]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mc146818rtc.c
rtc: make rtc_xxx accept/return ISADevice instead of RTCState.
[mirror_qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "apic.h"
29 #include "isa.h"
30 #include "hpet_emul.h"
31 #include "mc146818rtc.h"
32
33 //#define DEBUG_CMOS
34
35 #define RTC_REINJECT_ON_ACK_COUNT 20
36
37 #define RTC_SECONDS 0
38 #define RTC_SECONDS_ALARM 1
39 #define RTC_MINUTES 2
40 #define RTC_MINUTES_ALARM 3
41 #define RTC_HOURS 4
42 #define RTC_HOURS_ALARM 5
43 #define RTC_ALARM_DONT_CARE 0xC0
44
45 #define RTC_DAY_OF_WEEK 6
46 #define RTC_DAY_OF_MONTH 7
47 #define RTC_MONTH 8
48 #define RTC_YEAR 9
49
50 #define RTC_REG_A 10
51 #define RTC_REG_B 11
52 #define RTC_REG_C 12
53 #define RTC_REG_D 13
54
55 #define REG_A_UIP 0x80
56
57 #define REG_B_SET 0x80
58 #define REG_B_PIE 0x40
59 #define REG_B_AIE 0x20
60 #define REG_B_UIE 0x10
61 #define REG_B_SQWE 0x08
62 #define REG_B_DM 0x04
63
64 #define REG_C_UF 0x10
65 #define REG_C_IRQF 0x80
66 #define REG_C_PF 0x40
67 #define REG_C_AF 0x20
68
69 typedef struct RTCState {
70 ISADevice dev;
71 uint8_t cmos_data[128];
72 uint8_t cmos_index;
73 struct tm current_tm;
74 int32_t base_year;
75 qemu_irq irq;
76 qemu_irq sqw_irq;
77 int it_shift;
78 /* periodic timer */
79 QEMUTimer *periodic_timer;
80 int64_t next_periodic_time;
81 /* second update */
82 int64_t next_second_time;
83 uint16_t irq_reinject_on_ack_count;
84 uint32_t irq_coalesced;
85 uint32_t period;
86 QEMUTimer *coalesced_timer;
87 QEMUTimer *second_timer;
88 QEMUTimer *second_timer2;
89 } RTCState;
90
91 static void rtc_irq_raise(qemu_irq irq)
92 {
93 /* When HPET is operating in legacy mode, RTC interrupts are disabled
94 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
95 * mode is established while interrupt is raised. We want it to
96 * be lowered in any case
97 */
98 #if defined TARGET_I386
99 if (!hpet_in_legacy_mode())
100 #endif
101 qemu_irq_raise(irq);
102 }
103
104 static void rtc_set_time(RTCState *s);
105 static void rtc_copy_date(RTCState *s);
106
107 #ifdef TARGET_I386
108 static void rtc_coalesced_timer_update(RTCState *s)
109 {
110 if (s->irq_coalesced == 0) {
111 qemu_del_timer(s->coalesced_timer);
112 } else {
113 /* divide each RTC interval to 2 - 8 smaller intervals */
114 int c = MIN(s->irq_coalesced, 7) + 1;
115 int64_t next_clock = qemu_get_clock(rtc_clock) +
116 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
117 qemu_mod_timer(s->coalesced_timer, next_clock);
118 }
119 }
120
121 static void rtc_coalesced_timer(void *opaque)
122 {
123 RTCState *s = opaque;
124
125 if (s->irq_coalesced != 0) {
126 apic_reset_irq_delivered();
127 s->cmos_data[RTC_REG_C] |= 0xc0;
128 rtc_irq_raise(s->irq);
129 if (apic_get_irq_delivered()) {
130 s->irq_coalesced--;
131 }
132 }
133
134 rtc_coalesced_timer_update(s);
135 }
136 #endif
137
138 static void rtc_timer_update(RTCState *s, int64_t current_time)
139 {
140 int period_code, period;
141 int64_t cur_clock, next_irq_clock;
142 int enable_pie;
143
144 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
145 #if defined TARGET_I386
146 /* disable periodic timer if hpet is in legacy mode, since interrupts are
147 * disabled anyway.
