 QTAILQ_FOREACH(qdev, &bus->qbus.children, sibling) {
91 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
92 if (cdev->cad == cad) {
93 return cdev;
94 }
95 }
96 return NULL;
97 }
98
99 void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
100 {
101 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
102 bus->response(dev, solicited, response);
103 }
104
105 bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
106 uint8_t *buf, uint32_t len)
107 {
108 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
109 return bus->xfer(dev, stnr, output, buf, len);
110 }
111
112 /* --------------------------------------------------------------------- */
113 /* intel hda emulation */
114
115 typedef struct IntelHDAStream IntelHDAStream;
116 typedef struct IntelHDAState IntelHDAState;
117 typedef struct IntelHDAReg IntelHDAReg;
118
119 typedef struct bpl {
120 uint64_t addr;
121 uint32_t len;
122 uint32_t flags;
123 } bpl;
124
125 struct IntelHDAStream {
126 /* registers */
127 uint32_t ctl;
128 uint32_t lpib;
129 uint32_t cbl;
130 uint32_t lvi;
131 uint32_t fmt;
132 uint32_t bdlp_lbase;
133 uint32_t bdlp_ubase;
134
135 /* state */
136 bpl *bpl;
137 uint32_t bentries;
138 uint32_t bsize, be, bp;
139 };
140
141 struct IntelHDAState {
142 PCIDevice pci;
143 const char *name;
144 HDACodecBus codecs;
145
146 /* registers */
147 uint32_t g_ctl;
148 uint32_t wake_en;
149 uint32_t state_sts;
150 uint32_t int_ctl;
151 uint32_t int_sts;
152 uint32_t wall_clk;
153
154 uint32_t corb_lbase;
155 uint32_t corb_ubase;
156 uint32_t corb_rp;
157 uint32_t corb_wp;
158 uint32_t corb_ctl;
159 uint32_t corb_sts;
160 uint32_t corb_size;
161
162 uint32_t rirb_lbase;
163 uint32_t rirb_ubase;
164 uint32_t rirb_wp;
165 uint32_t rirb_cnt;
166 uint32_t rirb_ctl;
167 uint32_t rirb_sts;
168 uint32_t rirb_size;
169
170 uint32_t dp_lbase;
171 uint32_t dp_ubase;
172
173 uint32_t icw;
174 uint32_t irr;
175 uint32_t ics;
176
177 /* streams */
178 IntelHDAStream st[8];
179
180 /* state */
181 MemoryRegion mmio;
182 uint32_t rirb_count;
183 int64_t wall_base_ns;
184
185 /* debug logging */
186 const IntelHDAReg *last_reg;
187 uint32_t last_val;
188 uint32_t last_write;
189 uint32_t last_sec;
190 uint32_t repeat_count;
191
192 /* properties */
193 uint32_t debug;
194 uint32_t msi;
195 };
196
197 struct IntelHDAReg {
198 const char *name; /* register name */
199 uint32_t size; /* size in bytes */
200 uint32_t reset; /* reset value */
201 uint32_t wmask; /* write mask */
202 uint32_t wclear; /* write 1 to clear bits */
203 uint32_t offset; /* location in IntelHDAState */
204 uint32_t shift; /* byte access entries for dwords */
205 uint32_t stream;
206 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
207 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
208 };
209
210 static void intel_hda_reset(DeviceState *dev);
211
212 /* --------------------------------------------------------------------- */
213
214 static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
215 {
216 target_phys_addr_t addr;
217
218 #if TARGET_PHYS_ADDR_BITS == 32
219 addr = lbase;
220 #else
221 addr = ubase;
222 addr <<= 32;
223 addr |= lbase;
224 #endif
225 return addr;
226 }
227
228 static void intel_hda_update_int_sts(IntelHDAState *d)
229 {
230 uint32_t sts = 0;
231 uint32_t i;
232
233 /* update controller status */
234 if (d->rirb_sts & ICH6_RBSTS_IRQ) {
235 sts |= (1 << 30);
236 }
237 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
238 sts |= (1 << 30);
239 }
240 if (d->state_sts & d->wake_en) {
241 sts |= (1 << 30);
242 }
243
244 /* update stream status */
245 for (i = 0; i < 8; i++) {
246 /* buffer completion interrupt */
247 if (d->st[i].ctl & (1 << 26)) {
248 sts |= (1 << i);
249 }
250 }
251
252 /* update global status */
253 if (sts & d->int_ctl) {
254 sts |= (1 << 31);
255 }
256
257 d->int_sts = sts;
258 }
259
260 static void intel_hda_update_irq(IntelHDAState *d)
261 {
