]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/malta.c
malta: Move PCI interrupt handling from gt64xxx_pci to piix4
[mirror_qemu.git] / hw / mips / malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "hw/clock.h"
31 #include "hw/southbridge/piix.h"
32 #include "hw/isa/superio.h"
33 #include "hw/char/serial.h"
34 #include "net/net.h"
35 #include "hw/boards.h"
36 #include "hw/i2c/smbus_eeprom.h"
37 #include "hw/block/flash.h"
38 #include "hw/mips/mips.h"
39 #include "hw/mips/cpudevs.h"
40 #include "hw/pci/pci.h"
41 #include "qemu/log.h"
42 #include "hw/mips/bios.h"
43 #include "hw/ide.h"
44 #include "hw/irq.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "qom/object.h"
48 #include "hw/sysbus.h" /* SysBusDevice */
49 #include "qemu/host-utils.h"
50 #include "sysemu/qtest.h"
51 #include "sysemu/reset.h"
52 #include "sysemu/runstate.h"
53 #include "qapi/error.h"
54 #include "qemu/error-report.h"
55 #include "hw/misc/empty_slot.h"
56 #include "sysemu/kvm.h"
57 #include "semihosting/semihost.h"
58 #include "hw/mips/cps.h"
59 #include "hw/qdev-clock.h"
60
61 #define ENVP_PADDR 0x2000
62 #define ENVP_VADDR cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
63 #define ENVP_NB_ENTRIES 16
64 #define ENVP_ENTRY_SIZE 256
65
66 /* Hardware addresses */
67 #define FLASH_ADDRESS 0x1e000000ULL
68 #define FPGA_ADDRESS 0x1f000000ULL
69 #define RESET_ADDRESS 0x1fc00000ULL
70
71 #define FLASH_SIZE 0x400000
72
73 #define MAX_IDE_BUS 2
74
75 typedef struct {
76 MemoryRegion iomem;
77 MemoryRegion iomem_lo; /* 0 - 0x900 */
78 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
79 uint32_t leds;
80 uint32_t brk;
81 uint32_t gpout;
82 uint32_t i2cin;
83 uint32_t i2coe;
84 uint32_t i2cout;
85 uint32_t i2csel;
86 CharBackend display;
87 char display_text[9];
88 SerialMM *uart;
89 bool display_inited;
90 } MaltaFPGAState;
91
92 #define TYPE_MIPS_MALTA "mips-malta"
93 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
94
95 struct MaltaState {
96 SysBusDevice parent_obj;
97
98 Clock *cpuclk;
99 MIPSCPSState cps;
100 };
101
102 static struct _loaderparams {
103 int ram_size, ram_low_size;
104 const char *kernel_filename;
105 const char *kernel_cmdline;
106 const char *initrd_filename;
107 } loaderparams;
108
109 /* Malta FPGA */
110 static void malta_fpga_update_display(void *opaque)
111 {
112 char leds_text[9];
113 int i;
114 MaltaFPGAState *s = opaque;
115
116 for (i = 7 ; i >= 0 ; i--) {
117 if (s->leds & (1 << i)) {
118 leds_text[i] = '#';
119 } else {
120 leds_text[i] = ' ';
121 }
122 }
123 leds_text[8] = '\0';
124
125 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
126 leds_text);
127 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
128 s->display_text);
129 }
130
131 /*
132 * EEPROM 24C01 / 24C02 emulation.
133 *
134 * Emulation for serial EEPROMs:
135 * 24C01 - 1024 bit (128 x 8)
136 * 24C02 - 2048 bit (256 x 8)
137 *
138 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
139 */
140
141 #if defined(DEBUG)
142 # define logout(fmt, ...) \
143 fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
144 #else
145 # define logout(fmt, ...) ((void)0)
146 #endif
147
148 struct _eeprom24c0x_t {
149 uint8_t tick;
150 uint8_t address;
151 uint8_t command;
152 uint8_t ack;
153 uint8_t scl;
154 uint8_t sda;
155 uint8_t data;
156 /* uint16_t size; */
157 uint8_t contents[256];
158 };
159
160 typedef struct _eeprom24c0x_t eeprom24c0x_t;
161
162 static eeprom24c0x_t spd_eeprom = {
163 .contents = {
164 /* 00000000: */
165 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
166 /* 00000008: */
167 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
168 /* 00000010: */
169 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
170 /* 00000018: */
171 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
172 /* 00000020: */
173 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
174 /* 00000028: */
175 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
176 /* 00000030: */
177 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
178 /* 00000038: */
179 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
180 /* 00000040: */
181 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
182 /* 00000048: */
183 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
184 /* 00000050: */
185 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
186 /* 00000058: */
187 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
188 /* 00000060: */
189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
190 /* 00000068: */
191 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192 /* 00000070: */
193 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194 /* 00000078: */
195 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
196 },
197 };
198
199 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
200 {
201 enum { SDR = 0x4, DDR2 = 0x8 } type;
202 uint8_t *spd = spd_eeprom.contents;
203 uint8_t nbanks = 0;
204 uint16_t density = 0;
205 int i;
206
207 /* work in terms of MB */
208 ram_size /= MiB;
209
210 while ((ram_size >= 4) && (nbanks <= 2)) {
211 int sz_log2 = MIN(31 - clz32(ram_size), 14);
212 nbanks++;
213 density |= 1 << (sz_log2 - 2);
214 ram_size -= 1 << sz_log2;
215 }
216
217 /* split to 2 banks if possible */