148 */
149 enable_pie = !hpet_in_legacy_mode();
150 #else
151 enable_pie = 1;
152 #endif
153 if (period_code != 0
154 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
155 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
156 if (period_code <= 2)
157 period_code += 7;
158 /* period in 32 Khz cycles */
159 period = 1 << (period_code - 1);
160 #ifdef TARGET_I386
161 if(period != s->period)
162 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
163 s->period = period;
164 #endif
165 /* compute 32 khz clock */
166 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
167 next_irq_clock = (cur_clock & ~(period - 1)) + period;
168 s->next_periodic_time =
169 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
170 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
171 } else {
172 #ifdef TARGET_I386
173 s->irq_coalesced = 0;
174 #endif
175 qemu_del_timer(s->periodic_timer);
176 }
177 }
178
179 static void rtc_periodic_timer(void *opaque)
180 {
181 RTCState *s = opaque;
182
183 rtc_timer_update(s, s->next_periodic_time);
184 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
185 s->cmos_data[RTC_REG_C] |= 0xc0;
186 #ifdef TARGET_I386
187 if(rtc_td_hack) {
188 if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
189 s->irq_reinject_on_ack_count = 0;
190 apic_reset_irq_delivered();
191 rtc_irq_raise(s->irq);
192 if (!apic_get_irq_delivered()) {
193 s->irq_coalesced++;
194 rtc_coalesced_timer_update(s);
195 }
196 } else
197 #endif
198 rtc_irq_raise(s->irq);
199 }
200 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
201 /* Not square wave at all but we don't want 2048Hz interrupts!
202 Must be seen as a pulse. */
203 qemu_irq_raise(s->sqw_irq);
204 }
205 }
206
207 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
208 {
209 RTCState *s = opaque;
210
211 if ((addr & 1) == 0) {
212 s->cmos_index = data & 0x7f;
213 } else {
214 #ifdef DEBUG_CMOS
215 printf("cmos: write index=0x%02x val=0x%02x\n",
216 s->cmos_index, data);
217 #endif
218 switch(s->cmos_index) {
219 case RTC_SECONDS_ALARM:
220 case RTC_MINUTES_ALARM:
221 case RTC_HOURS_ALARM:
222 /* XXX: not supported */
223 s->cmos_data[s->cmos_index] = data;
224 break;
225 case RTC_SECONDS:
226 case RTC_MINUTES:
227 case RTC_HOURS:
228 case RTC_DAY_OF_WEEK:
229 case RTC_DAY_OF_MONTH:
230 case RTC_MONTH:
231 case RTC_YEAR:
232 s->cmos_data[s->cmos_index] = data;
233 /* if in set mode, do not update the time */
234 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
235 rtc_set_time(s);
236 }
237 break;
238 case RTC_REG_A:
239 /* UIP bit is read only */
240 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
241 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
242 rtc_timer_update(s, qemu_get_clock(rtc_clock));
243 break;
244 case RTC_REG_B:
245 if (data & REG_B_SET) {
246 /* set mode: reset UIP mode */
247 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
248 data &= ~REG_B_UIE;
249 } else {
250 /* if disabling set mode, update the time */
251 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
252 rtc_set_time(s);
253 }
254 }
255 s->cmos_data[RTC_REG_B] = data;
256 rtc_timer_update(s, qemu_get_clock(rtc_clock));
257 break;
258 case RTC_REG_C:
259 case RTC_REG_D:
260 /* cannot write to them */
261 break;
262 default:
263 s->cmos_data[s->cmos_index] = data;
264 break;
265 }
266 }
267 }
268
269 static inline int rtc_to_bcd(RTCState *s, int a)
270 {
271 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
272 return a;
273 } else {
274 return ((a / 10) << 4) | (a % 10);
275 }
276 }
277
278 static inline int rtc_from_bcd(RTCState *s, int a)
279 {
280 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
281 return a;
282 } else {
283 return ((a >> 4) * 10) + (a & 0x0f);
284 }
285 }
286
287 static void rtc_set_time(RTCState *s)
288 {
289 struct tm *tm = &s->current_tm;
290
291 tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
292 tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
293 tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
294 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
295 (s->cmos_data[RTC_HOURS] & 0x80)) {
296 tm->tm_hour += 12;
297 }
298 tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
299 tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
300 tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
301 tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
302
303 rtc_change_mon_event(tm);
304 }
305
306 static void rtc_copy_date(RTCState *s)
307 {
308 const struct tm *tm = &s->current_tm;
309 int year;
310
311 s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