262 int msi = d->msi && msi_enabled(&d->pci);
263 int level;
264
265 intel_hda_update_int_sts(d);
266 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
267 level = 1;
268 } else {
269 level = 0;
270 }
271 dprint(d, 2, "%s: level %d [%s]\n", __FUNCTION__,
272 level, msi ? "msi" : "intx");
273 if (msi) {
274 if (level) {
275 msi_notify(&d->pci, 0);
276 }
277 } else {
278 qemu_set_irq(d->pci.irq[0], level);
279 }
280 }
281
282 static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
283 {
284 uint32_t cad, nid, data;
285 HDACodecDevice *codec;
286 HDACodecDeviceClass *cdc;
287
288 cad = (verb >> 28) & 0x0f;
289 if (verb & (1 << 27)) {
290 /* indirect node addressing, not specified in HDA 1.0 */
291 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
292 return -1;
293 }
294 nid = (verb >> 20) & 0x7f;
295 data = verb & 0xfffff;
296
297 codec = hda_codec_find(&d->codecs, cad);
298 if (codec == NULL) {
299 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
300 return -1;
301 }
302 cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
303 cdc->command(codec, nid, data);
304 return 0;
305 }
306
307 static void intel_hda_corb_run(IntelHDAState *d)
308 {
309 target_phys_addr_t addr;
310 uint32_t rp, verb;
311
312 if (d->ics & ICH6_IRS_BUSY) {
313 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
314 intel_hda_send_command(d, d->icw);
315 return;
316 }
317
318 for (;;) {
319 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
320 dprint(d, 2, "%s: !run\n", __FUNCTION__);
321 return;
322 }
323 if ((d->corb_rp & 0xff) == d->corb_wp) {
324 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
325 return;
326 }
327 if (d->rirb_count == d->rirb_cnt) {
328 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
329 return;
330 }
331
332 rp = (d->corb_rp + 1) & 0xff;
333 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
334 verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
335 d->corb_rp = rp;
336
337 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
338 intel_hda_send_command(d, verb);
339 }
340 }
341
342 static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
343 {
344 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
345 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
346 target_phys_addr_t addr;
347 uint32_t wp, ex;
348
349 if (d->ics & ICH6_IRS_BUSY) {
350 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
351 __FUNCTION__, response, dev->cad);
352 d->irr = response;
353 d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
354 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
355 return;
356 }
357
358 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
359 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
360 return;
361 }
362
363 ex = (solicited ? 0 : (1 << 4)) | dev->cad;
364 wp = (d->rirb_wp + 1) & 0xff;
365 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
366 stl_le_pci_dma(&d->pci, addr + 8*wp, response);
367 stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
368 d->rirb_wp = wp;
369
370 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
371 __FUNCTION__, wp, response, ex);
372
373 d->rirb_count++;
374 if (d->rirb_count == d->rirb_cnt) {
375 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
376 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
377 d->rirb_sts |= ICH6_RBSTS_IRQ;
378 intel_hda_update_irq(d);
379 }
380 } else if ((d->corb_rp & 0xff) == d->corb_wp) {
381 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
382 d->rirb_count, d->rirb_cnt);
383 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
384 d->rirb_sts |= ICH6_RBSTS_IRQ;
385 intel_hda_update_irq(d);
386 }
387 }
388 }
389
390 static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
391 uint8_t *buf, uint32_t len)
392 {
393 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
394 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
395 target_phys_addr_t addr;
396 uint32_t s, copy, left;
397 IntelHDAStream *st;