218 if ((nbanks == 1) && (density > 1)) {
219 nbanks++;
220 density >>= 1;
221 }
222
223 if (density & 0xff00) {
224 density = (density & 0xe0) | ((density >> 8) & 0x1f);
225 type = DDR2;
226 } else if (!(density & 0x1f)) {
227 type = DDR2;
228 } else {
229 type = SDR;
230 }
231
232 if (ram_size) {
233 warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
234 " of SDRAM", ram_size);
235 }
236
237 /* fill in SPD memory information */
238 spd[2] = type;
239 spd[5] = nbanks;
240 spd[31] = density;
241
242 /* checksum */
243 spd[63] = 0;
244 for (i = 0; i < 63; i++) {
245 spd[63] += spd[i];
246 }
247
248 /* copy for SMBUS */
249 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
250 }
251
252 static void generate_eeprom_serial(uint8_t *eeprom)
253 {
254 int i, pos = 0;
255 uint8_t mac[6] = { 0x00 };
256 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
257
258 /* version */
259 eeprom[pos++] = 0x01;
260
261 /* count */
262 eeprom[pos++] = 0x02;
263
264 /* MAC address */
265 eeprom[pos++] = 0x01; /* MAC */
266 eeprom[pos++] = 0x06; /* length */
267 memcpy(&eeprom[pos], mac, sizeof(mac));
268 pos += sizeof(mac);
269
270 /* serial number */
271 eeprom[pos++] = 0x02; /* serial */
272 eeprom[pos++] = 0x05; /* length */
273 memcpy(&eeprom[pos], sn, sizeof(sn));
274 pos += sizeof(sn);
275
276 /* checksum */
277 eeprom[pos] = 0;
278 for (i = 0; i < pos; i++) {
279 eeprom[pos] += eeprom[i];
280 }
281 }
282
283 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
284 {
285 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
286 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
287 return eeprom->sda;
288 }
289
290 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
291 {
292 if (eeprom->scl && scl && (eeprom->sda != sda)) {
293 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
294 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
295 sda ? "stop" : "start");
296 if (!sda) {
297 eeprom->tick = 1;
298 eeprom->command = 0;
299 }
300 } else if (eeprom->tick == 0 && !eeprom->ack) {
301 /* Waiting for start. */
302 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
303 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
304 } else if (!eeprom->scl && scl) {
305 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
306 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
307 if (eeprom->ack) {
308 logout("\ti2c ack bit = 0\n");
309 sda = 0;
310 eeprom->ack = 0;
311 } else if (eeprom->sda == sda) {
312 uint8_t bit = (sda != 0);
313 logout("\ti2c bit = %d\n", bit);
314 if (eeprom->tick < 9) {
315 eeprom->command <<= 1;
316 eeprom->command += bit;
317 eeprom->tick++;
318 if (eeprom->tick == 9) {
319 logout("\tcommand 0x%04x, %s\n", eeprom->command,
320 bit ? "read" : "write");
321 eeprom->ack = 1;
322 }
323 } else if (eeprom->tick < 17) {
324 if (eeprom->command & 1) {
325 sda = ((eeprom->data & 0x80) != 0);
326 }
327 eeprom->address <<= 1;
328 eeprom->address += bit;
329 eeprom->tick++;
330 eeprom->data <<= 1;
331 if (eeprom->tick == 17) {
332 eeprom->data = eeprom->contents[eeprom->address];
333 logout("\taddress 0x%04x, data 0x%02x\n",
334 eeprom->address, eeprom->data);
335 eeprom->ack = 1;
336 eeprom->tick = 0;
337 }
338 } else if (eeprom->tick >= 17) {
339 sda = 0;
340 }
341 } else {
342 logout("\tsda changed with raising scl\n");
343 }
344 } else {
345 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
346 scl, eeprom->sda, sda);
347 }
348 eeprom->scl = scl;
349 eeprom->sda = sda;
350 }
351
352 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
353 unsigned size)
354 {
355 MaltaFPGAState *s = opaque;
356 uint32_t val = 0;
357 uint32_t saddr;
358
359 saddr = (addr & 0xfffff);
360
361 switch (saddr) {
362
363 /* SWITCH Register */
364 case 0x00200:
365 val = 0x00000000;
366 break;
367
368 /* STATUS Register */
369 case 0x00208:
370 #ifdef TARGET_WORDS_BIGENDIAN
371 val = 0x00000012;
372 #else
373 val = 0x00000010;
374 #endif
375 break;
376
377 /* JMPRS Register */
378 case 0x00210:
379 val = 0x00;
380 break;
381
382 /* LEDBAR Register */
383 case 0x00408:
384 val = s->leds;
385 break;
386
387 /* BRKRES Register */
388 case 0x00508:
389 val = s->brk;
390 break;
391
392 /* UART Registers are handled directly by the serial device */
393
394 /* GPOUT Register */
395 case 0x00a00:
396 val = s->gpout;
397 break;
398
399 /* XXX: implement a real I2C controller */
400
401 /* GPINP Register */
402 case 0x00a08:
403 /* IN = OUT until a real I2C control is implemented */
404 if (s->i2csel) {
405 val = s->i2cout;
406 } else {
407 val = 0x00;
408 }
409 break;
410
411 /* I2CINP Register */
412 case 0x00b00:
413 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
414 break;
415
416 /* I2COE Register */
417 case 0x00b08:
418 val = s->i2coe;
419 break;
420
421 /* I2COUT Register */
422 case 0x00b10:
423 val = s->i2cout;
424 break;
425
426 /* I2CSEL Register */
427 case 0x00b18:
428 val = s->i2csel;
429 break;
430
431 default:
432 qemu_log_mask(LOG_GUEST_ERROR,
433 "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
434 addr);
435 break;
436 }
437 return val;
438 }
439
440 static void malta_fpga_write(void *opaque, hwaddr addr,
441 uint64_t val, unsigned size)
442 {
