]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mc146818rtc.c
rom loader: fix sparc -kernel boot.
[mirror_qemu.git] / hw / mc146818rtc.c
1 /*
2 * QEMU MC146818 RTC emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "hw.h"
25 #include "qemu-timer.h"
26 #include "sysemu.h"
27 #include "pc.h"
28 #include "isa.h"
29 #include "hpet_emul.h"
30
31 //#define DEBUG_CMOS
32
33 #define RTC_SECONDS 0
34 #define RTC_SECONDS_ALARM 1
35 #define RTC_MINUTES 2
36 #define RTC_MINUTES_ALARM 3
37 #define RTC_HOURS 4
38 #define RTC_HOURS_ALARM 5
39 #define RTC_ALARM_DONT_CARE 0xC0
40
41 #define RTC_DAY_OF_WEEK 6
42 #define RTC_DAY_OF_MONTH 7
43 #define RTC_MONTH 8
44 #define RTC_YEAR 9
45
46 #define RTC_REG_A 10
47 #define RTC_REG_B 11
48 #define RTC_REG_C 12
49 #define RTC_REG_D 13
50
51 #define REG_A_UIP 0x80
52
53 #define REG_B_SET 0x80
54 #define REG_B_PIE 0x40
55 #define REG_B_AIE 0x20
56 #define REG_B_UIE 0x10
57 #define REG_B_SQWE 0x08
58 #define REG_B_DM 0x04
59
60 #define REG_C_UF 0x10
61 #define REG_C_IRQF 0x80
62 #define REG_C_PF 0x40
63 #define REG_C_AF 0x20
64
65 struct RTCState {
66 ISADevice dev;
67 uint8_t cmos_data[128];
68 uint8_t cmos_index;
69 struct tm current_tm;
70 int32_t base_year;
71 qemu_irq irq;
72 qemu_irq sqw_irq;
73 int it_shift;
74 /* periodic timer */
75 QEMUTimer *periodic_timer;
76 int64_t next_periodic_time;
77 /* second update */
78 int64_t next_second_time;
79 #ifdef TARGET_I386
80 uint32_t irq_coalesced;
81 uint32_t period;
82 QEMUTimer *coalesced_timer;
83 #endif
84 QEMUTimer *second_timer;
85 QEMUTimer *second_timer2;
86 };
87
88 static void rtc_irq_raise(qemu_irq irq) {
89 /* When HPET is operating in legacy mode, RTC interrupts are disabled
90 * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy
91 * mode is established while interrupt is raised. We want it to
92 * be lowered in any case
93 */
94 #if defined TARGET_I386
95 if (!hpet_in_legacy_mode())
96 #endif
97 qemu_irq_raise(irq);
98 }
99
100 static void rtc_set_time(RTCState *s);
101 static void rtc_copy_date(RTCState *s);
102
103 #ifdef TARGET_I386
104 static void rtc_coalesced_timer_update(RTCState *s)
105 {
106 if (s->irq_coalesced == 0) {
107 qemu_del_timer(s->coalesced_timer);
108 } else {
109 /* divide each RTC interval to 2 - 8 smaller intervals */
110 int c = MIN(s->irq_coalesced, 7) + 1;
111 int64_t next_clock = qemu_get_clock(rtc_clock) +
112 muldiv64(s->period / c, get_ticks_per_sec(), 32768);
113 qemu_mod_timer(s->coalesced_timer, next_clock);
114 }
115 }
116
117 static void rtc_coalesced_timer(void *opaque)
118 {
119 RTCState *s = opaque;
120
121 if (s->irq_coalesced != 0) {
122 apic_reset_irq_delivered();
123 s->cmos_data[RTC_REG_C] |= 0xc0;
124 rtc_irq_raise(s->irq);
125 if (apic_get_irq_delivered()) {
126 s->irq_coalesced--;
127 }
128 }
129
130 rtc_coalesced_timer_update(s);
131 }
132 #endif
133
134 static void rtc_timer_update(RTCState *s, int64_t current_time)
135 {
136 int period_code, period;
137 int64_t cur_clock, next_irq_clock;
138 int enable_pie;
139
140 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
141 #if defined TARGET_I386
142 /* disable periodic timer if hpet is in legacy mode, since interrupts are
143 * disabled anyway.