398 bool irq = false;
399
400 st = output ? d->st + 4 : d->st;
401 for (s = 0; s < 4; s++) {
402 if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
403 st = st + s;
404 break;
405 }
406 }
407 if (s == 4) {
408 return false;
409 }
410 if (st->bpl == NULL) {
411 return false;
412 }
413 if (st->ctl & (1 << 26)) {
414 /*
415 * Wait with the next DMA xfer until the guest
416 * has acked the buffer completion interrupt
417 */
418 return false;
419 }
420
421 left = len;
422 while (left > 0) {
423 copy = left;
424 if (copy > st->bsize - st->lpib)
425 copy = st->bsize - st->lpib;
426 if (copy > st->bpl[st->be].len - st->bp)
427 copy = st->bpl[st->be].len - st->bp;
428
429 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
430 st->be, st->bp, st->bpl[st->be].len, copy);
431
432 pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
433 st->lpib += copy;
434 st->bp += copy;
435 buf += copy;
436 left -= copy;
437
438 if (st->bpl[st->be].len == st->bp) {
439 /* bpl entry filled */
440 if (st->bpl[st->be].flags & 0x01) {
441 irq = true;
442 }
443 st->bp = 0;
444 st->be++;
445 if (st->be == st->bentries) {
446 /* bpl wrap around */
447 st->be = 0;
448 st->lpib = 0;
449 }
450 }
451 }
452 if (d->dp_lbase & 0x01) {
453 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
454 stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
455 }
456 dprint(d, 3, "dma: --\n");
457
458 if (irq) {
459 st->ctl |= (1 << 26); /* buffer completion interrupt */
460 intel_hda_update_irq(d);
461 }
462 return true;
463 }
464
465 static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
466 {
467 target_phys_addr_t addr;
468 uint8_t buf[16];
469 uint32_t i;
470
471 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
472 st->bentries = st->lvi +1;
473 g_free(st->bpl);
474 st->bpl = g_malloc(sizeof(bpl) * st->bentries);
475 for (i = 0; i < st->bentries; i++, addr += 16) {
476 pci_dma_read(&d->pci, addr, buf, 16);
477 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
478 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
479 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
480 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
481 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
482 }
483
484 st->bsize = st->cbl;
485 st->lpib = 0;
486 st->be = 0;
487 st->bp = 0;
488 }
489
490 static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
491 {
492 DeviceState *qdev;
493 HDACodecDevice *cdev;
494
495 QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
496 HDACodecDeviceClass *cdc;
497
498 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
499 cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
500 if (cdc->stream) {
501 cdc->stream(cdev, stream, running, output);
502 }
503 }
504 }
505
506 /* --------------------------------------------------------------------- */
507
508 static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
509 {
510 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
511 intel_hda_reset(&d->pci.qdev);
512 }
513 }
514
515 static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
516 {
517 intel_hda_update_irq(d);
518 }
519
520 static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
521 {
522 intel_hda_update_irq(d);
523 }
524
525 static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
526 {
527 intel_hda_update_irq(d);
528 }
529
530 static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
531 {
532 int64_t ns;
533
534 ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
535 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
536 }
537
538 static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
539 {
540 intel_hda_corb_run(d);
541 }
542
543 static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
544 {
545 intel_hda_corb_run(d);
546 }
547
548 static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
549 {
550 if (d->rirb_wp & ICH6_RIRBWP_RST) {
551 d->rirb_wp = 0;
552 }
553 }
554