443 MaltaFPGAState *s = opaque;
444 uint32_t saddr;
445
446 saddr = (addr & 0xfffff);
447
448 switch (saddr) {
449
450 /* SWITCH Register */
451 case 0x00200:
452 break;
453
454 /* JMPRS Register */
455 case 0x00210:
456 break;
457
458 /* LEDBAR Register */
459 case 0x00408:
460 s->leds = val & 0xff;
461 malta_fpga_update_display(s);
462 break;
463
464 /* ASCIIWORD Register */
465 case 0x00410:
466 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
467 malta_fpga_update_display(s);
468 break;
469
470 /* ASCIIPOS0 to ASCIIPOS7 Registers */
471 case 0x00418:
472 case 0x00420:
473 case 0x00428:
474 case 0x00430:
475 case 0x00438:
476 case 0x00440:
477 case 0x00448:
478 case 0x00450:
479 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
480 malta_fpga_update_display(s);
481 break;
482
483 /* SOFTRES Register */
484 case 0x00500:
485 if (val == 0x42) {
486 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
487 }
488 break;
489
490 /* BRKRES Register */
491 case 0x00508:
492 s->brk = val & 0xff;
493 break;
494
495 /* UART Registers are handled directly by the serial device */
496
497 /* GPOUT Register */
498 case 0x00a00:
499 s->gpout = val & 0xff;
500 break;
501
502 /* I2COE Register */
503 case 0x00b08:
504 s->i2coe = val & 0x03;
505 break;
506
507 /* I2COUT Register */
508 case 0x00b10:
509 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
510 s->i2cout = val;
511 break;
512
513 /* I2CSEL Register */
514 case 0x00b18:
515 s->i2csel = val & 0x01;
516 break;
517
518 default:
519 qemu_log_mask(LOG_GUEST_ERROR,
520 "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
521 addr);
522 break;
523 }
524 }
525
526 static const MemoryRegionOps malta_fpga_ops = {
527 .read = malta_fpga_read,
528 .write = malta_fpga_write,
529 .endianness = DEVICE_NATIVE_ENDIAN,
530 };
531
532 static void malta_fpga_reset(void *opaque)
533 {
534 MaltaFPGAState *s = opaque;
535
536 s->leds = 0x00;
537 s->brk = 0x0a;
538 s->gpout = 0x00;
539 s->i2cin = 0x3;
540 s->i2coe = 0x0;
541 s->i2cout = 0x3;
542 s->i2csel = 0x1;
543
544 s->display_text[8] = '\0';
545 snprintf(s->display_text, 9, " ");
546 }
547
548 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
549 {
550 MaltaFPGAState *s = opaque;
551
552 if (event == CHR_EVENT_OPENED && !s->display_inited) {
553 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
554 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
555 qemu_chr_fe_printf(&s->display, "+ +\r\n");
556 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
557 qemu_chr_fe_printf(&s->display, "\n");
558 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
559 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
560 qemu_chr_fe_printf(&s->display, "+ +\r\n");
561 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
562 s->display_inited = true;
563 }
564 }
565
566 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
567 hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
568 {
569 MaltaFPGAState *s;
570 Chardev *chr;
571
572 s = g_new0(MaltaFPGAState, 1);
573
574 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
575 "malta-fpga", 0x100000);
576 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
577 &s->iomem, 0, 0x900);
578 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
579 &s->iomem, 0xa00, 0x100000 - 0xa00);
580
581 memory_region_add_subregion(address_space, base, &s->iomem_lo);
582 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
583
584 chr = qemu_chr_new("fpga", "vc:320x200", NULL);
585 qemu_chr_fe_init(&s->display, chr, NULL);
586 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
587 malta_fgpa_display_event, NULL, s, NULL, true);
588
589 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
590 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
591
592 malta_fpga_reset(s);
593 qemu_register_reset(malta_fpga_reset, s);
594
595 return s;
596 }
597
598 /* Network support */
599 static void network_init(PCIBus *pci_bus)
600 {
601 int i;
602
603 for (i = 0; i < nb_nics; i++) {
604 NICInfo *nd = &nd_table[i];
605 const char *default_devaddr = NULL;
606
607 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
608 /* The malta board has a PCNet card using PCI SLOT 11 */
609 default_devaddr = "0b";
610
611 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
612 }
613 }
614
615 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
616 uint64_t kernel_entry)
617 {
618 uint16_t *p;
619
620 /* Small bootloader */
621 p = (uint16_t *)base;
622
623 #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f)
624 #define NM_HI2(VAL) \
625 (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1))
626 #define NM_LO(VAL) ((VAL) & 0xfff)
627
628 stw_p(p++, 0x2800); stw_p(p++, 0x001c);
629 /* bc to_here */
630 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
631 /* nop */
632 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
633 /* nop */
634 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
635 /* nop */
636 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
637 /* nop */
638 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
639 /* nop */
640 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
641 /* nop */
642 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
643 /* nop */
644
