]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
mips_malta: correct reading MIPS revision at 0x1fc00010
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/block/fdc.h"
29 #include "net/net.h"
30 #include "hw/boards.h"
31 #include "hw/i2c/smbus.h"
32 #include "block/block.h"
33 #include "hw/block/flash.h"
34 #include "hw/mips/mips.h"
35 #include "hw/mips/cpudevs.h"
36 #include "hw/pci/pci.h"
37 #include "sysemu/char.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/arch_init.h"
40 #include "qemu/log.h"
41 #include "hw/mips/bios.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/timer/i8254.h"
47 #include "sysemu/blockdev.h"
48 #include "exec/address-spaces.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50
51 //#define DEBUG_BOARD_INIT
52
53 #define ENVP_ADDR 0x80002000l
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
56
57 /* Hardware addresses */
58 #define FLASH_ADDRESS 0x1e000000ULL
59 #define FPGA_ADDRESS 0x1f000000ULL
60 #define RESET_ADDRESS 0x1fc00000ULL
61
62 #define FLASH_SIZE 0x400000
63
64 #define MAX_IDE_BUS 2
65
66 typedef struct {
67 MemoryRegion iomem;
68 MemoryRegion iomem_lo; /* 0 - 0x900 */
69 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
70 uint32_t leds;
71 uint32_t brk;
72 uint32_t gpout;
73 uint32_t i2cin;
74 uint32_t i2coe;
75 uint32_t i2cout;
76 uint32_t i2csel;
77 CharDriverState *display;
78 char display_text[9];
79 SerialState *uart;
80 } MaltaFPGAState;
81
82 #define TYPE_MIPS_MALTA "mips-malta"
83 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
84
85 typedef struct {
86 SysBusDevice parent_obj;
87
88 qemu_irq *i8259;
89 } MaltaState;
90
91 static ISADevice *pit;
92
93 static struct _loaderparams {
94 int ram_size;
95 const char *kernel_filename;
96 const char *kernel_cmdline;
97 const char *initrd_filename;
98 } loaderparams;
99
100 /* Malta FPGA */
101 static void malta_fpga_update_display(void *opaque)
102 {
103 char leds_text[9];
104 int i;
105 MaltaFPGAState *s = opaque;
106
107 for (i = 7 ; i >= 0 ; i--) {
108 if (s->leds & (1 << i))
109 leds_text[i] = '#';
110 else
111 leds_text[i] = ' ';
112 }
113 leds_text[8] = '\0';
114
115 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
116 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
117 }
118
119 /*
120 * EEPROM 24C01 / 24C02 emulation.
121 *
122 * Emulation for serial EEPROMs:
123 * 24C01 - 1024 bit (128 x 8)
124 * 24C02 - 2048 bit (256 x 8)
125 *
126 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
127 */
128
129 //~ #define DEBUG
130
131 #if defined(DEBUG)
132 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
133 #else
134 # define logout(fmt, ...) ((void)0)
135 #endif
136
137 struct _eeprom24c0x_t {
138 uint8_t tick;
139 uint8_t address;
140 uint8_t command;
141 uint8_t ack;
142 uint8_t scl;
143 uint8_t sda;
144 uint8_t data;
145 //~ uint16_t size;
146 uint8_t contents[256];
147 };
148
149 typedef struct _eeprom24c0x_t eeprom24c0x_t;
150
151 static eeprom24c0x_t eeprom = {
152 .contents = {
153 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
154 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
155 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
156 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
157 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
158 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
159 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
160 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
161 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
162 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
163 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
165 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
166 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
167 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
168 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
169 },
170 };
171
172 static uint8_t eeprom24c0x_read(void)
173 {
