]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
Merge remote-tracking branch 'remotes/stefanha/tags/block-pull-request' into staging
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/block/fdc.h"
29 #include "net/net.h"
30 #include "hw/boards.h"
31 #include "hw/i2c/smbus.h"
32 #include "block/block.h"
33 #include "hw/block/flash.h"
34 #include "hw/mips/mips.h"
35 #include "hw/mips/cpudevs.h"
36 #include "hw/pci/pci.h"
37 #include "sysemu/char.h"
38 #include "sysemu/sysemu.h"
39 #include "sysemu/arch_init.h"
40 #include "qemu/log.h"
41 #include "hw/mips/bios.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/timer/i8254.h"
47 #include "sysemu/blockdev.h"
48 #include "exec/address-spaces.h"
49 #include "hw/sysbus.h" /* SysBusDevice */
50 #include "qemu/host-utils.h"
51 #include "sysemu/qtest.h"
52 #include "qemu/error-report.h"
53 #include "hw/empty_slot.h"
54 #include "sysemu/kvm.h"
55
56 //#define DEBUG_BOARD_INIT
57
58 #define ENVP_ADDR 0x80002000l
59 #define ENVP_NB_ENTRIES 16
60 #define ENVP_ENTRY_SIZE 256
61
62 /* Hardware addresses */
63 #define FLASH_ADDRESS 0x1e000000ULL
64 #define FPGA_ADDRESS 0x1f000000ULL
65 #define RESET_ADDRESS 0x1fc00000ULL
66
67 #define FLASH_SIZE 0x400000
68
69 #define MAX_IDE_BUS 2
70
71 typedef struct {
72 MemoryRegion iomem;
73 MemoryRegion iomem_lo; /* 0 - 0x900 */
74 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
75 uint32_t leds;
76 uint32_t brk;
77 uint32_t gpout;
78 uint32_t i2cin;
79 uint32_t i2coe;
80 uint32_t i2cout;
81 uint32_t i2csel;
82 CharDriverState *display;
83 char display_text[9];
84 SerialState *uart;
85 } MaltaFPGAState;
86
87 #define TYPE_MIPS_MALTA "mips-malta"
88 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
89
90 typedef struct {
91 SysBusDevice parent_obj;
92
93 qemu_irq *i8259;
94 } MaltaState;
95
96 static ISADevice *pit;
97
98 static struct _loaderparams {
99 int ram_size;
100 const char *kernel_filename;
101 const char *kernel_cmdline;
102 const char *initrd_filename;
103 } loaderparams;
104
105 /* Malta FPGA */
106 static void malta_fpga_update_display(void *opaque)
107 {
108 char leds_text[9];
109 int i;
110 MaltaFPGAState *s = opaque;
111
112 for (i = 7 ; i >= 0 ; i--) {
113 if (s->leds & (1 << i))
114 leds_text[i] = '#';
115 else
116 leds_text[i] = ' ';
117 }
118 leds_text[8] = '\0';
119
120 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
121 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
122 }
123
124 /*
125 * EEPROM 24C01 / 24C02 emulation.
126 *
127 * Emulation for serial EEPROMs:
128 * 24C01 - 1024 bit (128 x 8)
129 * 24C02 - 2048 bit (256 x 8)
130 *
131 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
132 */
133
134 //~ #define DEBUG
135
136 #if defined(DEBUG)
137 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
138 #else
139 # define logout(fmt, ...) ((void)0)
140 #endif
141
142 struct _eeprom24c0x_t {
143 uint8_t tick;
144 uint8_t address;
145 uint8_t command;
146 uint8_t ack;
147 uint8_t scl;
148 uint8_t sda;
149 uint8_t data;
150 //~ uint16_t size;
151 uint8_t contents[256];
152 };
153
154 typedef struct _eeprom24c0x_t eeprom24c0x_t;
155
156 static eeprom24c0x_t spd_eeprom = {
157 .contents = {
158 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
159 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
160 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
161 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
162 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
163 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
164 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
165 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
166 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
167 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
168 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
169 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
170 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
171 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
172 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
174 },
175 };
176
177 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
178 {
179 enum { SDR = 0x4, DDR2 = 0x8 } type;
180 uint8_t *spd = spd_eeprom.contents;
181 uint8_t nbanks = 0;
182 uint16_t density = 0;
