]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
target-sparc: Use tcg_gen_atomic_cmpxchg_tl
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "hw/char/serial.h"
31 #include "hw/block/fdc.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus.h"
35 #include "sysemu/block-backend.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
40 #include "sysemu/char.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "hw/timer/mc146818rtc.h"
49 #include "hw/timer/i8254.h"
50 #include "sysemu/block-backend.h"
51 #include "sysemu/blockdev.h"
52 #include "exec/address-spaces.h"
53 #include "hw/sysbus.h" /* SysBusDevice */
54 #include "qemu/host-utils.h"
55 #include "sysemu/qtest.h"
56 #include "qemu/error-report.h"
57 #include "hw/empty_slot.h"
58 #include "sysemu/kvm.h"
59 #include "exec/semihost.h"
60 #include "hw/mips/cps.h"
61
62 //#define DEBUG_BOARD_INIT
63
64 #define ENVP_ADDR 0x80002000l
65 #define ENVP_NB_ENTRIES 16
66 #define ENVP_ENTRY_SIZE 256
67
68 /* Hardware addresses */
69 #define FLASH_ADDRESS 0x1e000000ULL
70 #define FPGA_ADDRESS 0x1f000000ULL
71 #define RESET_ADDRESS 0x1fc00000ULL
72
73 #define FLASH_SIZE 0x400000
74
75 #define MAX_IDE_BUS 2
76
77 typedef struct {
78 MemoryRegion iomem;
79 MemoryRegion iomem_lo; /* 0 - 0x900 */
80 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81 uint32_t leds;
82 uint32_t brk;
83 uint32_t gpout;
84 uint32_t i2cin;
85 uint32_t i2coe;
86 uint32_t i2cout;
87 uint32_t i2csel;
88 CharBackend display;
89 char display_text[9];
90 SerialState *uart;
91 bool display_inited;
92 } MaltaFPGAState;
93
94 #define TYPE_MIPS_MALTA "mips-malta"
95 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
96
97 typedef struct {
98 SysBusDevice parent_obj;
99
100 MIPSCPSState *cps;
101 qemu_irq *i8259;
102 } MaltaState;
103
104 static ISADevice *pit;
105
106 static struct _loaderparams {
107 int ram_size, ram_low_size;
108 const char *kernel_filename;
109 const char *kernel_cmdline;
110 const char *initrd_filename;
111 } loaderparams;
112
113 /* Malta FPGA */
114 static void malta_fpga_update_display(void *opaque)
115 {
116 char leds_text[9];
117 int i;
118 MaltaFPGAState *s = opaque;
119
120 for (i = 7 ; i >= 0 ; i--) {
121 if (s->leds & (1 << i))
122 leds_text[i] = '#';
123 else
124 leds_text[i] = ' ';
125 }
126 leds_text[8] = '\0';
127
128 qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
129 leds_text);
130 qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
131 s->display_text);
132 }
133
134 /*
135 * EEPROM 24C01 / 24C02 emulation.
136 *
137 * Emulation for serial EEPROMs:
138 * 24C01 - 1024 bit (128 x 8)
139 * 24C02 - 2048 bit (256 x 8)
140 *
141 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
142 */
143
144 //~ #define DEBUG
145
146 #if defined(DEBUG)
147 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
148 #else
149 # define logout(fmt, ...) ((void)0)
150 #endif
151
152 struct _eeprom24c0x_t {
153 uint8_t tick;
154 uint8_t address;
155 uint8_t command;
156 uint8_t ack;
157 uint8_t scl;
158 uint8_t sda;
159 uint8_t data;
160 //~ uint16_t size;
161 uint8_t contents[256];
162 };
163
164 typedef struct _eeprom24c0x_t eeprom24c0x_t;
165
166 static eeprom24c0x_t spd_eeprom = {
167 .contents = {
168 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
169 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
170 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
171 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
172 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
173 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
174 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
175 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
176 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
181 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
182 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
183 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
184 },
185 };
186
187 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
188 {
189 enum { SDR = 0x4, DDR2 = 0x8 } type;
190 uint8_t *spd = spd_eeprom.contents;
191 uint8_t nbanks = 0;
192 uint16_t density = 0;
193 int i;
194
195 /* work in terms of MB */
196 ram_size >>= 20;
197
198 while ((ram_size >= 4) && (nbanks <= 2)) {
199 int sz_log2 = MIN(31 - clz32(ram_size), 14);
200 nbanks++;
201 density |= 1 << (sz_log2 - 2);
202 ram_size -= 1 << sz_log2;
203 }
204
205 /* split to 2 banks if possible */
206 if ((nbanks == 1) && (density > 1)) {
207 nbanks++;
208 density >>= 1;
209 }
210
211 if (density & 0xff00) {
212 density = (density & 0xe0) | ((density >> 8) & 0x1f);
213 type = DDR2;
214 } else if (!(density & 0x1f)) {
215 type = DDR2;
216 } else {
217 type = SDR;
218 }
219
220 if (ram_size) {