312 s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
313 if (s->cmos_data[RTC_REG_B] & 0x02) {
314 /* 24 hour format */
315 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
316 } else {
317 /* 12 hour format */
318 s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12);
319 if (tm->tm_hour >= 12)
320 s->cmos_data[RTC_HOURS] |= 0x80;
321 }
322 s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
323 s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
324 s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
325 year = (tm->tm_year - s->base_year) % 100;
326 if (year < 0)
327 year += 100;
328 s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year);
329 }
330
331 /* month is between 0 and 11. */
332 static int get_days_in_month(int month, int year)
333 {
334 static const int days_tab[12] = {
335 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
336 };
337 int d;
338 if ((unsigned )month >= 12)
339 return 31;
340 d = days_tab[month];
341 if (month == 1) {
342 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
343 d++;
344 }
345 return d;
346 }
347
348 /* update 'tm' to the next second */
349 static void rtc_next_second(struct tm *tm)
350 {
351 int days_in_month;
352
353 tm->tm_sec++;
354 if ((unsigned)tm->tm_sec >= 60) {
355 tm->tm_sec = 0;
356 tm->tm_min++;
357 if ((unsigned)tm->tm_min >= 60) {
358 tm->tm_min = 0;
359 tm->tm_hour++;
360 if ((unsigned)tm->tm_hour >= 24) {
361 tm->tm_hour = 0;
362 /* next day */
363 tm->tm_wday++;
364 if ((unsigned)tm->tm_wday >= 7)
365 tm->tm_wday = 0;
366 days_in_month = get_days_in_month(tm->tm_mon,
367 tm->tm_year + 1900);
368 tm->tm_mday++;
369 if (tm->tm_mday < 1) {
370 tm->tm_mday = 1;
371 } else if (tm->tm_mday > days_in_month) {
372 tm->tm_mday = 1;
373 tm->tm_mon++;
374 if (tm->tm_mon >= 12) {
375 tm->tm_mon = 0;
376 tm->tm_year++;
377 }
378 }
379 }
380 }
381 }
382 }
383
384
385 static void rtc_update_second(void *opaque)
386 {
387 RTCState *s = opaque;
388 int64_t delay;
389
390 /* if the oscillator is not in normal operation, we do not update */
391 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
392 s->next_second_time += get_ticks_per_sec();
393 qemu_mod_timer(s->second_timer, s->next_second_time);
394 } else {
395 rtc_next_second(&s->current_tm);
396
397 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
398 /* update in progress bit */
399 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
400 }
401 /* should be 244 us = 8 / 32768 seconds, but currently the
402 timers do not have the necessary resolution. */
403 delay = (get_ticks_per_sec() * 1) / 100;
404 if (delay < 1)
405 delay = 1;
406 qemu_mod_timer(s->second_timer2,
407 s->next_second_time + delay);
408 }
409 }
410
411 static void rtc_update_second2(void *opaque)
412 {
413 RTCState *s = opaque;
414
415 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
416 rtc_copy_date(s);
417 }
418
419 /* check alarm */
420 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
421 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
422 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
423 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
424 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
425 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
426 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
427
428 s->cmos_data[RTC_REG_C] |= 0xa0;
429 rtc_irq_raise(s->irq);
430 }
431 }
432
433 /* update ended interrupt */
434 s->cmos_data[RTC_REG_C] |= REG_C_UF;
435 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
436 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
437 rtc_irq_raise(s->irq);
438 }
439
440 /* clear update in progress bit */
441 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
442
443 s->next_second_time += get_ticks_per_sec();
444 qemu_mod_timer(s->second_timer, s->next_second_time);
445 }
446
447 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
448 {
449 RTCState *s = opaque;
450 int ret;
451 if ((addr & 1) == 0) {
452 return 0xff;
453 } else {
454 switch(s->cmos_index) {
455 case RTC_SECONDS:
456 case RTC_MINUTES:
457 case RTC_HOURS:
458 case RTC_DAY_OF_WEEK:
459 case RTC_DAY_OF_MONTH:
460 case RTC_MONTH:
461 case RTC_YEAR:
462 ret = s->cmos_data[s->cmos_index];
463 break;
464 case RTC_REG_A:
465 ret = s->cmos_data[s->cmos_index];
466 break;
467 case RTC_REG_C:
468 ret = s->cmos_data[s->cmos_index];
469 qemu_irq_lower(s->irq);
470 #ifdef TARGET_I386
471 if(s->irq_coalesced &&
472 s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
473 s->irq_reinject_on_ack_count++;
474 apic_reset_irq_delivered();
475 qemu_irq_raise(s->irq);