174 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
175 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
176 return eeprom.sda;
177 }
178
179 static void eeprom24c0x_write(int scl, int sda)
180 {
181 if (eeprom.scl && scl && (eeprom.sda != sda)) {
182 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
183 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
184 if (!sda) {
185 eeprom.tick = 1;
186 eeprom.command = 0;
187 }
188 } else if (eeprom.tick == 0 && !eeprom.ack) {
189 /* Waiting for start. */
190 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
191 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
192 } else if (!eeprom.scl && scl) {
193 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
194 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
195 if (eeprom.ack) {
196 logout("\ti2c ack bit = 0\n");
197 sda = 0;
198 eeprom.ack = 0;
199 } else if (eeprom.sda == sda) {
200 uint8_t bit = (sda != 0);
201 logout("\ti2c bit = %d\n", bit);
202 if (eeprom.tick < 9) {
203 eeprom.command <<= 1;
204 eeprom.command += bit;
205 eeprom.tick++;
206 if (eeprom.tick == 9) {
207 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
208 eeprom.ack = 1;
209 }
210 } else if (eeprom.tick < 17) {
211 if (eeprom.command & 1) {
212 sda = ((eeprom.data & 0x80) != 0);
213 }
214 eeprom.address <<= 1;
215 eeprom.address += bit;
216 eeprom.tick++;
217 eeprom.data <<= 1;
218 if (eeprom.tick == 17) {
219 eeprom.data = eeprom.contents[eeprom.address];
220 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
221 eeprom.ack = 1;
222 eeprom.tick = 0;
223 }
224 } else if (eeprom.tick >= 17) {
225 sda = 0;
226 }
227 } else {
228 logout("\tsda changed with raising scl\n");
229 }
230 } else {
231 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
232 }
233 eeprom.scl = scl;
234 eeprom.sda = sda;
235 }
236
237 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
238 unsigned size)
239 {
240 MaltaFPGAState *s = opaque;
241 uint32_t val = 0;
242 uint32_t saddr;
243
244 saddr = (addr & 0xfffff);
245
246 switch (saddr) {
247
248 /* SWITCH Register */
249 case 0x00200:
250 val = 0x00000000; /* All switches closed */
251 break;
252
253 /* STATUS Register */
254 case 0x00208:
255 #ifdef TARGET_WORDS_BIGENDIAN
256 val = 0x00000012;
257 #else
258 val = 0x00000010;
259 #endif
260 break;
261
262 /* JMPRS Register */
263 case 0x00210:
264 val = 0x00;
265 break;
266
267 /* LEDBAR Register */
268 case 0x00408:
269 val = s->leds;
270 break;
271
272 /* BRKRES Register */
273 case 0x00508:
274 val = s->brk;
275 break;
276
277 /* UART Registers are handled directly by the serial device */
278
279 /* GPOUT Register */
280 case 0x00a00:
281 val = s->gpout;
282 break;
283
284 /* XXX: implement a real I2C controller */
285
286 /* GPINP Register */
287 case 0x00a08:
288 /* IN = OUT until a real I2C control is implemented */
289 if (s->i2csel)
290 val = s->i2cout;
291 else
292 val = 0x00;
293 break;
294
295 /* I2CINP Register */
296 case 0x00b00:
297 val = ((s->i2cin & ~1) | eeprom24c0x_read());
298 break;
299
300 /* I2COE Register */
301 case 0x00b08:
302 val = s->i2coe;
303 break;
304
305 /* I2COUT Register */
306 case 0x00b10:
307 val = s->i2cout;
308 break;
309
310 /* I2CSEL Register */
311 case 0x00b18:
312 val = s->i2csel;
313 break;
314
315 default:
316 #if 0
317 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
318 addr);
319 #endif
320 break;
321 }
322 return val;
323 }
324
325 static void malta_fpga_write(void *opaque, hwaddr addr,
326 uint64_t val, unsigned size)
327 {
328 MaltaFPGAState *s = opaque;
329 uint32_t saddr;
330
331 saddr = (addr & 0xfffff);
332
333 switch (saddr) {
334
335 /* SWITCH Register */
336 case 0x00200:
337 break;
338
339 /* JMPRS Register */
340 case 0x00210:
341 break;
342
343 /* LEDBAR Register */
344 case 0x00408:
345 s->leds = val & 0xff;
346 malta_fpga_update_display(s);
347 break;
348
349 /* ASCIIWORD Register */
350 case 0x00410:
351 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
352 malta_fpga_update_display(s);
353 break;
354
355 /* ASCIIPOS0 to ASCIIPOS7 Registers */
356 case 0x00418:
357 case 0x00420:
358 case 0x00428:
359 case 0x00430:
360 case 0x00438:
361 case 0x00440:
362 case 0x00448:
363 case 0x00450:
364 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
365 malta_fpga_update_display(s);
366 break;
367
368 /* SOFTRES Register */
369 case 0x00500:
370 if (val == 0x42)
371 qemu_system_reset_request ();
372 break;
373
374 /* BRKRES Register */
375 case 0x00508:
376 s->brk = val & 0xff;
377 break;
378
379 /* UART Registers are handled directly by the serial device */
380
381 /* GPOUT Register */
382 case 0x00a00:
383 s->gpout = val & 0xff;
384 break;
385
386 /* I2COE Register */
387 case 0x00b08:
388 s->i2coe = val & 0x03;
389 break;
390
391 /* I2COUT Register */
392 case 0x00b10:
393 eeprom24c0x_write(val & 0x02, val & 0x01);
394 s->i2cout = val;
395 break;
396
397 /* I2CSEL Register */
398 case 0x00b18:
399 s->i2csel = val & 0x01;
400 break;
401
402 default:
403 #if 0
404 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
405 addr);
406 #endif
407 break;
408 }
409 }
410
411 static const MemoryRegionOps malta_fpga_ops = {
412 .read = malta_fpga_read,
413 .write = malta_fpga_write,
414 .endianness = DEVICE_NATIVE_ENDIAN,
415 };
416
417 static void malta_fpga_reset(void *opaque)
418 {
419 MaltaFPGAState *s = opaque;
420
421 s->leds = 0x00;
422 s->brk = 0x0a;
423 s->gpout = 0x00;
424 s->i2cin = 0x3;
425 s->i2coe = 0x0;
426 s->i2cout = 0x3;
427 s->i2csel = 0x1;
428
429 s->display_text[8] = '\0';
430 snprintf(s->display_text, 9, " ");
431 }
432
433 static void malta_fpga_led_init(CharDriverState *chr)
434 {
435 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
436 qemu_chr_fe_printf(chr, "+--------+\r\n");
437 qemu_chr_fe_printf(chr, "+ +\r\n");
438 qemu_chr_fe_printf(chr, "+--------+\r\n");
439 qemu_chr_fe_printf(chr, "\n");
440 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
441 qemu_chr_fe_printf(chr, "+--------+\r\n");
442 qemu_chr_fe_printf(chr, "+ +\r\n");
443 qemu_chr_fe_printf(chr, "+--------+\r\n");
444 }
445
446 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
447 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
448 {
449 MaltaFPGAState *s;
450
451 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
452
453 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
454 "malta-fpga", 0x100000);
455 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
456 &s->iomem, 0, 0x900);
457 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
458 &s->iomem, 0xa00, 0x10000-0xa00);
459
460 memory_region_add_subregion(address_space, base, &s->iomem_lo);
461 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
462
463 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
464
465 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
466 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
467
468 malta_fpga_reset(s);
469 qemu_register_reset(malta_fpga_reset, s);
470
471 return s;
472 }
473
474 /* Network support */
475 static void network_init(PCIBus *pci_bus)
476 {
477 int i;
478
479 for(i = 0; i < nb_nics; i++) {
480 NICInfo *nd = &nd_table[i];
481 const char *default_devaddr = NULL;
482
483 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
484 /* The malta board has a PCNet card using PCI SLOT 11 */
485 default_devaddr = "0b";
486
487 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
488 }
489 }
490
491 /* ROM and pseudo bootloader
492
493 The following code implements a very very simple bootloader. It first
494 loads the registers a0 to a3 to the values expected by the OS, and
495 then jump at the kernel address.
496
497 The bootloader should pass the locations of the kernel arguments and
498 environment variables tables. Those tables contain the 32-bit address
499 of NULL terminated strings. The environment variables table should be
500 terminated by a NULL address.