221 fprintf(stderr, "Warning: SPD cannot represent final %dMB"
222 " of SDRAM\n", (int)ram_size);
223 }
224
225 /* fill in SPD memory information */
226 spd[2] = type;
227 spd[5] = nbanks;
228 spd[31] = density;
229
230 /* checksum */
231 spd[63] = 0;
232 for (i = 0; i < 63; i++) {
233 spd[63] += spd[i];
234 }
235
236 /* copy for SMBUS */
237 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
238 }
239
240 static void generate_eeprom_serial(uint8_t *eeprom)
241 {
242 int i, pos = 0;
243 uint8_t mac[6] = { 0x00 };
244 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
245
246 /* version */
247 eeprom[pos++] = 0x01;
248
249 /* count */
250 eeprom[pos++] = 0x02;
251
252 /* MAC address */
253 eeprom[pos++] = 0x01; /* MAC */
254 eeprom[pos++] = 0x06; /* length */
255 memcpy(&eeprom[pos], mac, sizeof(mac));
256 pos += sizeof(mac);
257
258 /* serial number */
259 eeprom[pos++] = 0x02; /* serial */
260 eeprom[pos++] = 0x05; /* length */
261 memcpy(&eeprom[pos], sn, sizeof(sn));
262 pos += sizeof(sn);
263
264 /* checksum */
265 eeprom[pos] = 0;
266 for (i = 0; i < pos; i++) {
267 eeprom[pos] += eeprom[i];
268 }
269 }
270
271 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
272 {
273 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
274 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
275 return eeprom->sda;
276 }
277
278 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
279 {
280 if (eeprom->scl && scl && (eeprom->sda != sda)) {
281 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
282 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
283 sda ? "stop" : "start");
284 if (!sda) {
285 eeprom->tick = 1;
286 eeprom->command = 0;
287 }
288 } else if (eeprom->tick == 0 && !eeprom->ack) {
289 /* Waiting for start. */
290 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
291 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
292 } else if (!eeprom->scl && scl) {
293 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
294 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
295 if (eeprom->ack) {
296 logout("\ti2c ack bit = 0\n");
297 sda = 0;
298 eeprom->ack = 0;
299 } else if (eeprom->sda == sda) {
300 uint8_t bit = (sda != 0);
301 logout("\ti2c bit = %d\n", bit);
302 if (eeprom->tick < 9) {
303 eeprom->command <<= 1;
304 eeprom->command += bit;
305 eeprom->tick++;
306 if (eeprom->tick == 9) {
307 logout("\tcommand 0x%04x, %s\n", eeprom->command,
308 bit ? "read" : "write");
309 eeprom->ack = 1;
310 }
311 } else if (eeprom->tick < 17) {
312 if (eeprom->command & 1) {
313 sda = ((eeprom->data & 0x80) != 0);
314 }
315 eeprom->address <<= 1;
316 eeprom->address += bit;
317 eeprom->tick++;
318 eeprom->data <<= 1;
319 if (eeprom->tick == 17) {
320 eeprom->data = eeprom->contents[eeprom->address];
321 logout("\taddress 0x%04x, data 0x%02x\n",
322 eeprom->address, eeprom->data);
323 eeprom->ack = 1;
324 eeprom->tick = 0;
325 }
326 } else if (eeprom->tick >= 17) {
327 sda = 0;
328 }
329 } else {
330 logout("\tsda changed with raising scl\n");
331 }
332 } else {
333 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
334 scl, eeprom->sda, sda);
335 }
336 eeprom->scl = scl;
337 eeprom->sda = sda;
338 }
339
340 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
341 unsigned size)
342 {
343 MaltaFPGAState *s = opaque;
344 uint32_t val = 0;
345 uint32_t saddr;
346
347 saddr = (addr & 0xfffff);
348
349 switch (saddr) {
350
351 /* SWITCH Register */
352 case 0x00200:
353 val = 0x00000000; /* All switches closed */
354 break;
355
356 /* STATUS Register */
357 case 0x00208:
358 #ifdef TARGET_WORDS_BIGENDIAN
359 val = 0x00000012;
360 #else
361 val = 0x00000010;
362 #endif
363 break;
364
365 /* JMPRS Register */
366 case 0x00210:
367 val = 0x00;
368 break;
369
370 /* LEDBAR Register */
371 case 0x00408:
372 val = s->leds;
373 break;
374
375 /* BRKRES Register */
376 case 0x00508:
377 val = s->brk;
378 break;
379
380 /* UART Registers are handled directly by the serial device */
381
382 /* GPOUT Register */
383 case 0x00a00:
384 val = s->gpout;
385 break;
386
387 /* XXX: implement a real I2C controller */
388
389 /* GPINP Register */
390 case 0x00a08:
391 /* IN = OUT until a real I2C control is implemented */
392 if (s->i2csel)
393 val = s->i2cout;
394 else
395 val = 0x00;
396 break;
397
398 /* I2CINP Register */
399 case 0x00b00:
400 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
401 break;
402
403 /* I2COE Register */
404 case 0x00b08:
405 val = s->i2coe;
406 break;
407
408 /* I2COUT Register */
409 case 0x00b10:
410 val = s->i2cout;
411 break;
412
413 /* I2CSEL Register */
414 case 0x00b18:
415 val = s->i2csel;
416 break;
417
418 default:
419 #if 0
420 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