183 int i;
184
185 /* work in terms of MB */
186 ram_size >>= 20;
187
188 while ((ram_size >= 4) && (nbanks <= 2)) {
189 int sz_log2 = MIN(31 - clz32(ram_size), 14);
190 nbanks++;
191 density |= 1 << (sz_log2 - 2);
192 ram_size -= 1 << sz_log2;
193 }
194
195 /* split to 2 banks if possible */
196 if ((nbanks == 1) && (density > 1)) {
197 nbanks++;
198 density >>= 1;
199 }
200
201 if (density & 0xff00) {
202 density = (density & 0xe0) | ((density >> 8) & 0x1f);
203 type = DDR2;
204 } else if (!(density & 0x1f)) {
205 type = DDR2;
206 } else {
207 type = SDR;
208 }
209
210 if (ram_size) {
211 fprintf(stderr, "Warning: SPD cannot represent final %dMB"
212 " of SDRAM\n", (int)ram_size);
213 }
214
215 /* fill in SPD memory information */
216 spd[2] = type;
217 spd[5] = nbanks;
218 spd[31] = density;
219
220 /* checksum */
221 spd[63] = 0;
222 for (i = 0; i < 63; i++) {
223 spd[63] += spd[i];
224 }
225
226 /* copy for SMBUS */
227 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
228 }
229
230 static void generate_eeprom_serial(uint8_t *eeprom)
231 {
232 int i, pos = 0;
233 uint8_t mac[6] = { 0x00 };
234 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
235
236 /* version */
237 eeprom[pos++] = 0x01;
238
239 /* count */
240 eeprom[pos++] = 0x02;
241
242 /* MAC address */
243 eeprom[pos++] = 0x01; /* MAC */
244 eeprom[pos++] = 0x06; /* length */
245 memcpy(&eeprom[pos], mac, sizeof(mac));
246 pos += sizeof(mac);
247
248 /* serial number */
249 eeprom[pos++] = 0x02; /* serial */
250 eeprom[pos++] = 0x05; /* length */
251 memcpy(&eeprom[pos], sn, sizeof(sn));
252 pos += sizeof(sn);
253
254 /* checksum */
255 eeprom[pos] = 0;
256 for (i = 0; i < pos; i++) {
257 eeprom[pos] += eeprom[i];
258 }
259 }
260
261 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
262 {
263 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
264 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
265 return eeprom->sda;
266 }
267
268 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
269 {
270 if (eeprom->scl && scl && (eeprom->sda != sda)) {
271 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
272 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
273 sda ? "stop" : "start");
274 if (!sda) {
275 eeprom->tick = 1;
276 eeprom->command = 0;
277 }
278 } else if (eeprom->tick == 0 && !eeprom->ack) {
279 /* Waiting for start. */
280 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
281 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
282 } else if (!eeprom->scl && scl) {
283 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
284 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
285 if (eeprom->ack) {
286 logout("\ti2c ack bit = 0\n");
287 sda = 0;
288 eeprom->ack = 0;
289 } else if (eeprom->sda == sda) {
290 uint8_t bit = (sda != 0);
291 logout("\ti2c bit = %d\n", bit);
292 if (eeprom->tick < 9) {
293 eeprom->command <<= 1;
294 eeprom->command += bit;
295 eeprom->tick++;
296 if (eeprom->tick == 9) {
297 logout("\tcommand 0x%04x, %s\n", eeprom->command,
298 bit ? "read" : "write");
299 eeprom->ack = 1;
300 }
301 } else if (eeprom->tick < 17) {
302 if (eeprom->command & 1) {
303 sda = ((eeprom->data & 0x80) != 0);
304 }
305 eeprom->address <<= 1;
306 eeprom->address += bit;
307 eeprom->tick++;
308 eeprom->data <<= 1;
309 if (eeprom->tick == 17) {
310 eeprom->data = eeprom->contents[eeprom->address];
311 logout("\taddress 0x%04x, data 0x%02x\n",
312 eeprom->address, eeprom->data);
313 eeprom->ack = 1;
314 eeprom->tick = 0;
315 }
316 } else if (eeprom->tick >= 17) {
317 sda = 0;
318 }
319 } else {
320 logout("\tsda changed with raising scl\n");
321 }
322 } else {
323 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
324 scl, eeprom->sda, sda);
325 }
326 eeprom->scl = scl;
327 eeprom->sda = sda;
328 }
329
330 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
331 unsigned size)
332 {
333 MaltaFPGAState *s = opaque;
334 uint32_t val = 0;
335 uint32_t saddr;
336
337 saddr = (addr & 0xfffff);
338
339 switch (saddr) {
340
341 /* SWITCH Register */
342 case 0x00200:
343 val = 0x00000000; /* All switches closed */
344 break;
345
346 /* STATUS Register */
347 case 0x00208:
348 #ifdef TARGET_WORDS_BIGENDIAN
349 val = 0x00000012;
350 #else
351 val = 0x00000010;