144 */
145 enable_pie = !hpet_in_legacy_mode();
146 #else
147 enable_pie = 1;
148 #endif
149 if (period_code != 0
150 && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie)
151 || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
152 if (period_code <= 2)
153 period_code += 7;
154 /* period in 32 Khz cycles */
155 period = 1 << (period_code - 1);
156 #ifdef TARGET_I386
157 if(period != s->period)
158 s->irq_coalesced = (s->irq_coalesced * s->period) / period;
159 s->period = period;
160 #endif
161 /* compute 32 khz clock */
162 cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec());
163 next_irq_clock = (cur_clock & ~(period - 1)) + period;
164 s->next_periodic_time =
165 muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1;
166 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
167 } else {
168 #ifdef TARGET_I386
169 s->irq_coalesced = 0;
170 #endif
171 qemu_del_timer(s->periodic_timer);
172 }
173 }
174
175 static void rtc_periodic_timer(void *opaque)
176 {
177 RTCState *s = opaque;
178
179 rtc_timer_update(s, s->next_periodic_time);
180 if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
181 s->cmos_data[RTC_REG_C] |= 0xc0;
182 #ifdef TARGET_I386
183 if(rtc_td_hack) {
184 apic_reset_irq_delivered();
185 rtc_irq_raise(s->irq);
186 if (!apic_get_irq_delivered()) {
187 s->irq_coalesced++;
188 rtc_coalesced_timer_update(s);
189 }
190 } else
191 #endif
192 rtc_irq_raise(s->irq);
193 }
194 if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
195 /* Not square wave at all but we don't want 2048Hz interrupts!
196 Must be seen as a pulse. */
197 qemu_irq_raise(s->sqw_irq);
198 }
199 }
200
201 static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
202 {
203 RTCState *s = opaque;
204
205 if ((addr & 1) == 0) {
206 s->cmos_index = data & 0x7f;
207 } else {
208 #ifdef DEBUG_CMOS
209 printf("cmos: write index=0x%02x val=0x%02x\n",
210 s->cmos_index, data);
211 #endif
212 switch(s->cmos_index) {
213 case RTC_SECONDS_ALARM:
214 case RTC_MINUTES_ALARM:
215 case RTC_HOURS_ALARM:
216 /* XXX: not supported */
217 s->cmos_data[s->cmos_index] = data;
218 break;
219 case RTC_SECONDS:
220 case RTC_MINUTES:
221 case RTC_HOURS:
222 case RTC_DAY_OF_WEEK:
223 case RTC_DAY_OF_MONTH:
224 case RTC_MONTH:
225 case RTC_YEAR:
226 s->cmos_data[s->cmos_index] = data;
227 /* if in set mode, do not update the time */
228 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
229 rtc_set_time(s);
230 }
231 break;
232 case RTC_REG_A:
233 /* UIP bit is read only */
234 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
235 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
236 rtc_timer_update(s, qemu_get_clock(rtc_clock));
237 break;
238 case RTC_REG_B:
239 if (data & REG_B_SET) {
240 /* set mode: reset UIP mode */
241 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
242 data &= ~REG_B_UIE;
243 } else {
244 /* if disabling set mode, update the time */
245 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
246 rtc_set_time(s);
247 }
248 }
249 s->cmos_data[RTC_REG_B] = data;
250 rtc_timer_update(s, qemu_get_clock(rtc_clock));
251 break;
252 case RTC_REG_C:
253 case RTC_REG_D:
254 /* cannot write to them */
255 break;
256 default:
257 s->cmos_data[s->cmos_index] = data;
258 break;
259 }
260 }
261 }
262
263 static inline int to_bcd(RTCState *s, int a)
264 {
265 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
266 return a;
267 } else {
268 return ((a / 10) << 4) | (a % 10);
269 }
270 }
271
272 static inline int from_bcd(RTCState *s, int a)
273 {
274 if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
275 return a;
276 } else {
277 return ((a >> 4) * 10) + (a & 0x0f);
278 }
279 }
280
281 static void rtc_set_time(RTCState *s)
282 {
283 struct tm *tm = &s->current_tm;
284
285 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
286 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
287 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
288 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
289 (s->cmos_data[RTC_HOURS] & 0x80)) {
290 tm->tm_hour += 12;
291 }
292 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
293 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
294 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