421 addr);
422 #endif
423 break;
424 }
425 return val;
426 }
427
428 static void malta_fpga_write(void *opaque, hwaddr addr,
429 uint64_t val, unsigned size)
430 {
431 MaltaFPGAState *s = opaque;
432 uint32_t saddr;
433
434 saddr = (addr & 0xfffff);
435
436 switch (saddr) {
437
438 /* SWITCH Register */
439 case 0x00200:
440 break;
441
442 /* JMPRS Register */
443 case 0x00210:
444 break;
445
446 /* LEDBAR Register */
447 case 0x00408:
448 s->leds = val & 0xff;
449 malta_fpga_update_display(s);
450 break;
451
452 /* ASCIIWORD Register */
453 case 0x00410:
454 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
455 malta_fpga_update_display(s);
456 break;
457
458 /* ASCIIPOS0 to ASCIIPOS7 Registers */
459 case 0x00418:
460 case 0x00420:
461 case 0x00428:
462 case 0x00430:
463 case 0x00438:
464 case 0x00440:
465 case 0x00448:
466 case 0x00450:
467 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
468 malta_fpga_update_display(s);
469 break;
470
471 /* SOFTRES Register */
472 case 0x00500:
473 if (val == 0x42)
474 qemu_system_reset_request ();
475 break;
476
477 /* BRKRES Register */
478 case 0x00508:
479 s->brk = val & 0xff;
480 break;
481
482 /* UART Registers are handled directly by the serial device */
483
484 /* GPOUT Register */
485 case 0x00a00:
486 s->gpout = val & 0xff;
487 break;
488
489 /* I2COE Register */
490 case 0x00b08:
491 s->i2coe = val & 0x03;
492 break;
493
494 /* I2COUT Register */
495 case 0x00b10:
496 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
497 s->i2cout = val;
498 break;
499
500 /* I2CSEL Register */
501 case 0x00b18:
502 s->i2csel = val & 0x01;
503 break;
504
505 default:
506 #if 0
507 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
508 addr);
509 #endif
510 break;
511 }
512 }
513
514 static const MemoryRegionOps malta_fpga_ops = {
515 .read = malta_fpga_read,
516 .write = malta_fpga_write,
517 .endianness = DEVICE_NATIVE_ENDIAN,
518 };
519
520 static void malta_fpga_reset(void *opaque)
521 {
522 MaltaFPGAState *s = opaque;
523
524 s->leds = 0x00;
525 s->brk = 0x0a;
526 s->gpout = 0x00;
527 s->i2cin = 0x3;
528 s->i2coe = 0x0;
529 s->i2cout = 0x3;
530 s->i2csel = 0x1;
531
532 s->display_text[8] = '\0';
533 snprintf(s->display_text, 9, " ");
534 }
535
536 static void malta_fgpa_display_event(void *opaque, int event)
537 {
538 MaltaFPGAState *s = opaque;
539
540 if (event == CHR_EVENT_OPENED && !s->display_inited) {
541 qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
542 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
543 qemu_chr_fe_printf(&s->display, "+ +\r\n");
544 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
545 qemu_chr_fe_printf(&s->display, "\n");
546 qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
547 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
548 qemu_chr_fe_printf(&s->display, "+ +\r\n");
549 qemu_chr_fe_printf(&s->display, "+--------+\r\n");
550 s->display_inited = true;
551 }
552 }
553
554 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
555 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
556 {
557 MaltaFPGAState *s;
558 CharDriverState *chr;
559
560 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
561
562 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
563 "malta-fpga", 0x100000);
564 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
565 &s->iomem, 0, 0x900);
566 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
567 &s->iomem, 0xa00, 0x10000-0xa00);
568
569 memory_region_add_subregion(address_space, base, &s->iomem_lo);
570 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
571
572 chr = qemu_chr_new("fpga", "vc:320x200");
573 qemu_chr_fe_init(&s->display, chr, NULL);
574 qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
575 malta_fgpa_display_event, s, NULL, true);
576
577 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
578 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
579
580 malta_fpga_reset(s);
581 qemu_register_reset(malta_fpga_reset, s);
582
583 return s;
584 }
585
586 /* Network support */
587 static void network_init(PCIBus *pci_bus)
588 {
589 int i;
590
591 for(i = 0; i < nb_nics; i++) {
592 NICInfo *nd = &nd_table[i];
593 const char *default_devaddr = NULL;
594
595 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
596 /* The malta board has a PCNet card using PCI SLOT 11 */
597 default_devaddr = "0b";
598
599 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
600 }
601 }
602
603 /* ROM and pseudo bootloader
604
605 The following code implements a very very simple bootloader. It first
606 loads the registers a0 to a3 to the values expected by the OS, and
607 then jump at the kernel address.
608
609 The bootloader should pass the locations of the kernel arguments and
