]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mc146818rtc.c
win32 port (initial patch by kazu)
[mirror_qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 //#define DEBUG_CMOS
27
28 #define RTC_SECONDS 0
29 #define RTC_SECONDS_ALARM 1
30 #define RTC_MINUTES 2
31 #define RTC_MINUTES_ALARM 3
32 #define RTC_HOURS 4
33 #define RTC_HOURS_ALARM 5
34 #define RTC_ALARM_DONT_CARE 0xC0
35
36 #define RTC_DAY_OF_WEEK 6
37 #define RTC_DAY_OF_MONTH 7
38 #define RTC_MONTH 8
39 #define RTC_YEAR 9
40
41 #define RTC_REG_A 10
42 #define RTC_REG_B 11
43 #define RTC_REG_C 12
44 #define RTC_REG_D 13
45
46 #define REG_A_UIP 0x80
47
48 #define REG_B_SET 0x80
49 #define REG_B_PIE 0x40
50 #define REG_B_AIE 0x20
51 #define REG_B_UIE 0x10
52
53 struct RTCState {
54 uint8_t cmos_data[128];
55 uint8_t cmos_index;
56 int current_time; /* in seconds */
57 int irq;
58 uint8_t buf_data[10]; /* buffered data */
59 /* periodic timer */
60 QEMUTimer *periodic_timer;
61 int64_t next_periodic_time;
62 /* second update */
63 int64_t next_second_time;
64 QEMUTimer *second_timer;
65 QEMUTimer *second_timer2;
66 };
67
68 static void rtc_set_time(RTCState *s);
69 static void rtc_set_date_buf(RTCState *s, const struct tm *tm);
70 static void rtc_copy_date(RTCState *s);
71
72 static void rtc_timer_update(RTCState *s, int64_t current_time)
73 {
74 int period_code, period;
75 int64_t cur_clock, next_irq_clock;
76
77 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
78 if (period_code != 0 &&
79 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
80 if (period_code <= 2)
81 period_code += 7;
82 /* period in 32 Khz cycles */
83 period = 1 << (period_code - 1);
84 /* compute 32 khz clock */
85 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
86 next_irq_clock = (cur_clock & ~(period - 1)) + period;
87 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
88 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
89 } else {
90 qemu_del_timer(s->periodic_timer);
91 }
92 }
93
94 static void rtc_periodic_timer(void *opaque)
95 {
96 RTCState *s = opaque;
97
98 rtc_timer_update(s, s->next_periodic_time);
99 s->cmos_data[RTC_REG_C] |= 0xc0;
100 pic_set_irq(s->irq, 1);
101 }
102
103 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
104 {
105 RTCState *s = opaque;
106
107 if ((addr & 1) == 0) {
108 s->cmos_index = data & 0x7f;
109 } else {
110 #ifdef DEBUG_CMOS
111 printf("cmos: write index=0x%02x val=0x%02x\n",
112 s->cmos_index, data);
113 #endif
114 switch(s->cmos_index) {
115 case RTC_SECONDS_ALARM:
116 case RTC_MINUTES_ALARM:
117 case RTC_HOURS_ALARM:
118 /* XXX: not supported */
119 s->cmos_data[s->cmos_index] = data;
120 break;
121 case RTC_SECONDS:
122 case RTC_MINUTES:
123 case RTC_HOURS:
124 case RTC_DAY_OF_WEEK:
125 case RTC_DAY_OF_MONTH:
126 case RTC_MONTH:
127 case RTC_YEAR:
128 s->cmos_data[s->cmos_index] = data;
129 /* if in set mode, do not update the time */
130 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
131 rtc_set_time(s);
132 }
133 break;
134 case RTC_REG_A:
135 /* UIP bit is read only */
136 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
137 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
138 rtc_timer_update(s, qemu_get_clock(vm_clock));
139 break;
140 case RTC_REG_B:
141 if (data & REG_B_SET) {
142 /* set mode: reset UIP mode */
143 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
144 data &= ~REG_B_UIE;
145 } else {
146 /* if disabling set mode, update the time */
147 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
148 rtc_set_time(s);
149 }
150 }
151 s->cmos_data[RTC_REG_B] = data;
152 rtc_timer_update(s, qemu_get_clock(vm_clock));
153 break;
154 case RTC_REG_C:
155 case RTC_REG_D:
156 /* cannot write to them */
157 break;
158 default:
159 s->cmos_data[s->cmos_index] = data;
160 break;
161 }
162 }
163 }
164
165 static inline int to_bcd(RTCState *s, int a)
166 {
167 if (s->cmos_data[RTC_REG_B] & 0x04) {
168 return a;
169 } else {
170 return ((a / 10) << 4) | (a % 10);
171 }
172 }
173
174 static inline int from_bcd(RTCState *s, int a)
175 {
176 if (s->cmos_data[RTC_REG_B] & 0x04) {
177 return a;
178 } else {
179 return ((a >> 4) * 10) + (a & 0x0f);
180 }
181 }
182
183 static void rtc_set_time(RTCState *s)
184 {
185 struct tm tm1, *tm = &tm1;
186
187 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
188 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
189 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS]);
190 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
191 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
192 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
193 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
194
195 /* update internal state */
196 s->buf_data[RTC_SECONDS] = s->cmos_data[RTC_SECONDS];
197 s->buf_data[RTC_MINUTES] = s->cmos_data[RTC_MINUTES];
198 s->buf_data[RTC_HOURS] = s->cmos_data[RTC_HOURS];
199 s->buf_data[RTC_DAY_OF_WEEK] = s->cmos_data[RTC_DAY_OF_WEEK];
200 s->buf_data[RTC_DAY_OF_MONTH] = s->cmos_data[RTC_DAY_OF_MONTH];
201 s->buf_data[RTC_MONTH] = s->cmos_data[RTC_MONTH];
202 s->buf_data[RTC_YEAR] = s->cmos_data[RTC_YEAR];
203 s->current_time = mktime(tm);
204 }
205
206 static void rtc_update_second(void *opaque)
207 {
208 RTCState *s = opaque;
209
210 /* if the oscillator is not in normal operation, we do not update */
211 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
212 s->next_second_time += ticks_per_sec;
213 qemu_mod_timer(s->second_timer, s->next_second_time);
214 } else {
215 s->current_time++;
216
217 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
218 /* update in progress bit */
219 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
220 }
221 qemu_mod_timer(s->second_timer2,
222 s->next_second_time + (ticks_per_sec * 99) / 100);
223 }
224 }
225
226 static void rtc_update_second2(void *opaque)
227 {
228 RTCState *s = opaque;
229 time_t ti;
230
231 ti = s->current_time;
232 rtc_set_date_buf(s, gmtime(&ti));
233
234 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
235 rtc_copy_date(s);
236 }
237
238 /* check alarm */
239 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
240 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
241 s->cmos_data[RTC_SECONDS_ALARM] == s->buf_data[RTC_SECONDS]) &&
242 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
243 s->cmos_data[RTC_MINUTES_ALARM] == s->buf_data[RTC_MINUTES]) &&
244 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
245 s->cmos_data[RTC_HOURS_ALARM] == s->buf_data[RTC_HOURS])) {
246
247 s->cmos_data[RTC_REG_C] |= 0xa0;
248 pic_set_irq(s->irq, 1);
249 }
250 }
251
252 /* update ended interrupt */
253 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
254 s->cmos_data[RTC_REG_C] |= 0x90;
255 pic_set_irq(s->irq, 1);
256 }
257
258 /* clear update in progress bit */
259 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
260
261 s->next_second_time += ticks_per_sec;
262 qemu_mod_timer(s->second_timer, s->next_second_time);
263 }
264
265 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
266 {
267 RTCState *s = opaque;
268 int ret;
269 if ((addr & 1) == 0) {
270 return 0xff;
271 } else {
272 switch(s->cmos_index) {
273 case RTC_SECONDS:
274 case RTC_MINUTES:
275 case RTC_HOURS:
276 case RTC_DAY_OF_WEEK:
277 case RTC_DAY_OF_MONTH:
278 case RTC_MONTH:
279 case RTC_YEAR:
280 ret = s->cmos_data[s->cmos_index];
281 break;
282 case RTC_REG_A:
283 ret = s->cmos_data[s->cmos_index];
284 break;
285 case RTC_REG_C:
286 ret = s->cmos_data[s->cmos_index];