501
502 For a simpler implementation, the number of kernel arguments is fixed
503 to two (the name of the kernel and the command line), and the two
504 tables are actually the same one.
505
506 The registers a0 to a3 should contain the following values:
507 a0 - number of kernel arguments
508 a1 - 32-bit address of the kernel arguments table
509 a2 - 32-bit address of the environment variables table
510 a3 - RAM size in bytes
511 */
512
513 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
514 int64_t kernel_entry)
515 {
516 uint32_t *p;
517
518 /* Small bootloader */
519 p = (uint32_t *)base;
520 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
521 stl_raw(p++, 0x00000000); /* nop */
522
523 /* YAMON service vector */
524 stl_raw(base + 0x500, 0xbfc00580); /* start: */
525 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
526 stl_raw(base + 0x520, 0xbfc00580); /* start: */
527 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
528 stl_raw(base + 0x534, 0xbfc00808); /* print: */
529 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
530 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
531 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
532 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
533 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
534 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
535 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
536 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
537
538
539 /* Second part of the bootloader */
540 p = (uint32_t *) (base + 0x580);
541 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
542 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
543 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
544 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
545 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
546 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
547 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
548 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
549 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
550
551 /* Load BAR registers as done by YAMON */
552 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
553
554 #ifdef TARGET_WORDS_BIGENDIAN
555 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
556 #else
557 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
558 #endif
559 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
560
561 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
562
563 #ifdef TARGET_WORDS_BIGENDIAN
564 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
565 #else
566 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
567 #endif
568 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
569 #ifdef TARGET_WORDS_BIGENDIAN
570 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
571 #else
572 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
573 #endif
574 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
575
576 #ifdef TARGET_WORDS_BIGENDIAN
577 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
578 #else
579 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
580 #endif
581 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
582 #ifdef TARGET_WORDS_BIGENDIAN
583 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
584 #else
585 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
586 #endif
587 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
588
589 #ifdef TARGET_WORDS_BIGENDIAN
590 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
591 #else
592 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
593 #endif
594 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
595 #ifdef TARGET_WORDS_BIGENDIAN
596 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
597 #else
598 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
599 #endif
600 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
601
602 /* Jump to kernel code */
603 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
604 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
605 stl_raw(p++, 0x03e00008); /* jr ra */
606 stl_raw(p++, 0x00000000); /* nop */
607
608 /* YAMON subroutines */
609 p = (uint32_t *) (base + 0x800);
610 stl_raw(p++, 0x03e00008); /* jr ra */
611 stl_raw(p++, 0x24020000); /* li v0,0 */
612 /* 808 YAMON print */
613 stl_raw(p++, 0x03e06821); /* move t5,ra */
614 stl_raw(p++, 0x00805821); /* move t3,a0 */
615 stl_raw(p++, 0x00a05021); /* move t2,a1 */
616 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
617 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
618 stl_raw(p++, 0x10800005); /* beqz a0,834 */
619 stl_raw(p++, 0x00000000); /* nop */
620 stl_raw(p++, 0x0ff0021c); /* jal 870 */
621 stl_raw(p++, 0x00000000); /* nop */
622 stl_raw(p++, 0x08000205); /* j 814 */
623 stl_raw(p++, 0x00000000); /* nop */
624 stl_raw(p++, 0x01a00008); /* jr t5 */
625 stl_raw(p++, 0x01602021); /* move a0,t3 */
626 /* 0x83c YAMON print_count */
627 stl_raw(p++, 0x03e06821); /* move t5,ra */
628 stl_raw(p++, 0x00805821); /* move t3,a0 */
629 stl_raw(p++, 0x00a05021); /* move t2,a1 */
630 stl_raw(p++, 0x00c06021); /* move t4,a2 */
631 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
632 stl_raw(p++, 0x0ff0021c); /* jal 870 */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
635 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
636 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
637 stl_raw(p++, 0x00000000); /* nop */
638 stl_raw(p++, 0x01a00008); /* jr t5 */
639 stl_raw(p++, 0x01602021); /* move a0,t3 */
640 /* 0x870 */
641 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
642 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
643 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
644 stl_raw(p++, 0x00000000); /* nop */
645 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
646 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x03e00008); /* jr ra */
649 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
650
651 }
652
653 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
654 const char *string, ...)