610 environment variables tables. Those tables contain the 32-bit address
611 of NULL terminated strings. The environment variables table should be
612 terminated by a NULL address.
613
614 For a simpler implementation, the number of kernel arguments is fixed
615 to two (the name of the kernel and the command line), and the two
616 tables are actually the same one.
617
618 The registers a0 to a3 should contain the following values:
619 a0 - number of kernel arguments
620 a1 - 32-bit address of the kernel arguments table
621 a2 - 32-bit address of the environment variables table
622 a3 - RAM size in bytes
623 */
624
625 static void write_bootloader(uint8_t *base, int64_t run_addr,
626 int64_t kernel_entry)
627 {
628 uint32_t *p;
629
630 /* Small bootloader */
631 p = (uint32_t *)base;
632
633 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
634 ((run_addr + 0x580) & 0x0fffffff) >> 2);
635 stl_p(p++, 0x00000000); /* nop */
636
637 /* YAMON service vector */
638 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
639 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
640 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
641 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
642 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
643 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
644 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
645 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
646 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
647 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
648 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
649 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
650 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
651
652
653 /* Second part of the bootloader */
654 p = (uint32_t *) (base + 0x580);
655
656 if (semihosting_get_argc()) {
657 /* Preserve a0 content as arguments have been passed */
658 stl_p(p++, 0x00000000); /* nop */
659 } else {
660 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
661 }
662 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
663 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
664 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
665 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
666 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
667 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
668 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
669 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
670
671 /* Load BAR registers as done by YAMON */
672 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
673
674 #ifdef TARGET_WORDS_BIGENDIAN
675 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
676 #else
677 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
678 #endif
679 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
680
681 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
682
683 #ifdef TARGET_WORDS_BIGENDIAN
684 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
685 #else
686 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
687 #endif
688 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
689 #ifdef TARGET_WORDS_BIGENDIAN
690 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
691 #else
692 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
693 #endif
694 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
695
696 #ifdef TARGET_WORDS_BIGENDIAN
697 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
698 #else
699 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
700 #endif
701 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
702 #ifdef TARGET_WORDS_BIGENDIAN
703 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
704 #else
705 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
706 #endif
707 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
708
709 #ifdef TARGET_WORDS_BIGENDIAN
710 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
711 #else
712 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
713 #endif
714 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
715 #ifdef TARGET_WORDS_BIGENDIAN
716 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
717 #else
718 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
719 #endif
720 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
721
722 /* Jump to kernel code */
723 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
724 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
725 stl_p(p++, 0x03e00009); /* jalr ra */
726 stl_p(p++, 0x00000000); /* nop */
727
728 /* YAMON subroutines */
729 p = (uint32_t *) (base + 0x800);
730 stl_p(p++, 0x03e00009); /* jalr ra */
731 stl_p(p++, 0x24020000); /* li v0,0 */