295 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900;
296 }
297
298 static void rtc_copy_date(RTCState *s)
299 {
300 const struct tm *tm = &s->current_tm;
301 int year;
302
303 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
304 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
305 if (s->cmos_data[RTC_REG_B] & 0x02) {
306 /* 24 hour format */
307 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
308 } else {
309 /* 12 hour format */
310 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
311 if (tm->tm_hour >= 12)
312 s->cmos_data[RTC_HOURS] |= 0x80;
313 }
314 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday + 1);
315 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
316 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
317 year = (tm->tm_year - s->base_year) % 100;
318 if (year < 0)
319 year += 100;
320 s->cmos_data[RTC_YEAR] = to_bcd(s, year);
321 }
322
323 /* month is between 0 and 11. */
324 static int get_days_in_month(int month, int year)
325 {
326 static const int days_tab[12] = {
327 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
328 };
329 int d;
330 if ((unsigned )month >= 12)
331 return 31;
332 d = days_tab[month];
333 if (month == 1) {
334 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
335 d++;
336 }
337 return d;
338 }
339
340 /* update 'tm' to the next second */
341 static void rtc_next_second(struct tm *tm)
342 {
343 int days_in_month;
344
345 tm->tm_sec++;
346 if ((unsigned)tm->tm_sec >= 60) {
347 tm->tm_sec = 0;
348 tm->tm_min++;
349 if ((unsigned)tm->tm_min >= 60) {
350 tm->tm_min = 0;
351 tm->tm_hour++;
352 if ((unsigned)tm->tm_hour >= 24) {
353 tm->tm_hour = 0;
354 /* next day */
355 tm->tm_wday++;
356 if ((unsigned)tm->tm_wday >= 7)
357 tm->tm_wday = 0;
358 days_in_month = get_days_in_month(tm->tm_mon,
359 tm->tm_year + 1900);
360 tm->tm_mday++;
361 if (tm->tm_mday < 1) {
362 tm->tm_mday = 1;
363 } else if (tm->tm_mday > days_in_month) {
364 tm->tm_mday = 1;
365 tm->tm_mon++;
366 if (tm->tm_mon >= 12) {
367 tm->tm_mon = 0;
368 tm->tm_year++;
369 }
370 }
371 }
372 }
373 }
374 }
375
376
377 static void rtc_update_second(void *opaque)
378 {
379 RTCState *s = opaque;
380 int64_t delay;
381
382 /* if the oscillator is not in normal operation, we do not update */
383 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
384 s->next_second_time += get_ticks_per_sec();
385 qemu_mod_timer(s->second_timer, s->next_second_time);
386 } else {
387 rtc_next_second(&s->current_tm);
388
389 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
390 /* update in progress bit */
391 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
392 }
393 /* should be 244 us = 8 / 32768 seconds, but currently the
394 timers do not have the necessary resolution. */
395 delay = (get_ticks_per_sec() * 1) / 100;
396 if (delay < 1)
397 delay = 1;
398 qemu_mod_timer(s->second_timer2,
399 s->next_second_time + delay);
400 }
401 }
402
403 static void rtc_update_second2(void *opaque)
404 {
405 RTCState *s = opaque;
406
407 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
408 rtc_copy_date(s);
409 }
410
411 /* check alarm */
412 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
413 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
414 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
415 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
416 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
417 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
418 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
419
420 s->cmos_data[RTC_REG_C] |= 0xa0;
421 rtc_irq_raise(s->irq);
422 }
423 }
424
425 /* update ended interrupt */
426 s->cmos_data[RTC_REG_C] |= REG_C_UF;
427 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
428 s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
429 rtc_irq_raise(s->irq);
430 }
431
432 /* clear update in progress bit */
433 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
434
435 s->next_second_time += get_ticks_per_sec();
436 qemu_mod_timer(s->second_timer, s->next_second_time);
437 }
438
439 static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
440 {
441 RTCState *s = opaque;
442 int ret;
443 if ((addr & 1) == 0) {
444 return 0xff;