476 if (apic_get_irq_delivered())
477 s->irq_coalesced--;
478 break;
479 }
480 #endif
481
482 s->cmos_data[RTC_REG_C] = 0x00;
483 break;
484 default:
485 ret = s->cmos_data[s->cmos_index];
486 break;
487 }
488 #ifdef DEBUG_CMOS
489 printf("cmos: read index=0x%02x val=0x%02x\n",
490 s->cmos_index, ret);
491 #endif
492 return ret;
493 }
494 }
495
496 void rtc_set_memory(ISADevice *dev, int addr, int val)
497 {
498 RTCState *s = DO_UPCAST(RTCState, dev, dev);
499 if (addr >= 0 && addr <= 127)
500 s->cmos_data[addr] = val;
501 }
502
503 void rtc_set_date(ISADevice *dev, const struct tm *tm)
504 {
505 RTCState *s = DO_UPCAST(RTCState, dev, dev);
506 s->current_tm = *tm;
507 rtc_copy_date(s);
508 }
509
510 /* PC cmos mappings */
511 #define REG_IBM_CENTURY_BYTE 0x32
512 #define REG_IBM_PS2_CENTURY_BYTE 0x37
513
514 static void rtc_set_date_from_host(ISADevice *dev)
515 {
516 RTCState *s = DO_UPCAST(RTCState, dev, dev);
517 struct tm tm;
518 int val;
519
520 /* set the CMOS date */
521 qemu_get_timedate(&tm, 0);
522 rtc_set_date(dev, &tm);
523
524 val = rtc_to_bcd(s, (tm.tm_year / 100) + 19);
525 rtc_set_memory(dev, REG_IBM_CENTURY_BYTE, val);
526 rtc_set_memory(dev, REG_IBM_PS2_CENTURY_BYTE, val);
527 }
528
529 static int rtc_post_load(void *opaque, int version_id)
530 {
531 #ifdef TARGET_I386
532 RTCState *s = opaque;
533
534 if (version_id >= 2) {
535 if (rtc_td_hack) {
536 rtc_coalesced_timer_update(s);
537 }
538 }
539 #endif
540 return 0;
541 }
542
543 static const VMStateDescription vmstate_rtc = {
544 .name = "mc146818rtc",
545 .version_id = 2,
546 .minimum_version_id = 1,
547 .minimum_version_id_old = 1,
548 .post_load = rtc_post_load,
549 .fields = (VMStateField []) {
550 VMSTATE_BUFFER(cmos_data, RTCState),
551 VMSTATE_UINT8(cmos_index, RTCState),
552 VMSTATE_INT32(current_tm.tm_sec, RTCState),
553 VMSTATE_INT32(current_tm.tm_min, RTCState),
554 VMSTATE_INT32(current_tm.tm_hour, RTCState),
555 VMSTATE_INT32(current_tm.tm_wday, RTCState),
556 VMSTATE_INT32(current_tm.tm_mday, RTCState),
557 VMSTATE_INT32(current_tm.tm_mon, RTCState),
558 VMSTATE_INT32(current_tm.tm_year, RTCState),
559 VMSTATE_TIMER(periodic_timer, RTCState),
560 VMSTATE_INT64(next_periodic_time, RTCState),
561 VMSTATE_INT64(next_second_time, RTCState),
562 VMSTATE_TIMER(second_timer, RTCState),
563 VMSTATE_TIMER(second_timer2, RTCState),
564 VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
565 VMSTATE_UINT32_V(period, RTCState, 2),
566 VMSTATE_END_OF_LIST()
567 }
568 };
569
570 static void rtc_reset(void *opaque)
571 {
572 RTCState *s = opaque;
573
574 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
575 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
576
577 qemu_irq_lower(s->irq);
578
579 #ifdef TARGET_I386
580 if (rtc_td_hack)
581 s->irq_coalesced = 0;
582 #endif
583 }
584
585 static int rtc_initfn(ISADevice *dev)
586 {
587 RTCState *s = DO_UPCAST(RTCState, dev, dev);
588 int base = 0x70;
589 int isairq = 8;
590
591 isa_init_irq(dev, &s->irq, isairq);
592
593 s->cmos_data[RTC_REG_A] = 0x26;
594 s->cmos_data[RTC_REG_B] = 0x02;
595 s->cmos_data[RTC_REG_C] = 0x00;
596 s->cmos_data[RTC_REG_D] = 0x80;
597
598 rtc_set_date_from_host(dev);
599
600 s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
601 #ifdef TARGET_I386
602 if (rtc_td_hack)
603 s->coalesced_timer =
604 qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
605 #endif
606 s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
607 s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
608
609 s->next_second_time =
610 qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
611 qemu_mod_timer(s->second_timer2, s->next_second_time);
612
613 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
614 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
615
616 qdev_set_legacy_instance_id(&dev->qdev, base, 2);
617 qemu_register_reset(rtc_reset, s);
618 return 0;
619 }
620
621 ISADevice *rtc_init(int base_year)
622 {
623 ISADevice *dev;
624
625 dev = isa_create("mc146818rtc");
626 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
627 qdev_init_nofail(&dev->qdev);
628 return dev;
629 }
630
631 static ISADeviceInfo mc146818rtc_info = {
632 .qdev.name = "mc146818rtc",
633 .qdev.size = sizeof(RTCState),
634 .qdev.no_user = 1,
635 .qdev.vmsd = &vmstate_rtc,
636 .init = rtc_initfn,
637 .qdev.props = (Property[]) {
638 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
639 DEFINE_PROP_END_OF_LIST(),
640 }
641 };
642
643 static void mc146818rtc_register(void)
644 {
645 isa_qdev_register(&mc146818rtc_info);
646 }
647 device_init(mc146818rtc_register)