732 /* 808 YAMON print */
733 stl_p(p++, 0x03e06821); /* move t5,ra */
734 stl_p(p++, 0x00805821); /* move t3,a0 */
735 stl_p(p++, 0x00a05021); /* move t2,a1 */
736 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
737 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
738 stl_p(p++, 0x10800005); /* beqz a0,834 */
739 stl_p(p++, 0x00000000); /* nop */
740 stl_p(p++, 0x0ff0021c); /* jal 870 */
741 stl_p(p++, 0x00000000); /* nop */
742 stl_p(p++, 0x1000fff9); /* b 814 */
743 stl_p(p++, 0x00000000); /* nop */
744 stl_p(p++, 0x01a00009); /* jalr t5 */
745 stl_p(p++, 0x01602021); /* move a0,t3 */
746 /* 0x83c YAMON print_count */
747 stl_p(p++, 0x03e06821); /* move t5,ra */
748 stl_p(p++, 0x00805821); /* move t3,a0 */
749 stl_p(p++, 0x00a05021); /* move t2,a1 */
750 stl_p(p++, 0x00c06021); /* move t4,a2 */
751 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
752 stl_p(p++, 0x0ff0021c); /* jal 870 */
753 stl_p(p++, 0x00000000); /* nop */
754 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
755 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
756 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
757 stl_p(p++, 0x00000000); /* nop */
758 stl_p(p++, 0x01a00009); /* jalr t5 */
759 stl_p(p++, 0x01602021); /* move a0,t3 */
760 /* 0x870 */
761 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
762 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
763 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
764 stl_p(p++, 0x00000000); /* nop */
765 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
766 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
767 stl_p(p++, 0x00000000); /* nop */
768 stl_p(p++, 0x03e00009); /* jalr ra */
769 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
770
771 }
772
773 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
774 const char *string, ...)
775 {
776 va_list ap;
777 int32_t table_addr;
778
779 if (index >= ENVP_NB_ENTRIES)
780 return;
781
782 if (string == NULL) {
783 prom_buf[index] = 0;
784 return;
785 }
786
787 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
788 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
789
790 va_start(ap, string);
791 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
792 va_end(ap);
793 }
794
795 /* Kernel */
796 static int64_t load_kernel (void)
797 {
798 int64_t kernel_entry, kernel_high;
799 long initrd_size;
800 ram_addr_t initrd_offset;
801 int big_endian;
802 uint32_t *prom_buf;
803 long prom_size;
804 int prom_index = 0;
805 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
806
807 #ifdef TARGET_WORDS_BIGENDIAN
808 big_endian = 1;
809 #else
810 big_endian = 0;
811 #endif
812
813 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
814 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
815 big_endian, EM_MIPS, 1, 0) < 0) {
816 fprintf(stderr, "qemu: could not load kernel '%s'\n",
817 loaderparams.kernel_filename);
818 exit(1);
819 }
820
821 /* Sanity check where the kernel has been linked */
822 if (kvm_enabled()) {
823 if (kernel_entry & 0x80000000ll) {
824 error_report("KVM guest kernels must be linked in useg. "
825 "Did you forget to enable CONFIG_KVM_GUEST?");
826 exit(1);
827 }
828
829 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
830 } else {
831 if (!(kernel_entry & 0x80000000ll)) {
832 error_report("KVM guest kernels aren't supported with TCG. "
833 "Did you unintentionally enable CONFIG_KVM_GUEST?");
834 exit(1);
835 }
836
837 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
838 }
839
840 /* load initrd */
841 initrd_size = 0;
842 initrd_offset = 0;
843 if (loaderparams.initrd_filename) {
844 initrd_size = get_image_size (loaderparams.initrd_filename);
845 if (initrd_size > 0) {
846 initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
847 if (initrd_offset + initrd_size > ram_size) {
848 fprintf(stderr,
849 "qemu: memory too small for initial ram disk '%s'\n",
850 loaderparams.initrd_filename);
851 exit(1);
852 }
853 initrd_size = load_image_targphys(loaderparams.initrd_filename,
854 initrd_offset,
855 ram_size - initrd_offset);
856 }
857 if (initrd_size == (target_ulong) -1) {
858 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
859 loaderparams.initrd_filename);
860 exit(1);
861 }
862 }
863
864 /* Setup prom parameters. */
865 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
866 prom_buf = g_malloc(prom_size);
867
868 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
869 if (initrd_size > 0) {
870 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
871 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
872 loaderparams.kernel_cmdline);
873 } else {
874 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
875 }
876
877 prom_set(prom_buf, prom_index++, "memsize");