555 static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
556 {
557 intel_hda_update_irq(d);
558
559 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
560 /* cleared ICH6_RBSTS_IRQ */
561 d->rirb_count = 0;
562 intel_hda_corb_run(d);
563 }
564 }
565
566 static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
567 {
568 if (d->ics & ICH6_IRS_BUSY) {
569 intel_hda_corb_run(d);
570 }
571 }
572
573 static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
574 {
575 bool output = reg->stream >= 4;
576 IntelHDAStream *st = d->st + reg->stream;
577
578 if (st->ctl & 0x01) {
579 /* reset */
580 dprint(d, 1, "st #%d: reset\n", reg->stream);
581 st->ctl = 0;
582 }
583 if ((st->ctl & 0x02) != (old & 0x02)) {
584 uint32_t stnr = (st->ctl >> 20) & 0x0f;
585 /* run bit flipped */
586 if (st->ctl & 0x02) {
587 /* start */
588 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
589 reg->stream, stnr, st->cbl);
590 intel_hda_parse_bdl(d, st);
591 intel_hda_notify_codecs(d, stnr, true, output);
592 } else {
593 /* stop */
594 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
595 intel_hda_notify_codecs(d, stnr, false, output);
596 }
597 }
598 intel_hda_update_irq(d);
599 }
600
601 /* --------------------------------------------------------------------- */
602
603 #define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
604
605 static const struct IntelHDAReg regtab[] = {
606 /* global */
607 [ ICH6_REG_GCAP ] = {
608 .name = "GCAP",
609 .size = 2,
610 .reset = 0x4401,
611 },
612 [ ICH6_REG_VMIN ] = {
613 .name = "VMIN",
614 .size = 1,
615 },
616 [ ICH6_REG_VMAJ ] = {
617 .name = "VMAJ",
618 .size = 1,
619 .reset = 1,
620 },
621 [ ICH6_REG_OUTPAY ] = {
622 .name = "OUTPAY",
623 .size = 2,
624 .reset = 0x3c,
625 },
626 [ ICH6_REG_INPAY ] = {
627 .name = "INPAY",
628 .size = 2,
629 .reset = 0x1d,
630 },
631 [ ICH6_REG_GCTL ] = {
632 .name = "GCTL",
633 .size = 4,
634 .wmask = 0x0103,
635 .offset = offsetof(IntelHDAState, g_ctl),
636 .whandler = intel_hda_set_g_ctl,
637 },
638 [ ICH6_REG_WAKEEN ] = {
639 .name = "WAKEEN",
640 .size = 2,
641 .wmask = 0x7fff,
642 .offset = offsetof(IntelHDAState, wake_en),
643 .whandler = intel_hda_set_wake_en,
644 },
645 [ ICH6_REG_STATESTS ] = {
646 .name = "STATESTS",
647 .size = 2,
648 .wmask = 0x7fff,
649 .wclear = 0x7fff,
650 .offset = offsetof(IntelHDAState, state_sts),
651 .whandler = intel_hda_set_state_sts,
652 },
653
654 /* interrupts */
655 [ ICH6_REG_INTCTL ] = {
656 .name = "INTCTL",
657 .size = 4,
658 .wmask = 0xc00000ff,
659 .offset = offsetof(IntelHDAState, int_ctl),
660 .whandler = intel_hda_set_int_ctl,
661 },
662 [ ICH6_REG_INTSTS ] = {
663 .name = "INTSTS",
664 .size = 4,
665 .wmask = 0xc00000ff,
666 .wclear = 0xc00000ff,
667 .offset = offsetof(IntelHDAState, int_sts),
668 },
669
670 /* misc */
671 [ ICH6_REG_WALLCLK ] = {
672 .name = "WALLCLK",
673 .size = 4,
674 .offset = offsetof(IntelHDAState, wall_clk),
675 .rhandler = intel_hda_get_wall_clk,
676 },
677 [ ICH6_REG_WALLCLK + 0x2000 ] = {
678 .name = "WALLCLK(alias)",
679 .size = 4,
680 .offset = offsetof(IntelHDAState, wall_clk),
681 .rhandler = intel_hda_get_wall_clk,
682 },
683
684 /* dma engine */
685 [ ICH6_REG_CORBLBASE ] = {
686 .name = "CORBLBASE",
687 .size = 4,
688 .wmask = 0xffffff80,
689 .offset = offsetof(IntelHDAState, corb_lbase),
690 },
691 [ ICH6_REG_CORBUBASE ] = {
692 .name = "CORBUBASE",
693 .size = 4,
694 .wmask = 0xffffffff,
695 .offset = offsetof(IntelHDAState, corb_ubase),
696 },
697 [ ICH6_REG_CORBWP ] = {
698 .name = "CORBWP",
699 .size = 2,
700 .wmask = 0xff,
701 .offset = offsetof(IntelHDAState, corb_wp),
702 .whandler = intel_hda_set_corb_wp,
703 },
704 [ ICH6_REG_CORBRP ] = {
705 .name = "CORBRP",
706 .size = 2,
707 .wmask = 0x80ff,
708 .offset = offsetof(IntelHDAState, corb_rp),
709 },
710 [ ICH6_REG_CORBCTL ] = {
711 .name = "CORBCTL",
712 .size = 1,
713 .wmask = 0x03,
714 .offset = offsetof(IntelHDAState, corb_ctl),