645 /* to_here: */
646 if (semihosting_get_argc()) {
647 /* Preserve a0 content as arguments have been passed */
648 stw_p(p++, 0x8000); stw_p(p++, 0xc000);
649 /* nop */
650 } else {
651 stw_p(p++, 0x0080); stw_p(p++, 0x0002);
652 /* li a0,2 */
653 }
654
655 stw_p(p++, 0xe3a0 | NM_HI1(ENVP_VADDR - 64));
656
657 stw_p(p++, NM_HI2(ENVP_VADDR - 64));
658 /* lui sp,%hi(ENVP_VADDR - 64) */
659
660 stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_VADDR - 64));
661 /* ori sp,sp,%lo(ENVP_VADDR - 64) */
662
663 stw_p(p++, 0xe0a0 | NM_HI1(ENVP_VADDR));
664
665 stw_p(p++, NM_HI2(ENVP_VADDR));
666 /* lui a1,%hi(ENVP_VADDR) */
667
668 stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_VADDR));
669 /* ori a1,a1,%lo(ENVP_VADDR) */
670
671 stw_p(p++, 0xe0c0 | NM_HI1(ENVP_VADDR + 8));
672
673 stw_p(p++, NM_HI2(ENVP_VADDR + 8));
674 /* lui a2,%hi(ENVP_VADDR + 8) */
675
676 stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_VADDR + 8));
677 /* ori a2,a2,%lo(ENVP_VADDR + 8) */
678
679 stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size));
680
681 stw_p(p++, NM_HI2(loaderparams.ram_low_size));
682 /* lui a3,%hi(loaderparams.ram_low_size) */
683
684 stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size));
685 /* ori a3,a3,%lo(loaderparams.ram_low_size) */
686
687 /*
688 * Load BAR registers as done by YAMON:
689 *
690 * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
691 * - set up PCI0 MEM0 at 0x10000000, size 0x8000000
692 * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000
693 *
694 */
695 stw_p(p++, 0xe040); stw_p(p++, 0x0681);
696 /* lui t1, %hi(0xb4000000) */
697
698 #ifdef TARGET_WORDS_BIGENDIAN
699
700 stw_p(p++, 0xe020); stw_p(p++, 0x0be1);
701 /* lui t0, %hi(0xdf000000) */
702
703 /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */
704 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
705 /* sw t0, 0x68(t1) */
706
707 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
708 /* lui t1, %hi(0xbbe00000) */
709
710 stw_p(p++, 0xe020); stw_p(p++, 0x0801);
711 /* lui t0, %hi(0xc0000000) */
712
713 /* 0x48 corresponds to GT_PCI0IOLD */
714 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
715 /* sw t0, 0x48(t1) */
716
717 stw_p(p++, 0xe020); stw_p(p++, 0x0800);
718 /* lui t0, %hi(0x40000000) */
719
720 /* 0x50 corresponds to GT_PCI0IOHD */
721 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
722 /* sw t0, 0x50(t1) */
723
724 stw_p(p++, 0xe020); stw_p(p++, 0x0001);
725 /* lui t0, %hi(0x80000000) */
726
727 /* 0x58 corresponds to GT_PCI0M0LD */
728 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
729 /* sw t0, 0x58(t1) */
730
731 stw_p(p++, 0xe020); stw_p(p++, 0x07e0);
732 /* lui t0, %hi(0x3f000000) */
733
734 /* 0x60 corresponds to GT_PCI0M0HD */
735 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
736 /* sw t0, 0x60(t1) */
737
738 stw_p(p++, 0xe020); stw_p(p++, 0x0821);
739 /* lui t0, %hi(0xc1000000) */
740
741 /* 0x80 corresponds to GT_PCI0M1LD */
742 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
743 /* sw t0, 0x80(t1) */
744
745 stw_p(p++, 0xe020); stw_p(p++, 0x0bc0);
746 /* lui t0, %hi(0x5e000000) */
747
748 #else
749
750 stw_p(p++, 0x0020); stw_p(p++, 0x00df);
751 /* addiu[32] t0, $0, 0xdf */
752
753 /* 0x68 corresponds to GT_ISD */
754 stw_p(p++, 0x8422); stw_p(p++, 0x9068);
755 /* sw t0, 0x68(t1) */
756
757 /* Use kseg2 remapped address 0x1be00000 */
758 stw_p(p++, 0xe040); stw_p(p++, 0x077d);
759 /* lui t1, %hi(0xbbe00000) */
760
761 stw_p(p++, 0x0020); stw_p(p++, 0x00c0);
762 /* addiu[32] t0, $0, 0xc0 */
763
764 /* 0x48 corresponds to GT_PCI0IOLD */
765 stw_p(p++, 0x8422); stw_p(p++, 0x9048);
766 /* sw t0, 0x48(t1) */
767
768 stw_p(p++, 0x0020); stw_p(p++, 0x0040);
769 /* addiu[32] t0, $0, 0x40 */
770
771 /* 0x50 corresponds to GT_PCI0IOHD */
772 stw_p(p++, 0x8422); stw_p(p++, 0x9050);
773 /* sw t0, 0x50(t1) */
774
775 stw_p(p++, 0x0020); stw_p(p++, 0x0080);
776 /* addiu[32] t0, $0, 0x80 */
777
778 /* 0x58 corresponds to GT_PCI0M0LD */
779 stw_p(p++, 0x8422); stw_p(p++, 0x9058);
780 /* sw t0, 0x58(t1) */
781
782 stw_p(p++, 0x0020); stw_p(p++, 0x003f);
783 /* addiu[32] t0, $0, 0x3f */
784
785 /* 0x60 corresponds to GT_PCI0M0HD */
786 stw_p(p++, 0x8422); stw_p(p++, 0x9060);
787 /* sw t0, 0x60(t1) */
788
789 stw_p(p++, 0x0020); stw_p(p++, 0x00c1);
790 /* addiu[32] t0, $0, 0xc1 */
791
792 /* 0x80 corresponds to GT_PCI0M1LD */
793 stw_p(p++, 0x8422); stw_p(p++, 0x9080);
794 /* sw t0, 0x80(t1) */
795
796 stw_p(p++, 0x0020); stw_p(p++, 0x005e);
797 /* addiu[32] t0, $0, 0x5e */
798
799 #endif
800
801 /* 0x88 corresponds to GT_PCI0M1HD */
802 stw_p(p++, 0x8422); stw_p(p++, 0x9088);
803 /* sw t0, 0x88(t1) */
804
805 stw_p(p++, 0xe320 | NM_HI1(kernel_entry));
806
807 stw_p(p++, NM_HI2(kernel_entry));
808 /* lui t9,%hi(kernel_entry) */
809
810 stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry));
811 /* ori t9,t9,%lo(kernel_entry) */
812
813 stw_p(p++, 0x4bf9); stw_p(p++, 0x0000);
814 /* jalrc t8 */
815 }
816
817 /*
818 * ROM and pseudo bootloader
819 *
820 * The following code implements a very very simple bootloader. It first
821 * loads the registers a0 to a3 to the values expected by the OS, and
822 * then jump at the kernel address.