445 } else {
446 switch(s->cmos_index) {
447 case RTC_SECONDS:
448 case RTC_MINUTES:
449 case RTC_HOURS:
450 case RTC_DAY_OF_WEEK:
451 case RTC_DAY_OF_MONTH:
452 case RTC_MONTH:
453 case RTC_YEAR:
454 ret = s->cmos_data[s->cmos_index];
455 break;
456 case RTC_REG_A:
457 ret = s->cmos_data[s->cmos_index];
458 break;
459 case RTC_REG_C:
460 ret = s->cmos_data[s->cmos_index];
461 qemu_irq_lower(s->irq);
462 s->cmos_data[RTC_REG_C] = 0x00;
463 break;
464 default:
465 ret = s->cmos_data[s->cmos_index];
466 break;
467 }
468 #ifdef DEBUG_CMOS
469 printf("cmos: read index=0x%02x val=0x%02x\n",
470 s->cmos_index, ret);
471 #endif
472 return ret;
473 }
474 }
475
476 void rtc_set_memory(RTCState *s, int addr, int val)
477 {
478 if (addr >= 0 && addr <= 127)
479 s->cmos_data[addr] = val;
480 }
481
482 void rtc_set_date(RTCState *s, const struct tm *tm)
483 {
484 s->current_tm = *tm;
485 rtc_copy_date(s);
486 }
487
488 /* PC cmos mappings */
489 #define REG_IBM_CENTURY_BYTE 0x32
490 #define REG_IBM_PS2_CENTURY_BYTE 0x37
491
492 static void rtc_set_date_from_host(RTCState *s)
493 {
494 struct tm tm;
495 int val;
496
497 /* set the CMOS date */
498 qemu_get_timedate(&tm, 0);
499 rtc_set_date(s, &tm);
500
501 val = to_bcd(s, (tm.tm_year / 100) + 19);
502 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
503 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
504 }
505
506 static void rtc_save(QEMUFile *f, void *opaque)
507 {
508 RTCState *s = opaque;
509
510 qemu_put_buffer(f, s->cmos_data, 128);
511 qemu_put_8s(f, &s->cmos_index);
512
513 qemu_put_be32(f, s->current_tm.tm_sec);
514 qemu_put_be32(f, s->current_tm.tm_min);
515 qemu_put_be32(f, s->current_tm.tm_hour);
516 qemu_put_be32(f, s->current_tm.tm_wday);
517 qemu_put_be32(f, s->current_tm.tm_mday);
518 qemu_put_be32(f, s->current_tm.tm_mon);
519 qemu_put_be32(f, s->current_tm.tm_year);
520
521 qemu_put_timer(f, s->periodic_timer);
522 qemu_put_be64(f, s->next_periodic_time);
523
524 qemu_put_be64(f, s->next_second_time);
525 qemu_put_timer(f, s->second_timer);
526 qemu_put_timer(f, s->second_timer2);
527 }
528
529 static int rtc_load(QEMUFile *f, void *opaque, int version_id)
530 {
531 RTCState *s = opaque;
532
533 if (version_id != 1)
534 return -EINVAL;
535
536 qemu_get_buffer(f, s->cmos_data, 128);
537 qemu_get_8s(f, &s->cmos_index);
538
539 s->current_tm.tm_sec=qemu_get_be32(f);
540 s->current_tm.tm_min=qemu_get_be32(f);
541 s->current_tm.tm_hour=qemu_get_be32(f);
542 s->current_tm.tm_wday=qemu_get_be32(f);
543 s->current_tm.tm_mday=qemu_get_be32(f);
544 s->current_tm.tm_mon=qemu_get_be32(f);
545 s->current_tm.tm_year=qemu_get_be32(f);
546
547 qemu_get_timer(f, s->periodic_timer);
548 s->next_periodic_time=qemu_get_be64(f);
549
550 s->next_second_time=qemu_get_be64(f);
551 qemu_get_timer(f, s->second_timer);
552 qemu_get_timer(f, s->second_timer2);
553 return 0;
554 }
555
556 #ifdef TARGET_I386
557 static void rtc_save_td(QEMUFile *f, void *opaque)
558 {
559 RTCState *s = opaque;
560
561 qemu_put_be32(f, s->irq_coalesced);
562 qemu_put_be32(f, s->period);
563 }
564
565 static int rtc_load_td(QEMUFile *f, void *opaque, int version_id)
566 {
567 RTCState *s = opaque;
568
569 if (version_id != 1)
570 return -EINVAL;
571
572 s->irq_coalesced = qemu_get_be32(f);
573 s->period = qemu_get_be32(f);
574 rtc_coalesced_timer_update(s);
575 return 0;
576 }
577 #endif
578
579 static void rtc_reset(void *opaque)
580 {
581 RTCState *s = opaque;
582
583 s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
584 s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
585
586 qemu_irq_lower(s->irq);
587
588 #ifdef TARGET_I386
589 if (rtc_td_hack)
590 s->irq_coalesced = 0;
591 #endif
592 }
593
594 static int rtc_initfn(ISADevice *dev)
595 {
596 RTCState *s = DO_UPCAST(RTCState, dev, dev);
597 int base = 0x70;
598 int isairq = 8;
599
600 isa_init_irq(dev, &s->irq, isairq);
601
602 s->cmos_data[RTC_REG_A] = 0x26;
603 s->cmos_data[RTC_REG_B] = 0x02;
604 s->cmos_data[RTC_REG_C] = 0x00;
605 s->cmos_data[RTC_REG_D] = 0x80;
606
607 rtc_set_date_from_host(s);
608
609 s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
610 #ifdef TARGET_I386
611 if (rtc_td_hack)
612 s->coalesced_timer =
613 qemu_new_timer(rtc_clock, rtc_coalesced_timer, s);