878 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
879
880 prom_set(prom_buf, prom_index++, "ememsize");
881 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
882
883 prom_set(prom_buf, prom_index++, "modetty0");
884 prom_set(prom_buf, prom_index++, "38400n8r");
885 prom_set(prom_buf, prom_index++, NULL);
886
887 rom_add_blob_fixed("prom", prom_buf, prom_size,
888 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
889
890 g_free(prom_buf);
891 return kernel_entry;
892 }
893
894 static void malta_mips_config(MIPSCPU *cpu)
895 {
896 CPUMIPSState *env = &cpu->env;
897 CPUState *cs = CPU(cpu);
898
899 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
900 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
901 }
902
903 static void main_cpu_reset(void *opaque)
904 {
905 MIPSCPU *cpu = opaque;
906 CPUMIPSState *env = &cpu->env;
907
908 cpu_reset(CPU(cpu));
909
910 /* The bootloader does not need to be rewritten as it is located in a
911 read only location. The kernel location and the arguments table
912 location does not change. */
913 if (loaderparams.kernel_filename) {
914 env->CP0_Status &= ~(1 << CP0St_ERL);
915 }
916
917 malta_mips_config(cpu);
918
919 if (kvm_enabled()) {
920 /* Start running from the bootloader we wrote to end of RAM */
921 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
922 }
923 }
924
925 static void create_cpu_without_cps(const char *cpu_model,
926 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
927 {
928 CPUMIPSState *env;
929 MIPSCPU *cpu;
930 int i;
931
932 for (i = 0; i < smp_cpus; i++) {
933 cpu = cpu_mips_init(cpu_model);
934 if (cpu == NULL) {
935 fprintf(stderr, "Unable to find CPU definition\n");
936 exit(1);
937 }
938
939 /* Init internal devices */
940 cpu_mips_irq_init_cpu(cpu);
941 cpu_mips_clock_init(cpu);
942 qemu_register_reset(main_cpu_reset, cpu);
943 }
944
945 cpu = MIPS_CPU(first_cpu);
946 env = &cpu->env;
947 *i8259_irq = env->irq[2];
948 *cbus_irq = env->irq[4];
949 }
950
951 static void create_cps(MaltaState *s, const char *cpu_model,
952 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
953 {
954 Error *err = NULL;
955 s->cps = g_new0(MIPSCPSState, 1);
956
957 object_initialize(s->cps, sizeof(MIPSCPSState), TYPE_MIPS_CPS);
958 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
959
960 object_property_set_str(OBJECT(s->cps), cpu_model, "cpu-model", &err);
961 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
962 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
963 if (err != NULL) {
964 error_report("%s", error_get_pretty(err));
965 exit(1);
966 }
967
968 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
969
970 *i8259_irq = get_cps_irq(s->cps, 3);
971 *cbus_irq = NULL;
972 }
973
974 static void create_cpu(MaltaState *s, const char *cpu_model,
975 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
976 {
977 if (cpu_model == NULL) {
978 #ifdef TARGET_MIPS64
979 cpu_model = "20Kc";
980 #else
981 cpu_model = "24Kf";
982 #endif
983 }
984
985 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_model)) {
986 create_cps(s, cpu_model, cbus_irq, i8259_irq);
987 } else {
988 create_cpu_without_cps(cpu_model, cbus_irq, i8259_irq);
989 }
990 }
991
992 static
993 void mips_malta_init(MachineState *machine)
994 {
995 ram_addr_t ram_size = machine->ram_size;
996 ram_addr_t ram_low_size;
997 const char *kernel_filename = machine->kernel_filename;
998 const char *kernel_cmdline = machine->kernel_cmdline;
999 const char *initrd_filename = machine->initrd_filename;
1000 char *filename;
1001 pflash_t *fl;
1002 MemoryRegion *system_memory = get_system_memory();
1003 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
1004 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1005 MemoryRegion *ram_low_postio;
1006 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1007 target_long bios_size = FLASH_SIZE;
1008 const size_t smbus_eeprom_size = 8 * 256;
1009 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1010 int64_t kernel_entry, bootloader_run_addr;
1011 PCIBus *pci_bus;
1012 ISABus *isa_bus;
1013 qemu_irq *isa_irq;
1014 qemu_irq cbus_irq, i8259_irq;
1015 int piix4_devfn;
1016 I2CBus *smbus;
1017 int i;
1018 DriveInfo *dinfo;
1019 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1020 DriveInfo *fd[MAX_FD];
1021 int fl_idx = 0;
1022 int fl_sectors = bios_size >> 16;
1023 int be;
1024
1025 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1026 MaltaState *s = MIPS_MALTA(dev);
1027
1028 /* The whole address space decoded by the GT-64120A doesn't generate
1029 exception when accessing invalid memory. Create an empty slot to
1030 emulate this feature. */
1031 empty_slot_init(0, 0x20000000);
1032
1033 qdev_init_nofail(dev);