287 pic_set_irq(s->irq, 0);
288 s->cmos_data[RTC_REG_C] = 0x00;
289 break;
290 default:
291 ret = s->cmos_data[s->cmos_index];
292 break;
293 }
294 #ifdef DEBUG_CMOS
295 printf("cmos: read index=0x%02x val=0x%02x\n",
296 s->cmos_index, ret);
297 #endif
298 return ret;
299 }
300 }
301
302 static void rtc_set_date_buf(RTCState *s, const struct tm *tm)
303 {
304 s->buf_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
305 s->buf_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
306 if (s->cmos_data[RTC_REG_B] & 0x02) {
307 /* 24 hour format */
308 s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
309 } else {
310 /* 12 hour format */
311 s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
312 if (tm->tm_hour >= 12)
313 s->buf_data[RTC_HOURS] |= 0x80;
314 }
315 s->buf_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
316 s->buf_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
317 s->buf_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
318 s->buf_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
319 }
320
321 static void rtc_copy_date(RTCState *s)
322 {
323 s->cmos_data[RTC_SECONDS] = s->buf_data[RTC_SECONDS];
324 s->cmos_data[RTC_MINUTES] = s->buf_data[RTC_MINUTES];
325 s->cmos_data[RTC_HOURS] = s->buf_data[RTC_HOURS];
326 s->cmos_data[RTC_DAY_OF_WEEK] = s->buf_data[RTC_DAY_OF_WEEK];
327 s->cmos_data[RTC_DAY_OF_MONTH] = s->buf_data[RTC_DAY_OF_MONTH];
328 s->cmos_data[RTC_MONTH] = s->buf_data[RTC_MONTH];
329 s->cmos_data[RTC_YEAR] = s->buf_data[RTC_YEAR];
330 }
331
332 void rtc_set_memory(RTCState *s, int addr, int val)
333 {
334 if (addr >= 0 && addr <= 127)
335 s->cmos_data[addr] = val;
336 }
337
338 void rtc_set_date(RTCState *s, const struct tm *tm)
339 {
340 s->current_time = mktime((struct tm *)tm);
341 rtc_set_date_buf(s, tm);
342 rtc_copy_date(s);
343 }
344
345 static void rtc_save(QEMUFile *f, void *opaque)
346 {
347 RTCState *s = opaque;
348
349 qemu_put_buffer(f, s->cmos_data, 128);
350 qemu_put_8s(f, &s->cmos_index);
351 qemu_put_be32s(f, &s->current_time);
352 qemu_put_buffer(f, s->buf_data, 10);
353
354 qemu_put_timer(f, s->periodic_timer);
355 qemu_put_be64s(f, &s->next_periodic_time);
356
357 qemu_put_be64s(f, &s->next_second_time);
358 qemu_put_timer(f, s->second_timer);
359 qemu_put_timer(f, s->second_timer2);
360 }
361
362 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
363 {
364 RTCState *s = opaque;
365
366 if (version_id != 1)
367 return -EINVAL;
368
369 qemu_get_buffer(f, s->cmos_data, 128);
370 qemu_get_8s(f, &s->cmos_index);
371 qemu_get_be32s(f, &s->current_time);
372 qemu_get_buffer(f, s->buf_data, 10);
373
374 qemu_get_timer(f, s->periodic_timer);
375 qemu_get_be64s(f, &s->next_periodic_time);
376
377 qemu_get_be64s(f, &s->next_second_time);
378 qemu_get_timer(f, s->second_timer);
379 qemu_get_timer(f, s->second_timer2);
380 return 0;
381 }
382
383 RTCState *rtc_init(int base, int irq)
384 {
385 RTCState *s;
386
387 s = qemu_mallocz(sizeof(RTCState));
388 if (!s)
389 return NULL;
390
391 s->irq = irq;
392 s->cmos_data[RTC_REG_A] = 0x26;
393 s->cmos_data[RTC_REG_B] = 0x02;
394 s->cmos_data[RTC_REG_C] = 0x00;
395 s->cmos_data[RTC_REG_D] = 0x80;
396
397 s->periodic_timer = qemu_new_timer(vm_clock,
398 rtc_periodic_timer, s);
399 s->second_timer = qemu_new_timer(vm_clock,
400 rtc_update_second, s);
401 s->second_timer2 = qemu_new_timer(vm_clock,
402 rtc_update_second2, s);
403
404 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
405 qemu_mod_timer(s->second_timer2, s->next_second_time);
406
407 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
408 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
409
410 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
411 return s;
412 }
413