715 .whandler = intel_hda_set_corb_ctl,
716 },
717 [ ICH6_REG_CORBSTS ] = {
718 .name = "CORBSTS",
719 .size = 1,
720 .wmask = 0x01,
721 .wclear = 0x01,
722 .offset = offsetof(IntelHDAState, corb_sts),
723 },
724 [ ICH6_REG_CORBSIZE ] = {
725 .name = "CORBSIZE",
726 .size = 1,
727 .reset = 0x42,
728 .offset = offsetof(IntelHDAState, corb_size),
729 },
730 [ ICH6_REG_RIRBLBASE ] = {
731 .name = "RIRBLBASE",
732 .size = 4,
733 .wmask = 0xffffff80,
734 .offset = offsetof(IntelHDAState, rirb_lbase),
735 },
736 [ ICH6_REG_RIRBUBASE ] = {
737 .name = "RIRBUBASE",
738 .size = 4,
739 .wmask = 0xffffffff,
740 .offset = offsetof(IntelHDAState, rirb_ubase),
741 },
742 [ ICH6_REG_RIRBWP ] = {
743 .name = "RIRBWP",
744 .size = 2,
745 .wmask = 0x8000,
746 .offset = offsetof(IntelHDAState, rirb_wp),
747 .whandler = intel_hda_set_rirb_wp,
748 },
749 [ ICH6_REG_RINTCNT ] = {
750 .name = "RINTCNT",
751 .size = 2,
752 .wmask = 0xff,
753 .offset = offsetof(IntelHDAState, rirb_cnt),
754 },
755 [ ICH6_REG_RIRBCTL ] = {
756 .name = "RIRBCTL",
757 .size = 1,
758 .wmask = 0x07,
759 .offset = offsetof(IntelHDAState, rirb_ctl),
760 },
761 [ ICH6_REG_RIRBSTS ] = {
762 .name = "RIRBSTS",
763 .size = 1,
764 .wmask = 0x05,
765 .wclear = 0x05,
766 .offset = offsetof(IntelHDAState, rirb_sts),
767 .whandler = intel_hda_set_rirb_sts,
768 },
769 [ ICH6_REG_RIRBSIZE ] = {
770 .name = "RIRBSIZE",
771 .size = 1,
772 .reset = 0x42,
773 .offset = offsetof(IntelHDAState, rirb_size),
774 },
775
776 [ ICH6_REG_DPLBASE ] = {
777 .name = "DPLBASE",
778 .size = 4,
779 .wmask = 0xffffff81,
780 .offset = offsetof(IntelHDAState, dp_lbase),
781 },
782 [ ICH6_REG_DPUBASE ] = {
783 .name = "DPUBASE",
784 .size = 4,
785 .wmask = 0xffffffff,
786 .offset = offsetof(IntelHDAState, dp_ubase),
787 },
788
789 [ ICH6_REG_IC ] = {
790 .name = "ICW",
791 .size = 4,
792 .wmask = 0xffffffff,
793 .offset = offsetof(IntelHDAState, icw),
794 },
795 [ ICH6_REG_IR ] = {
796 .name = "IRR",
797 .size = 4,
798 .offset = offsetof(IntelHDAState, irr),
799 },
800 [ ICH6_REG_IRS ] = {
801 .name = "ICS",
802 .size = 2,
803 .wmask = 0x0003,
804 .wclear = 0x0002,
805 .offset = offsetof(IntelHDAState, ics),
806 .whandler = intel_hda_set_ics,
807 },
808
809 #define HDA_STREAM(_t, _i) \
810 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
811 .stream = _i, \
812 .name = _t stringify(_i) " CTL", \
813 .size = 4, \
814 .wmask = 0x1cff001f, \
815 .offset = offsetof(IntelHDAState, st[_i].ctl), \
816 .whandler = intel_hda_set_st_ctl, \
817 }, \
818 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
819 .stream = _i, \
820 .name = _t stringify(_i) " CTL(stnr)", \
821 .size = 1, \
822 .shift = 16, \
823 .wmask = 0x00ff0000, \
824 .offset = offsetof(IntelHDAState, st[_i].ctl), \
825 .whandler = intel_hda_set_st_ctl, \
826 }, \
827 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
828 .stream = _i, \
829 .name = _t stringify(_i) " CTL(sts)", \
830 .size = 1, \
831 .shift = 24, \
832 .wmask = 0x1c000000, \
833 .wclear = 0x1c000000, \
834 .offset = offsetof(IntelHDAState, st[_i].ctl), \
835 .whandler = intel_hda_set_st_ctl, \
836 }, \
837 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
838 .stream = _i, \
839 .name = _t stringify(_i) " LPIB", \
840 .size = 4, \
841 .offset = offsetof(IntelHDAState, st[_i].lpib), \
842 }, \
843 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
844 .stream = _i, \
845 .name = _t stringify(_i) " LPIB(alias)", \
846 .size = 4, \
847 .offset = offsetof(IntelHDAState, st[_i].lpib), \
848 }, \
849 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
850 .stream = _i, \
851 .name = _t stringify(_i) " CBL", \
852 .size = 4, \
853 .wmask = 0xffffffff, \
854 .offset = offsetof(IntelHDAState, st[_i].cbl), \
855 }, \
856 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
857 .stream = _i, \
858 .name = _t stringify(_i) " LVI", \
859 .size = 2, \
860 .wmask = 0x00ff, \