1034
1035 /* Make sure the first 3 serial ports are associated with a device. */
1036 for(i = 0; i < 3; i++) {
1037 if (!serial_hds[i]) {
1038 char label[32];
1039 snprintf(label, sizeof(label), "serial%d", i);
1040 serial_hds[i] = qemu_chr_new(label, "null");
1041 }
1042 }
1043
1044 /* create CPU */
1045 create_cpu(s, machine->cpu_model, &cbus_irq, &i8259_irq);
1046
1047 /* allocate RAM */
1048 if (ram_size > (2048u << 20)) {
1049 fprintf(stderr,
1050 "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
1051 ((unsigned int)ram_size / (1 << 20)));
1052 exit(1);
1053 }
1054
1055 /* register RAM at high address where it is undisturbed by IO */
1056 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1057 ram_size);
1058 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1059
1060 /* alias for pre IO hole access */
1061 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1062 ram_high, 0, MIN(ram_size, (256 << 20)));
1063 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1064
1065 /* alias for post IO hole access, if there is enough RAM */
1066 if (ram_size > (512 << 20)) {
1067 ram_low_postio = g_new(MemoryRegion, 1);
1068 memory_region_init_alias(ram_low_postio, NULL,
1069 "mips_malta_low_postio.ram",
1070 ram_high, 512 << 20,
1071 ram_size - (512 << 20));
1072 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1073 }
1074
1075 /* generate SPD EEPROM data */
1076 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1077 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1078
1079 #ifdef TARGET_WORDS_BIGENDIAN
1080 be = 1;
1081 #else
1082 be = 0;
1083 #endif
1084 /* FPGA */
1085 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1086 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hds[2]);
1087
1088 /* Load firmware in flash / BIOS. */
1089 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1090 #ifdef DEBUG_BOARD_INIT
1091 if (dinfo) {
1092 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1093 "addr %08llx '%s' %x\n",
1094 fl_idx, bios_size, FLASH_ADDRESS,
1095 blk_name(dinfo->bdrv), fl_sectors);
1096 }
1097 #endif
1098 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1099 BIOS_SIZE,
1100 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1101 65536, fl_sectors,
1102 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1103 bios = pflash_cfi01_get_memory(fl);
1104 fl_idx++;
1105 if (kernel_filename) {
1106 ram_low_size = MIN(ram_size, 256 << 20);
1107 /* For KVM we reserve 1MB of RAM for running bootloader */
1108 if (kvm_enabled()) {
1109 ram_low_size -= 0x100000;
1110 bootloader_run_addr = 0x40000000 + ram_low_size;
1111 } else {
1112 bootloader_run_addr = 0xbfc00000;
1113 }
1114
1115 /* Write a small bootloader to the flash location. */
1116 loaderparams.ram_size = ram_size;
1117 loaderparams.ram_low_size = ram_low_size;
1118 loaderparams.kernel_filename = kernel_filename;
1119 loaderparams.kernel_cmdline = kernel_cmdline;
1120 loaderparams.initrd_filename = initrd_filename;
1121 kernel_entry = load_kernel();
1122
1123 write_bootloader(memory_region_get_ram_ptr(bios),
1124 bootloader_run_addr, kernel_entry);
1125 if (kvm_enabled()) {
1126 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1127 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1128 ram_low_size,
1129 bootloader_run_addr, kernel_entry);
1130 }
1131 } else {
1132 /* The flash region isn't executable from a KVM guest */
1133 if (kvm_enabled()) {
1134 error_report("KVM enabled but no -kernel argument was specified. "
1135 "Booting from flash is not supported with KVM.");
1136 exit(1);
1137 }
1138 /* Load firmware from flash. */
1139 if (!dinfo) {
1140 /* Load a BIOS image. */
1141 if (bios_name == NULL) {
1142 bios_name = BIOS_FILENAME;
1143 }
1144 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1145 if (filename) {
1146 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1147 BIOS_SIZE);
1148 g_free(filename);
1149 } else {
1150 bios_size = -1;
1151 }
1152 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1153 !kernel_filename && !qtest_enabled()) {
1154 error_report("Could not load MIPS bios '%s', and no "
1155 "-kernel argument was specified", bios_name);
1156 exit(1);
1157 }
1158 }
1159 /* In little endian mode the 32bit words in the bios are swapped,
1160 a neat trick which allows bi-endian firmware. */
1161 #ifndef TARGET_WORDS_BIGENDIAN
1162 {
1163 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1164 if (!addr) {
1165 addr = memory_region_get_ram_ptr(bios);
1166 }
1167 end = (void *)addr + MIN(bios_size, 0x3e0000);
1168 while (addr < end) {
1169 bswap32s(addr);
1170 addr++;
1171 }
1172 }
1173 #endif
1174 }
1175
1176 /*
1177 * Map the BIOS at a 2nd physical location, as on the real board.