823 *
824 * The bootloader should pass the locations of the kernel arguments and
825 * environment variables tables. Those tables contain the 32-bit address
826 * of NULL terminated strings. The environment variables table should be
827 * terminated by a NULL address.
828 *
829 * For a simpler implementation, the number of kernel arguments is fixed
830 * to two (the name of the kernel and the command line), and the two
831 * tables are actually the same one.
832 *
833 * The registers a0 to a3 should contain the following values:
834 * a0 - number of kernel arguments
835 * a1 - 32-bit address of the kernel arguments table
836 * a2 - 32-bit address of the environment variables table
837 * a3 - RAM size in bytes
838 */
839 static void write_bootloader(uint8_t *base, uint64_t run_addr,
840 uint64_t kernel_entry)
841 {
842 uint32_t *p;
843
844 /* Small bootloader */
845 p = (uint32_t *)base;
846
847 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
848 ((run_addr + 0x580) & 0x0fffffff) >> 2);
849 stl_p(p++, 0x00000000); /* nop */
850
851 /* YAMON service vector */
852 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
853 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
854 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
855 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
856 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
857 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
858 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
859 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
860 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
861 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
862 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
863 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
864 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
865
866
867 /* Second part of the bootloader */
868 p = (uint32_t *) (base + 0x580);
869
870 if (semihosting_get_argc()) {
871 /* Preserve a0 content as arguments have been passed */
872 stl_p(p++, 0x00000000); /* nop */
873 } else {
874 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
875 }
876
877 /* lui sp, high(ENVP_VADDR) */
878 stl_p(p++, 0x3c1d0000 | (((ENVP_VADDR - 64) >> 16) & 0xffff));
879 /* ori sp, sp, low(ENVP_VADDR) */
880 stl_p(p++, 0x37bd0000 | ((ENVP_VADDR - 64) & 0xffff));
881 /* lui a1, high(ENVP_VADDR) */
882 stl_p(p++, 0x3c050000 | ((ENVP_VADDR >> 16) & 0xffff));
883 /* ori a1, a1, low(ENVP_VADDR) */
884 stl_p(p++, 0x34a50000 | (ENVP_VADDR & 0xffff));
885 /* lui a2, high(ENVP_VADDR + 8) */
886 stl_p(p++, 0x3c060000 | (((ENVP_VADDR + 8) >> 16) & 0xffff));
887 /* ori a2, a2, low(ENVP_VADDR + 8) */
888 stl_p(p++, 0x34c60000 | ((ENVP_VADDR + 8) & 0xffff));
889 /* lui a3, high(ram_low_size) */
890 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16));
891 /* ori a3, a3, low(ram_low_size) */
892 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff));
893
894 /* Load BAR registers as done by YAMON */
895 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
896
897 #ifdef TARGET_WORDS_BIGENDIAN
898 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
899 #else
900 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
901 #endif
902 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
903
904 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
905
906 #ifdef TARGET_WORDS_BIGENDIAN
907 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
908 #else
909 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
910 #endif
911 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
912 #ifdef TARGET_WORDS_BIGENDIAN
913 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
914 #else
915 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
916 #endif
917 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
918
919 #ifdef TARGET_WORDS_BIGENDIAN
920 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
921 #else
922 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
923 #endif
924 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
925 #ifdef TARGET_WORDS_BIGENDIAN
926 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
927 #else
928 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
929 #endif
930 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
931
932 #ifdef TARGET_WORDS_BIGENDIAN
933 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
934 #else
935 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
936 #endif
937 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
938 #ifdef TARGET_WORDS_BIGENDIAN