655 {
656 va_list ap;
657 int32_t table_addr;
658
659 if (index >= ENVP_NB_ENTRIES)
660 return;
661
662 if (string == NULL) {
663 prom_buf[index] = 0;
664 return;
665 }
666
667 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
668 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
669
670 va_start(ap, string);
671 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
672 va_end(ap);
673 }
674
675 /* Kernel */
676 static int64_t load_kernel (void)
677 {
678 int64_t kernel_entry, kernel_high;
679 long initrd_size;
680 ram_addr_t initrd_offset;
681 int big_endian;
682 uint32_t *prom_buf;
683 long prom_size;
684 int prom_index = 0;
685
686 #ifdef TARGET_WORDS_BIGENDIAN
687 big_endian = 1;
688 #else
689 big_endian = 0;
690 #endif
691
692 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
693 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
694 big_endian, ELF_MACHINE, 1) < 0) {
695 fprintf(stderr, "qemu: could not load kernel '%s'\n",
696 loaderparams.kernel_filename);
697 exit(1);
698 }
699
700 /* load initrd */
701 initrd_size = 0;
702 initrd_offset = 0;
703 if (loaderparams.initrd_filename) {
704 initrd_size = get_image_size (loaderparams.initrd_filename);
705 if (initrd_size > 0) {
706 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
707 if (initrd_offset + initrd_size > ram_size) {
708 fprintf(stderr,
709 "qemu: memory too small for initial ram disk '%s'\n",
710 loaderparams.initrd_filename);
711 exit(1);
712 }
713 initrd_size = load_image_targphys(loaderparams.initrd_filename,
714 initrd_offset,
715 ram_size - initrd_offset);
716 }
717 if (initrd_size == (target_ulong) -1) {
718 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
719 loaderparams.initrd_filename);
720 exit(1);
721 }
722 }
723
724 /* Setup prom parameters. */
725 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
726 prom_buf = g_malloc(prom_size);
727
728 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
729 if (initrd_size > 0) {
730 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
731 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
732 loaderparams.kernel_cmdline);
733 } else {
734 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
735 }
736
737 prom_set(prom_buf, prom_index++, "memsize");
738 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
739 prom_set(prom_buf, prom_index++, "modetty0");
740 prom_set(prom_buf, prom_index++, "38400n8r");
741 prom_set(prom_buf, prom_index++, NULL);
742
743 rom_add_blob_fixed("prom", prom_buf, prom_size,
744 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
745
746 return kernel_entry;
747 }
748
749 static void malta_mips_config(MIPSCPU *cpu)
750 {
751 CPUMIPSState *env = &cpu->env;
752 CPUState *cs = CPU(cpu);
753
754 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
755 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
756 }
757
758 static void main_cpu_reset(void *opaque)
759 {
760 MIPSCPU *cpu = opaque;
761 CPUMIPSState *env = &cpu->env;
762
763 cpu_reset(CPU(cpu));
764
765 /* The bootloader does not need to be rewritten as it is located in a
766 read only location. The kernel location and the arguments table
767 location does not change. */
768 if (loaderparams.kernel_filename) {
769 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
770 }
771
772 malta_mips_config(cpu);
773 }
774
775 static void cpu_request_exit(void *opaque, int irq, int level)
776 {
777 CPUState *cpu = current_cpu;
778
779 if (cpu && level) {
780 cpu_exit(cpu);
781 }
782 }
783
784 static
785 void mips_malta_init(QEMUMachineInitArgs *args)
786 {
787 ram_addr_t ram_size = args->ram_size;
788 const char *cpu_model = args->cpu_model;
789 const char *kernel_filename = args->kernel_filename;
790 const char *kernel_cmdline = args->kernel_cmdline;
791 const char *initrd_filename = args->initrd_filename;
792 char *filename;
793 pflash_t *fl;
794 MemoryRegion *system_memory = get_system_memory();
795 MemoryRegion *ram = g_new(MemoryRegion, 1);
796 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