1178 * Copy it so that we can patch in the MIPS revision, which cannot be
1179 * handled by an overlapping region as the resulting ROM code subpage
1180 * regions are not executable.
1181 */
1182 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1183 &error_fatal);
1184 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1185 FLASH_ADDRESS, BIOS_SIZE)) {
1186 memcpy(memory_region_get_ram_ptr(bios_copy),
1187 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1188 }
1189 memory_region_set_readonly(bios_copy, true);
1190 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1191
1192 /* Board ID = 0x420 (Malta Board with CoreLV) */
1193 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1194
1195 /*
1196 * We have a circular dependency problem: pci_bus depends on isa_irq,
1197 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1198 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1199 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1200 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1201 */
1202 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1203
1204 /* Northbridge */
1205 pci_bus = gt64120_register(isa_irq);
1206
1207 /* Southbridge */
1208 ide_drive_get(hd, ARRAY_SIZE(hd));
1209
1210 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1211
1212 /* Interrupt controller */
1213 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1214 s->i8259 = i8259_init(isa_bus, i8259_irq);
1215
1216 isa_bus_irqs(isa_bus, s->i8259);
1217 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1218 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1219 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1220 isa_get_irq(NULL, 9), NULL, 0, NULL);
1221 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1222 g_free(smbus_eeprom_buf);
1223 pit = pit_init(isa_bus, 0x40, 0, NULL);
1224 DMA_init(isa_bus, 0);
1225
1226 /* Super I/O */
1227 isa_create_simple(isa_bus, "i8042");
1228
1229 rtc_init(isa_bus, 2000, NULL);
1230 serial_hds_isa_init(isa_bus, 0, 2);
1231 parallel_hds_isa_init(isa_bus, 1);
1232
1233 for(i = 0; i < MAX_FD; i++) {
1234 fd[i] = drive_get(IF_FLOPPY, 0, i);
1235 }
1236 fdctrl_init_isa(isa_bus, fd);
1237
1238 /* Network card */
1239 network_init(pci_bus);
1240
1241 /* Optional PCI video card */
1242 pci_vga_init(pci_bus);
1243 }
1244
1245 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1246 {
1247 return 0;
1248 }
1249
1250 static void mips_malta_class_init(ObjectClass *klass, void *data)
1251 {
1252 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1253
1254 k->init = mips_malta_sysbus_device_init;
1255 }
1256
1257 static const TypeInfo mips_malta_device = {
1258 .name = TYPE_MIPS_MALTA,
1259 .parent = TYPE_SYS_BUS_DEVICE,
1260 .instance_size = sizeof(MaltaState),
1261 .class_init = mips_malta_class_init,
1262 };
1263
1264 static void mips_malta_machine_init(MachineClass *mc)
1265 {
1266 mc->desc = "MIPS Malta Core LV";
1267 mc->init = mips_malta_init;
1268 mc->max_cpus = 16;
1269 mc->is_default = 1;
1270 }
1271
1272 DEFINE_MACHINE("malta", mips_malta_machine_init)
1273
1274 static void mips_malta_register_types(void)
1275 {
1276 type_register_static(&mips_malta_device);
1277 }
1278
1279 type_init(mips_malta_register_types)