861 .offset = offsetof(IntelHDAState, st[_i].lvi), \
862 }, \
863 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
864 .stream = _i, \
865 .name = _t stringify(_i) " FIFOS", \
866 .size = 2, \
867 .reset = HDA_BUFFER_SIZE, \
868 }, \
869 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
870 .stream = _i, \
871 .name = _t stringify(_i) " FMT", \
872 .size = 2, \
873 .wmask = 0x7f7f, \
874 .offset = offsetof(IntelHDAState, st[_i].fmt), \
875 }, \
876 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
877 .stream = _i, \
878 .name = _t stringify(_i) " BDLPL", \
879 .size = 4, \
880 .wmask = 0xffffff80, \
881 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
882 }, \
883 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
884 .stream = _i, \
885 .name = _t stringify(_i) " BDLPU", \
886 .size = 4, \
887 .wmask = 0xffffffff, \
888 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
889 }, \
890
891 HDA_STREAM("IN", 0)
892 HDA_STREAM("IN", 1)
893 HDA_STREAM("IN", 2)
894 HDA_STREAM("IN", 3)
895
896 HDA_STREAM("OUT", 4)
897 HDA_STREAM("OUT", 5)
898 HDA_STREAM("OUT", 6)
899 HDA_STREAM("OUT", 7)
900
901 };
902
903 static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
904 {
905 const IntelHDAReg *reg;
906
907 if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
908 goto noreg;
909 }
910 reg = regtab+addr;
911 if (reg->name == NULL) {
912 goto noreg;
913 }
914 return reg;
915
916 noreg:
917 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
918 return NULL;
919 }
920
921 static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
922 {
923 uint8_t *addr = (void*)d;
924
925 addr += reg->offset;
926 return (uint32_t*)addr;
927 }
928
929 static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
930 uint32_t wmask)
931 {
932 uint32_t *addr;
933 uint32_t old;
934
935 if (!reg) {
936 return;
937 }
938
939 if (d->debug) {
940 time_t now = time(NULL);
941 if (d->last_write && d->last_reg == reg && d->last_val == val) {
942 d->repeat_count++;
943 if (d->last_sec != now) {
944 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
945 d->last_sec = now;
946 d->repeat_count = 0;
947 }
948 } else {
949 if (d->repeat_count) {
950 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
951 }
952 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
953 d->last_write = 1;
954 d->last_reg = reg;
955 d->last_val = val;
956 d->last_sec = now;
957 d->repeat_count = 0;
958 }
959 }
960 assert(reg->offset != 0);
961
962 addr = intel_hda_reg_addr(d, reg);
963 old = *addr;
964
965 if (reg->shift) {
966 val <<= reg->shift;
967 wmask <<= reg->shift;
968 }
969 wmask &= reg->wmask;
970 *addr &= ~wmask;
971 *addr |= wmask & val;
972 *addr &= ~(val & reg->wclear);
973
974 if (reg->whandler) {
975 reg->whandler(d, reg, old);
976 }
977 }
978
979 static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
980 uint32_t rmask)
981 {
982 uint32_t *addr, ret;
983
984 if (!reg) {
985 return 0;
986 }
987
988 if (reg->rhandler) {
989 reg->rhandler(d, reg);
990 }
991
992 if (reg->offset == 0) {
993 /* constant read-only register */
994 ret = reg->reset;
995 } else {
996 addr = intel_hda_reg_addr(d, reg);
997 ret = *addr;
998 if (reg->shift) {
999 ret >>= reg->shift;
1000 }
1001 ret &= rmask;
1002 }
1003 if (d->debug) {
1004 time_t now = time(NULL);
1005 if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
1006 d->repeat_count++;
1007 if (d->last_sec != now) {
1008 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1009 d->last_sec = now;
1010 d->repeat_count = 0;
1011 }
1012 } else {
1013 if (d->repeat_count) {
1014 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1015 }
1016 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1017 d->last_write = 0;
1018 d->last_reg = reg;
1019 d->last_val = ret;
1020 d->last_sec = now;
1021 d->repeat_count = 0;
1022 }
1023 }
1024 return ret;
1025 }
1026
1027 static void intel_hda_regs_reset(IntelHDAState *d)
1028 {
1029 uint32_t *addr;