797 target_long bios_size = FLASH_SIZE;
798 int64_t kernel_entry;
799 PCIBus *pci_bus;
800 ISABus *isa_bus;
801 MIPSCPU *cpu;
802 CPUMIPSState *env;
803 qemu_irq *isa_irq;
804 qemu_irq *cpu_exit_irq;
805 int piix4_devfn;
806 i2c_bus *smbus;
807 int i;
808 DriveInfo *dinfo;
809 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
810 DriveInfo *fd[MAX_FD];
811 int fl_idx = 0;
812 int fl_sectors = bios_size >> 16;
813 int be;
814
815 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
816 MaltaState *s = MIPS_MALTA(dev);
817
818 qdev_init_nofail(dev);
819
820 /* Make sure the first 3 serial ports are associated with a device. */
821 for(i = 0; i < 3; i++) {
822 if (!serial_hds[i]) {
823 char label[32];
824 snprintf(label, sizeof(label), "serial%d", i);
825 serial_hds[i] = qemu_chr_new(label, "null", NULL);
826 }
827 }
828
829 /* init CPUs */
830 if (cpu_model == NULL) {
831 #ifdef TARGET_MIPS64
832 cpu_model = "20Kc";
833 #else
834 cpu_model = "24Kf";
835 #endif
836 }
837
838 for (i = 0; i < smp_cpus; i++) {
839 cpu = cpu_mips_init(cpu_model);
840 if (cpu == NULL) {
841 fprintf(stderr, "Unable to find CPU definition\n");
842 exit(1);
843 }
844 env = &cpu->env;
845
846 /* Init internal devices */
847 cpu_mips_irq_init_cpu(env);
848 cpu_mips_clock_init(env);
849 qemu_register_reset(main_cpu_reset, cpu);
850 }
851 cpu = MIPS_CPU(first_cpu);
852 env = &cpu->env;
853
854 /* allocate RAM */
855 if (ram_size > (256 << 20)) {
856 fprintf(stderr,
857 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
858 ((unsigned int)ram_size / (1 << 20)));
859 exit(1);
860 }
861 memory_region_init_ram(ram, NULL, "mips_malta.ram", ram_size);
862 vmstate_register_ram_global(ram);
863 memory_region_add_subregion(system_memory, 0, ram);
864
865 #ifdef TARGET_WORDS_BIGENDIAN
866 be = 1;
867 #else
868 be = 0;
869 #endif
870 /* FPGA */
871 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
872 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
873
874 /* Load firmware in flash / BIOS. */
875 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
876 #ifdef DEBUG_BOARD_INIT
877 if (dinfo) {
878 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
879 "addr %08llx '%s' %x\n",
880 fl_idx, bios_size, FLASH_ADDRESS,
881 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
882 }
883 #endif
884 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
885 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
886 65536, fl_sectors,
887 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
888 bios = pflash_cfi01_get_memory(fl);
889 fl_idx++;
890 if (kernel_filename) {
891 /* Write a small bootloader to the flash location. */
892 loaderparams.ram_size = ram_size;
893 loaderparams.kernel_filename = kernel_filename;
894 loaderparams.kernel_cmdline = kernel_cmdline;
895 loaderparams.initrd_filename = initrd_filename;
896 kernel_entry = load_kernel();
897 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
898 } else {
899 /* Load firmware from flash. */
900 if (!dinfo) {
901 /* Load a BIOS image. */
902 if (bios_name == NULL) {
903 bios_name = BIOS_FILENAME;
904 }
905 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
906 if (filename) {
907 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
908 BIOS_SIZE);
909 g_free(filename);
910 } else {
911 bios_size = -1;
912 }
913 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
914 fprintf(stderr,
915 "qemu: Warning, could not load MIPS bios '%s', and no -kernel argument was specified\n",
916 bios_name);
917 }
918 }
919 /* In little endian mode the 32bit words in the bios are swapped,
920 a neat trick which allows bi-endian firmware. */
921 #ifndef TARGET_WORDS_BIGENDIAN
922 {
923 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
924 if (!addr) {
925 addr = memory_region_get_ram_ptr(bios);
926 }
927 end = (void *)addr + bios_size;
928 while (addr < end) {
929 bswap32s(addr);
930 addr++;
931 }
932 }
933 #endif
934 }
935
936 /*
937 * Map the BIOS at a 2nd physical location, as on the real board.