614 #endif
615 s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
616 s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
617
618 s->next_second_time =
619 qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
620 qemu_mod_timer(s->second_timer2, s->next_second_time);
621
622 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
623 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
624
625 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
626 #ifdef TARGET_I386
627 if (rtc_td_hack)
628 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
629 #endif
630 qemu_register_reset(rtc_reset, s);
631 return 0;
632 }
633
634 RTCState *rtc_init(int base_year)
635 {
636 ISADevice *dev;
637
638 dev = isa_create("mc146818rtc");
639 qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
640 qdev_init_nofail(&dev->qdev);
641 return DO_UPCAST(RTCState, dev, dev);
642 }
643
644 static ISADeviceInfo mc146818rtc_info = {
645 .qdev.name = "mc146818rtc",
646 .qdev.size = sizeof(RTCState),
647 .qdev.no_user = 1,
648 .init = rtc_initfn,
649 .qdev.props = (Property[]) {
650 DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
651 DEFINE_PROP_END_OF_LIST(),
652 }
653 };
654
655 static void mc146818rtc_register(void)
656 {
657 isa_qdev_register(&mc146818rtc_info);
658 }
659 device_init(mc146818rtc_register)
660
661 /* Memory mapped interface */
662 static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
663 {
664 RTCState *s = opaque;
665
666 return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF;
667 }
668
669 static void cmos_mm_writeb (void *opaque,
670 target_phys_addr_t addr, uint32_t value)
671 {
672 RTCState *s = opaque;
673
674 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF);
675 }
676
677 static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
678 {
679 RTCState *s = opaque;
680 uint32_t val;
681
682 val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF;
683 #ifdef TARGET_WORDS_BIGENDIAN
684 val = bswap16(val);
685 #endif
686 return val;
687 }
688
689 static void cmos_mm_writew (void *opaque,
690 target_phys_addr_t addr, uint32_t value)
691 {
692 RTCState *s = opaque;
693 #ifdef TARGET_WORDS_BIGENDIAN
694 value = bswap16(value);
695 #endif
696 cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF);
697 }
698
699 static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
700 {
701 RTCState *s = opaque;
702 uint32_t val;
703
704 val = cmos_ioport_read(s, addr >> s->it_shift);
705 #ifdef TARGET_WORDS_BIGENDIAN
706 val = bswap32(val);
707 #endif
708 return val;
709 }
710
711 static void cmos_mm_writel (void *opaque,
712 target_phys_addr_t addr, uint32_t value)
713 {
714 RTCState *s = opaque;
715 #ifdef TARGET_WORDS_BIGENDIAN
716 value = bswap32(value);
717 #endif
718 cmos_ioport_write(s, addr >> s->it_shift, value);
719 }
720
721 static CPUReadMemoryFunc * const rtc_mm_read[] = {
722 &cmos_mm_readb,
723 &cmos_mm_readw,
724 &cmos_mm_readl,
725 };
726
727 static CPUWriteMemoryFunc * const rtc_mm_write[] = {
728 &cmos_mm_writeb,
729 &cmos_mm_writew,
730 &cmos_mm_writel,
731 };
732
733 RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq,
734 int base_year)
735 {
736 RTCState *s;
737 int io_memory;
738
739 s = qemu_mallocz(sizeof(RTCState));
740
741 s->irq = irq;
742 s->cmos_data[RTC_REG_A] = 0x26;
743 s->cmos_data[RTC_REG_B] = 0x02;
744 s->cmos_data[RTC_REG_C] = 0x00;
745 s->cmos_data[RTC_REG_D] = 0x80;
746
747 s->base_year = base_year;
748 rtc_set_date_from_host(s);
749
750 s->periodic_timer = qemu_new_timer(rtc_clock, rtc_periodic_timer, s);
751 s->second_timer = qemu_new_timer(rtc_clock, rtc_update_second, s);
752 s->second_timer2 = qemu_new_timer(rtc_clock, rtc_update_second2, s);
753
754 s->next_second_time =
755 qemu_get_clock(rtc_clock) + (get_ticks_per_sec() * 99) / 100;
756 qemu_mod_timer(s->second_timer2, s->next_second_time);
757
758 io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s);
759 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
760
761 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
762 #ifdef TARGET_I386
763 if (rtc_td_hack)
764 register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s);
765 #endif
766 qemu_register_reset(rtc_reset, s);
767 return s;
768 }