939 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
940 #else
941 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
942 #endif
943 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
944
945 /* Jump to kernel code */
946 stl_p(p++, 0x3c1f0000 |
947 ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
948 stl_p(p++, 0x37ff0000 |
949 (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
950 stl_p(p++, 0x03e00009); /* jalr ra */
951 stl_p(p++, 0x00000000); /* nop */
952
953 /* YAMON subroutines */
954 p = (uint32_t *) (base + 0x800);
955 stl_p(p++, 0x03e00009); /* jalr ra */
956 stl_p(p++, 0x24020000); /* li v0,0 */
957 /* 808 YAMON print */
958 stl_p(p++, 0x03e06821); /* move t5,ra */
959 stl_p(p++, 0x00805821); /* move t3,a0 */
960 stl_p(p++, 0x00a05021); /* move t2,a1 */
961 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
962 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
963 stl_p(p++, 0x10800005); /* beqz a0,834 */
964 stl_p(p++, 0x00000000); /* nop */
965 stl_p(p++, 0x0ff0021c); /* jal 870 */
966 stl_p(p++, 0x00000000); /* nop */
967 stl_p(p++, 0x1000fff9); /* b 814 */
968 stl_p(p++, 0x00000000); /* nop */
969 stl_p(p++, 0x01a00009); /* jalr t5 */
970 stl_p(p++, 0x01602021); /* move a0,t3 */
971 /* 0x83c YAMON print_count */
972 stl_p(p++, 0x03e06821); /* move t5,ra */
973 stl_p(p++, 0x00805821); /* move t3,a0 */
974 stl_p(p++, 0x00a05021); /* move t2,a1 */
975 stl_p(p++, 0x00c06021); /* move t4,a2 */
976 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
977 stl_p(p++, 0x0ff0021c); /* jal 870 */
978 stl_p(p++, 0x00000000); /* nop */
979 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
980 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
981 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
982 stl_p(p++, 0x00000000); /* nop */
983 stl_p(p++, 0x01a00009); /* jalr t5 */
984 stl_p(p++, 0x01602021); /* move a0,t3 */
985 /* 0x870 */
986 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
987 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
988 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
989 stl_p(p++, 0x00000000); /* nop */
990 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
991 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
992 stl_p(p++, 0x00000000); /* nop */
993 stl_p(p++, 0x03e00009); /* jalr ra */
994 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
995
996 }
997
998 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index,
999 const char *string, ...)
1000 {
1001 va_list ap;
1002 uint32_t table_addr;
1003
1004 if (index >= ENVP_NB_ENTRIES) {
1005 return;
1006 }
1007
1008 if (string == NULL) {
1009 prom_buf[index] = 0;
1010 return;
1011 }
1012
1013 table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
1014 prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
1015
1016 va_start(ap, string);
1017 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
1018 va_end(ap);
1019 }
1020
1021 /* Kernel */
1022 static uint64_t load_kernel(void)
1023 {
1024 uint64_t kernel_entry, kernel_high, initrd_size;
1025 long kernel_size;
1026 ram_addr_t initrd_offset;
1027 int big_endian;
1028 uint32_t *prom_buf;
1029 long prom_size;
1030 int prom_index = 0;
1031 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
1032
1033 #ifdef TARGET_WORDS_BIGENDIAN
1034 big_endian = 1;
1035 #else
1036 big_endian = 0;
1037 #endif
1038
1039 kernel_size = load_elf(loaderparams.kernel_filename, NULL,
1040 cpu_mips_kseg0_to_phys, NULL,
1041 &kernel_entry, NULL,
1042 &kernel_high, NULL, big_endian, EM_MIPS,
1043 1, 0);
1044 if (kernel_size < 0) {
1045 error_report("could not load kernel '%s': %s",
1046 loaderparams.kernel_filename,
1047 load_elf_strerror(kernel_size));
1048 exit(1);
1049 }
1050
1051 /* Check where the kernel has been linked */
1052 if (kernel_entry & 0x80000000ll) {
1053 if (kvm_enabled()) {
1054 error_report("KVM guest kernels must be linked in useg. "
1055 "Did you forget to enable CONFIG_KVM_GUEST?");
1056 exit(1);
1057 }
1058
1059 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
1060 } else {
1061 /* if kernel entry is in useg it is probably a KVM T&E kernel */
1062 mips_um_ksegs_enable();
1063
1064 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
1065 }
1066
1067 /* load initrd */
1068 initrd_size = 0;
1069 initrd_offset = 0;
1070 if (loaderparams.initrd_filename) {
1071 initrd_size = get_image_size(loaderparams.initrd_filename);
1072 if (initrd_size > 0) {
1073 /*
1074 * The kernel allocates the bootmap memory in the low memory after
1075 * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB
1076 * pages.