1030 int i;
1031
1032 for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1033 if (regtab[i].name == NULL) {
1034 continue;
1035 }
1036 if (regtab[i].offset == 0) {
1037 continue;
1038 }
1039 addr = intel_hda_reg_addr(d, regtab + i);
1040 *addr = regtab[i].reset;
1041 }
1042 }
1043
1044 /* --------------------------------------------------------------------- */
1045
1046 static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1047 {
1048 IntelHDAState *d = opaque;
1049 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1050
1051 intel_hda_reg_write(d, reg, val, 0xff);
1052 }
1053
1054 static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1055 {
1056 IntelHDAState *d = opaque;
1057 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1058
1059 intel_hda_reg_write(d, reg, val, 0xffff);
1060 }
1061
1062 static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1063 {
1064 IntelHDAState *d = opaque;
1065 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1066
1067 intel_hda_reg_write(d, reg, val, 0xffffffff);
1068 }
1069
1070 static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1071 {
1072 IntelHDAState *d = opaque;
1073 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1074
1075 return intel_hda_reg_read(d, reg, 0xff);
1076 }
1077
1078 static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1079 {
1080 IntelHDAState *d = opaque;
1081 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1082
1083 return intel_hda_reg_read(d, reg, 0xffff);
1084 }
1085
1086 static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1087 {
1088 IntelHDAState *d = opaque;
1089 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1090
1091 return intel_hda_reg_read(d, reg, 0xffffffff);
1092 }
1093
1094 static const MemoryRegionOps intel_hda_mmio_ops = {
1095 .old_mmio = {
1096 .read = {
1097 intel_hda_mmio_readb,
1098 intel_hda_mmio_readw,
1099 intel_hda_mmio_readl,
1100 },
1101 .write = {
1102 intel_hda_mmio_writeb,
1103 intel_hda_mmio_writew,
1104 intel_hda_mmio_writel,
1105 },
1106 },
1107 .endianness = DEVICE_NATIVE_ENDIAN,
1108 };
1109
1110 /* --------------------------------------------------------------------- */
1111
1112 static void intel_hda_reset(DeviceState *dev)
1113 {
1114 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1115 DeviceState *qdev;
1116 HDACodecDevice *cdev;
1117
1118 intel_hda_regs_reset(d);
1119 d->wall_base_ns = qemu_get_clock_ns(vm_clock);
1120
1121 /* reset codecs */
1122 QTAILQ_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1123 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1124 device_reset(DEVICE(cdev));
1125 d->state_sts |= (1 << cdev->cad);
1126 }
1127 intel_hda_update_irq(d);
1128 }
1129
1130 static int intel_hda_init(PCIDevice *pci)
1131 {
1132 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1133 uint8_t *conf = d->pci.config;
1134
1135 d->name = object_get_typename(OBJECT(d));
1136
1137 pci_config_set_interrupt_pin(conf, 1);
1138
1139 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1140 conf[0x40] = 0x01;
1141
1142 memory_region_init_io(&d->mmio, &intel_hda_mmio_ops, d,
1143 "intel-hda", 0x4000);
1144 pci_register_bar(&d->pci, 0, 0, &d->mmio);
1145 if (d->msi) {
1146 msi_init(&d->pci, 0x50, 1, true, false);
1147 }
1148
1149 hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1150 intel_hda_response, intel_hda_xfer);
1151
1152 return 0;
1153 }
1154
1155 static int intel_hda_exit(PCIDevice *pci)
1156 {
1157 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1158
1159 msi_uninit(&d->pci);
1160 memory_region_destroy(&d->mmio);
1161 return 0;
1162 }
1163
1164 static void intel_hda_write_config(PCIDevice *pci, uint32_t addr,
1165 uint32_t val, int len)
1166 {
1167 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1168
1169 pci_default_write_config(pci, addr, val, len);
1170 if (d->msi) {
1171 msi_write_config(pci, addr, val, len);
1172 }
1173 }
1174