938 * Copy it so that we can patch in the MIPS revision, which cannot be
939 * handled by an overlapping region as the resulting ROM code subpage
940 * regions are not executable.
941 */
942 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE);
943 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
944 FLASH_ADDRESS, bios_size)) {
945 memcpy(memory_region_get_ram_ptr(bios_copy),
946 memory_region_get_ram_ptr(bios), bios_size);
947 }
948 memory_region_set_readonly(bios_copy, true);
949 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
950
951 /* Board ID = 0x420 (Malta Board with CoreLV) */
952 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
953
954 /* Init internal devices */
955 cpu_mips_irq_init_cpu(env);
956 cpu_mips_clock_init(env);
957
958 /*
959 * We have a circular dependency problem: pci_bus depends on isa_irq,
960 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
961 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
962 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
963 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
964 */
965 isa_irq = qemu_irq_proxy(&s->i8259, 16);
966
967 /* Northbridge */
968 pci_bus = gt64120_register(isa_irq);
969
970 /* Southbridge */
971 ide_drive_get(hd, MAX_IDE_BUS);
972
973 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
974
975 /* Interrupt controller */
976 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
977 s->i8259 = i8259_init(isa_bus, env->irq[2]);
978
979 isa_bus_irqs(isa_bus, s->i8259);
980 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
981 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
982 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
983 isa_get_irq(NULL, 9), NULL, 0, NULL);
984 /* TODO: Populate SPD eeprom data. */
985 smbus_eeprom_init(smbus, 8, NULL, 0);
986 pit = pit_init(isa_bus, 0x40, 0, NULL);
987 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
988 DMA_init(0, cpu_exit_irq);
989
990 /* Super I/O */
991 isa_create_simple(isa_bus, "i8042");
992
993 rtc_init(isa_bus, 2000, NULL);
994 serial_isa_init(isa_bus, 0, serial_hds[0]);
995 serial_isa_init(isa_bus, 1, serial_hds[1]);
996 if (parallel_hds[0])
997 parallel_init(isa_bus, 0, parallel_hds[0]);
998 for(i = 0; i < MAX_FD; i++) {
999 fd[i] = drive_get(IF_FLOPPY, 0, i);
1000 }
1001 fdctrl_init_isa(isa_bus, fd);
1002
1003 /* Network card */
1004 network_init(pci_bus);
1005
1006 /* Optional PCI video card */
1007 pci_vga_init(pci_bus);
1008 }
1009
1010 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1011 {
1012 return 0;
1013 }
1014
1015 static void mips_malta_class_init(ObjectClass *klass, void *data)
1016 {
1017 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1018
1019 k->init = mips_malta_sysbus_device_init;
1020 }
1021
1022 static const TypeInfo mips_malta_device = {
1023 .name = TYPE_MIPS_MALTA,
1024 .parent = TYPE_SYS_BUS_DEVICE,
1025 .instance_size = sizeof(MaltaState),
1026 .class_init = mips_malta_class_init,
1027 };
1028
1029 static QEMUMachine mips_malta_machine = {
1030 .name = "malta",
1031 .desc = "MIPS Malta Core LV",
1032 .init = mips_malta_init,
1033 .max_cpus = 16,
1034 .is_default = 1,
1035 DEFAULT_MACHINE_OPTIONS,
1036 };
1037
1038 static void mips_malta_register_types(void)
1039 {
1040 type_register_static(&mips_malta_device);
1041 }
1042
1043 static void mips_malta_machine_init(void)
1044 {
1045 qemu_register_machine(&mips_malta_machine);
1046 }
1047
1048 type_init(mips_malta_register_types)
1049 machine_init(mips_malta_machine_init);