1077 */
1078 initrd_offset = ROUND_UP(loaderparams.ram_low_size
1079 - (initrd_size + 128 * KiB),
1080 INITRD_PAGE_SIZE);
1081 if (kernel_high >= initrd_offset) {
1082 error_report("memory too small for initial ram disk '%s'",
1083 loaderparams.initrd_filename);
1084 exit(1);
1085 }
1086 initrd_size = load_image_targphys(loaderparams.initrd_filename,
1087 initrd_offset,
1088 loaderparams.ram_size - initrd_offset);
1089 }
1090 if (initrd_size == (target_ulong) -1) {
1091 error_report("could not load initial ram disk '%s'",
1092 loaderparams.initrd_filename);
1093 exit(1);
1094 }
1095 }
1096
1097 /* Setup prom parameters. */
1098 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
1099 prom_buf = g_malloc(prom_size);
1100
1101 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
1102 if (initrd_size > 0) {
1103 prom_set(prom_buf, prom_index++,
1104 "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
1105 xlate_to_kseg0(NULL, initrd_offset),
1106 initrd_size, loaderparams.kernel_cmdline);
1107 } else {
1108 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
1109 }
1110
1111 prom_set(prom_buf, prom_index++, "memsize");
1112 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
1113
1114 prom_set(prom_buf, prom_index++, "ememsize");
1115 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
1116
1117 prom_set(prom_buf, prom_index++, "modetty0");
1118 prom_set(prom_buf, prom_index++, "38400n8r");
1119 prom_set(prom_buf, prom_index++, NULL);
1120
1121 rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
1122
1123 g_free(prom_buf);
1124 return kernel_entry;
1125 }
1126
1127 static void malta_mips_config(MIPSCPU *cpu)
1128 {
1129 MachineState *ms = MACHINE(qdev_get_machine());
1130 unsigned int smp_cpus = ms->smp.cpus;
1131 CPUMIPSState *env = &cpu->env;
1132 CPUState *cs = CPU(cpu);
1133
1134 if (ase_mt_available(env)) {
1135 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1136 CP0MVPC0_PTC, 8,
1137 smp_cpus * cs->nr_threads - 1);
1138 env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
1139 CP0MVPC0_PVPE, 4, smp_cpus - 1);
1140 }
1141 }
1142
1143 static void main_cpu_reset(void *opaque)
1144 {
1145 MIPSCPU *cpu = opaque;
1146 CPUMIPSState *env = &cpu->env;
1147
1148 cpu_reset(CPU(cpu));
1149
1150 /*
1151 * The bootloader does not need to be rewritten as it is located in a
1152 * read only location. The kernel location and the arguments table
1153 * location does not change.
1154 */
1155 if (loaderparams.kernel_filename) {
1156 env->CP0_Status &= ~(1 << CP0St_ERL);
1157 }
1158
1159 malta_mips_config(cpu);
1160
1161 if (kvm_enabled()) {
1162 /* Start running from the bootloader we wrote to end of RAM */
1163 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
1164 }
1165 }
1166
1167 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1168 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1169 {
1170 CPUMIPSState *env;
1171 MIPSCPU *cpu;
1172 int i;
1173
1174 for (i = 0; i < ms->smp.cpus; i++) {
1175 cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk);
1176
1177 /* Init internal devices */
1178 cpu_mips_irq_init_cpu(cpu);
1179 cpu_mips_clock_init(cpu);
1180 qemu_register_reset(main_cpu_reset, cpu);
1181 }
1182
1183 cpu = MIPS_CPU(first_cpu);
1184 env = &cpu->env;
1185 *i8259_irq = env->irq[2];
1186 *cbus_irq = env->irq[4];
1187 }
1188
1189 static void create_cps(MachineState *ms, MaltaState *s,
1190 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1191 {
1192 object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1193 object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1194 &error_fatal);
1195 object_property_set_int(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1196 &error_fatal);
1197 qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1198 sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1199
1200 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1201
1202 *i8259_irq = get_cps_irq(&s->cps, 3);
1203 *cbus_irq = NULL;
1204 }
1205
1206 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1207 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1208 {
1209 if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1210 create_cps(ms, s, cbus_irq, i8259_irq);
1211 } else {
1212 create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1213 }
1214 }
1215
1216 static
1217 void mips_malta_init(MachineState *machine)
1218 {
1219 ram_addr_t ram_size = machine->ram_size;
1220 ram_addr_t ram_low_size;
1221 const char *kernel_filename = machine->kernel_filename;
1222 const char *kernel_cmdline = machine->kernel_cmdline;
1223 const char *initrd_filename = machine->initrd_filename;
1224 char *filename;
1225 PFlashCFI01 *fl;
1226 MemoryRegion *system_memory = get_system_memory();
1227 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1228 MemoryRegion *ram_low_postio;
1229 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1230 const size_t smbus_eeprom_size = 8 * 256;
1231 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1232 uint64_t kernel_entry, bootloader_run_addr;
1233 PCIBus *pci_bus;
1234 ISABus *isa_bus;
1235 qemu_irq cbus_irq, i8259_irq;
1236 I2CBus *smbus;
1237 DriveInfo *dinfo;
1238 int fl_idx = 0;
1239 int be;
1240 MaltaState *s;
1241 DeviceState *dev;
1242
1243 s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1244 sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1245
1246 /* create CPU */
1247 mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1248
1249 /* allocate RAM */
1250 if (ram_size > 2 * GiB) {
1251 error_report("Too much memory for this machine: %" PRId64 "MB,"
1252 " maximum 2048MB", ram_size / MiB);
1253 exit(1);
1254 }
1255
1256 /* register RAM at high address where it is undisturbed by IO */
1257 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1258
1259 /* alias for pre IO hole access */
1260 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1261 machine->ram, 0, MIN(ram_size, 256 * MiB));
1262 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1263
1264 /* alias for post IO hole access, if there is enough RAM */
1265 if (ram_size > 512 * MiB) {
1266 ram_low_postio = g_new(MemoryRegion, 1);
1267 memory_region_init_alias(ram_low_postio, NULL,