1175 static int intel_hda_post_load(void *opaque, int version)
1176 {
1177 IntelHDAState* d = opaque;
1178 int i;
1179
1180 dprint(d, 1, "%s\n", __FUNCTION__);
1181 for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1182 if (d->st[i].ctl & 0x02) {
1183 intel_hda_parse_bdl(d, &d->st[i]);
1184 }
1185 }
1186 intel_hda_update_irq(d);
1187 return 0;
1188 }
1189
1190 static const VMStateDescription vmstate_intel_hda_stream = {
1191 .name = "intel-hda-stream",
1192 .version_id = 1,
1193 .fields = (VMStateField []) {
1194 VMSTATE_UINT32(ctl, IntelHDAStream),
1195 VMSTATE_UINT32(lpib, IntelHDAStream),
1196 VMSTATE_UINT32(cbl, IntelHDAStream),
1197 VMSTATE_UINT32(lvi, IntelHDAStream),
1198 VMSTATE_UINT32(fmt, IntelHDAStream),
1199 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1200 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1201 VMSTATE_END_OF_LIST()
1202 }
1203 };
1204
1205 static const VMStateDescription vmstate_intel_hda = {
1206 .name = "intel-hda",
1207 .version_id = 1,
1208 .post_load = intel_hda_post_load,
1209 .fields = (VMStateField []) {
1210 VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1211
1212 /* registers */
1213 VMSTATE_UINT32(g_ctl, IntelHDAState),
1214 VMSTATE_UINT32(wake_en, IntelHDAState),
1215 VMSTATE_UINT32(state_sts, IntelHDAState),
1216 VMSTATE_UINT32(int_ctl, IntelHDAState),
1217 VMSTATE_UINT32(int_sts, IntelHDAState),
1218 VMSTATE_UINT32(wall_clk, IntelHDAState),
1219 VMSTATE_UINT32(corb_lbase, IntelHDAState),
1220 VMSTATE_UINT32(corb_ubase, IntelHDAState),
1221 VMSTATE_UINT32(corb_rp, IntelHDAState),
1222 VMSTATE_UINT32(corb_wp, IntelHDAState),
1223 VMSTATE_UINT32(corb_ctl, IntelHDAState),
1224 VMSTATE_UINT32(corb_sts, IntelHDAState),
1225 VMSTATE_UINT32(corb_size, IntelHDAState),
1226 VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1227 VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1228 VMSTATE_UINT32(rirb_wp, IntelHDAState),
1229 VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1230 VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1231 VMSTATE_UINT32(rirb_sts, IntelHDAState),
1232 VMSTATE_UINT32(rirb_size, IntelHDAState),
1233 VMSTATE_UINT32(dp_lbase, IntelHDAState),
1234 VMSTATE_UINT32(dp_ubase, IntelHDAState),
1235 VMSTATE_UINT32(icw, IntelHDAState),
1236 VMSTATE_UINT32(irr, IntelHDAState),
1237 VMSTATE_UINT32(ics, IntelHDAState),
1238 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1239 vmstate_intel_hda_stream,
1240 IntelHDAStream),
1241
1242 /* additional state info */
1243 VMSTATE_UINT32(rirb_count, IntelHDAState),
1244 VMSTATE_INT64(wall_base_ns, IntelHDAState),
1245
1246 VMSTATE_END_OF_LIST()
1247 }
1248 };
1249
1250 static PCIDeviceInfo intel_hda_info = {
1251 .qdev.name = "intel-hda",
1252 .qdev.desc = "Intel HD Audio Controller",
1253 .qdev.size = sizeof(IntelHDAState),
1254 .qdev.vmsd = &vmstate_intel_hda,
1255 .qdev.reset = intel_hda_reset,
1256 .init = intel_hda_init,
1257 .exit = intel_hda_exit,
1258 .config_write = intel_hda_write_config,
1259 .vendor_id = PCI_VENDOR_ID_INTEL,
1260 .device_id = 0x2668,
1261 .revision = 1,
1262 .class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO,
1263 .qdev.props = (Property[]) {
1264 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1265 DEFINE_PROP_UINT32("msi", IntelHDAState, msi, 1),
1266 DEFINE_PROP_END_OF_LIST(),
1267 }
1268 };
1269
1270 static void intel_hda_register(void)
1271 {
1272 pci_qdev_register(&intel_hda_info);
1273 }
1274 device_init(intel_hda_register);
1275
1276 /*
1277 * create intel hda controller with codec attached to it,
1278 * so '-soundhw hda' works.
1279 */
1280 int intel_hda_and_codec_init(PCIBus *bus)
1281 {
1282 PCIDevice *controller;
1283 BusState *hdabus;
1284 DeviceState *codec;
1285
1286 controller = pci_create_simple(bus, -1, "intel-hda");
1287 hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1288 codec = qdev_create(hdabus, "hda-duplex");
1289 qdev_init_nofail(codec);
1290 return 0;
1291 }
1292