1268 "mips_malta_low_postio.ram",
1269 machine->ram, 512 * MiB,
1270 ram_size - 512 * MiB);
1271 memory_region_add_subregion(system_memory, 512 * MiB,
1272 ram_low_postio);
1273 }
1274
1275 #ifdef TARGET_WORDS_BIGENDIAN
1276 be = 1;
1277 #else
1278 be = 0;
1279 #endif
1280
1281 /* FPGA */
1282
1283 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1284 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1285
1286 /* Load firmware in flash / BIOS. */
1287 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1288 fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1289 FLASH_SIZE,
1290 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1291 65536,
1292 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1293 bios = pflash_cfi01_get_memory(fl);
1294 fl_idx++;
1295 if (kernel_filename) {
1296 ram_low_size = MIN(ram_size, 256 * MiB);
1297 /* For KVM we reserve 1MB of RAM for running bootloader */
1298 if (kvm_enabled()) {
1299 ram_low_size -= 0x100000;
1300 bootloader_run_addr = cpu_mips_kvm_um_phys_to_kseg0(NULL, ram_low_size);
1301 } else {
1302 bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1303 }
1304
1305 /* Write a small bootloader to the flash location. */
1306 loaderparams.ram_size = ram_size;
1307 loaderparams.ram_low_size = ram_low_size;
1308 loaderparams.kernel_filename = kernel_filename;
1309 loaderparams.kernel_cmdline = kernel_cmdline;
1310 loaderparams.initrd_filename = initrd_filename;
1311 kernel_entry = load_kernel();
1312
1313 if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1314 write_bootloader(memory_region_get_ram_ptr(bios),
1315 bootloader_run_addr, kernel_entry);
1316 } else {
1317 write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1318 bootloader_run_addr, kernel_entry);
1319 }
1320 if (kvm_enabled()) {
1321 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1322 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1323 ram_low_size,
1324 bootloader_run_addr, kernel_entry);
1325 }
1326 } else {
1327 target_long bios_size = FLASH_SIZE;
1328 /* The flash region isn't executable from a KVM guest */
1329 if (kvm_enabled()) {
1330 error_report("KVM enabled but no -kernel argument was specified. "
1331 "Booting from flash is not supported with KVM.");
1332 exit(1);
1333 }
1334 /* Load firmware from flash. */
1335 if (!dinfo) {
1336 /* Load a BIOS image. */
1337 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1338 machine->firmware ?: BIOS_FILENAME);
1339 if (filename) {
1340 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1341 BIOS_SIZE);
1342 g_free(filename);
1343 } else {
1344 bios_size = -1;
1345 }
1346 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1347 machine->firmware && !qtest_enabled()) {
1348 error_report("Could not load MIPS bios '%s'", machine->firmware);
1349 exit(1);
1350 }
1351 }
1352 /*
1353 * In little endian mode the 32bit words in the bios are swapped,
1354 * a neat trick which allows bi-endian firmware.
1355 */
1356 #ifndef TARGET_WORDS_BIGENDIAN
1357 {
1358 uint32_t *end, *addr;
1359 const size_t swapsize = MIN(bios_size, 0x3e0000);
1360 addr = rom_ptr(FLASH_ADDRESS, swapsize);
1361 if (!addr) {
1362 addr = memory_region_get_ram_ptr(bios);
1363 }
1364 end = (void *)addr + swapsize;
1365 while (addr < end) {
1366 bswap32s(addr);
1367 addr++;
1368 }
1369 }
1370 #endif
1371 }
1372
1373 /*
1374 * Map the BIOS at a 2nd physical location, as on the real board.
1375 * Copy it so that we can patch in the MIPS revision, which cannot be
1376 * handled by an overlapping region as the resulting ROM code subpage
1377 * regions are not executable.
1378 */
1379 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1380 &error_fatal);
1381 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1382 FLASH_ADDRESS, BIOS_SIZE)) {
1383 memcpy(memory_region_get_ram_ptr(bios_copy),
1384 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1385 }
1386 memory_region_set_readonly(bios_copy, true);
1387 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1388
1389 /* Board ID = 0x420 (Malta Board with CoreLV) */
1390 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1391
1392 /* Northbridge */
1393 pci_bus = gt64120_register();
1394 /*
1395 * The whole address space decoded by the GT-64120A doesn't generate
1396 * exception when accessing invalid memory. Create an empty slot to
1397 * emulate this feature.
1398 */
1399 empty_slot_init("GT64120", 0, 0x20000000);
1400
1401 /* Southbridge */
1402 dev = piix4_create(pci_bus, &isa_bus, &smbus);
1403
1404 /* Interrupt controller */
1405 qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq);
1406
1407 /* generate SPD EEPROM data */
1408 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1409 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1410 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1411 g_free(smbus_eeprom_buf);
1412
1413 /* Super I/O: SMS FDC37M817 */
1414 isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1415
1416 /* Network card */
1417 network_init(pci_bus);
1418
1419 /* Optional PCI video card */
1420 pci_vga_init(pci_bus);
1421 }
1422
1423 static void mips_malta_instance_init(Object *obj)
1424 {
1425 MaltaState *s = MIPS_MALTA(obj);
1426
1427 s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1428 clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1429 }
1430
1431 static const TypeInfo mips_malta_device = {
1432 .name = TYPE_MIPS_MALTA,
1433 .parent = TYPE_SYS_BUS_DEVICE,
1434 .instance_size = sizeof(MaltaState),
1435 .instance_init = mips_malta_instance_init,
1436 };
1437
1438 static void mips_malta_machine_init(MachineClass *mc)
1439 {
1440 mc->desc = "MIPS Malta Core LV";
1441 mc->init = mips_malta_init;
1442 mc->block_default_type = IF_IDE;
1443 mc->max_cpus = 16;
1444 mc->is_default = true;
1445 #ifdef TARGET_MIPS64
1446 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1447 #else
1448 mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1449 #endif
1450 mc->default_ram_id = "mips_malta.ram";
1451 }
1452
1453 DEFINE_MACHINE("malta", mips_malta_machine_init)
1454
1455 static void mips_malta_register_types(void)
1456 {
1457 type_register_static(&mips_malta_device);
1458 }
1459
1460 type_init(mips_malta_register_types)