352 #endif
353 break;
354
355 /* JMPRS Register */
356 case 0x00210:
357 val = 0x00;
358 break;
359
360 /* LEDBAR Register */
361 case 0x00408:
362 val = s->leds;
363 break;
364
365 /* BRKRES Register */
366 case 0x00508:
367 val = s->brk;
368 break;
369
370 /* UART Registers are handled directly by the serial device */
371
372 /* GPOUT Register */
373 case 0x00a00:
374 val = s->gpout;
375 break;
376
377 /* XXX: implement a real I2C controller */
378
379 /* GPINP Register */
380 case 0x00a08:
381 /* IN = OUT until a real I2C control is implemented */
382 if (s->i2csel)
383 val = s->i2cout;
384 else
385 val = 0x00;
386 break;
387
388 /* I2CINP Register */
389 case 0x00b00:
390 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
391 break;
392
393 /* I2COE Register */
394 case 0x00b08:
395 val = s->i2coe;
396 break;
397
398 /* I2COUT Register */
399 case 0x00b10:
400 val = s->i2cout;
401 break;
402
403 /* I2CSEL Register */
404 case 0x00b18:
405 val = s->i2csel;
406 break;
407
408 default:
409 #if 0
410 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
411 addr);
412 #endif
413 break;
414 }
415 return val;
416 }
417
418 static void malta_fpga_write(void *opaque, hwaddr addr,
419 uint64_t val, unsigned size)
420 {
421 MaltaFPGAState *s = opaque;
422 uint32_t saddr;
423
424 saddr = (addr & 0xfffff);
425
426 switch (saddr) {
427
428 /* SWITCH Register */
429 case 0x00200:
430 break;
431
432 /* JMPRS Register */
433 case 0x00210:
434 break;
435
436 /* LEDBAR Register */
437 case 0x00408:
438 s->leds = val & 0xff;
439 malta_fpga_update_display(s);
440 break;
441
442 /* ASCIIWORD Register */
443 case 0x00410:
444 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
445 malta_fpga_update_display(s);
446 break;
447
448 /* ASCIIPOS0 to ASCIIPOS7 Registers */
449 case 0x00418:
450 case 0x00420:
451 case 0x00428:
452 case 0x00430:
453 case 0x00438:
454 case 0x00440:
455 case 0x00448:
456 case 0x00450:
457 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
458 malta_fpga_update_display(s);
459 break;
460
461 /* SOFTRES Register */
462 case 0x00500:
463 if (val == 0x42)
464 qemu_system_reset_request ();
465 break;
466
467 /* BRKRES Register */
468 case 0x00508:
469 s->brk = val & 0xff;
470 break;
471
472 /* UART Registers are handled directly by the serial device */
473
474 /* GPOUT Register */
475 case 0x00a00:
476 s->gpout = val & 0xff;
477 break;
478
479 /* I2COE Register */
480 case 0x00b08:
481 s->i2coe = val & 0x03;
482 break;
483
484 /* I2COUT Register */
485 case 0x00b10:
486 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
487 s->i2cout = val;
488 break;
489
490 /* I2CSEL Register */
491 case 0x00b18:
492 s->i2csel = val & 0x01;
493 break;
494
495 default:
496 #if 0
497 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
498 addr);
499 #endif
500 break;
501 }
502 }
503
504 static const MemoryRegionOps malta_fpga_ops = {
505 .read = malta_fpga_read,
506 .write = malta_fpga_write,
507 .endianness = DEVICE_NATIVE_ENDIAN,
508 };
509
510 static void malta_fpga_reset(void *opaque)
511 {
512 MaltaFPGAState *s = opaque;
513
514 s->leds = 0x00;
515 s->brk = 0x0a;
516 s->gpout = 0x00;
517 s->i2cin = 0x3;
518 s->i2coe = 0x0;
519 s->i2cout = 0x3;
520 s->i2csel = 0x1;
521
522 s->display_text[8] = '\0';
523 snprintf(s->display_text, 9, " ");
524 }
525
526 static void malta_fpga_led_init(CharDriverState *chr)
527 {
528 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
529 qemu_chr_fe_printf(chr, "+--------+\r\n");
530 qemu_chr_fe_printf(chr, "+ +\r\n");
531 qemu_chr_fe_printf(chr, "+--------+\r\n");
532 qemu_chr_fe_printf(chr, "\n");
533 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
534 qemu_chr_fe_printf(chr, "+--------+\r\n");
535 qemu_chr_fe_printf(chr, "+ +\r\n");
536 qemu_chr_fe_printf(chr, "+--------+\r\n");
537 }
538
539 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
540 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
541 {
542 MaltaFPGAState *s;
543
544 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
545
546 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
547 "malta-fpga", 0x100000);
548 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
549 &s->iomem, 0, 0x900);
550 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
551 &s->iomem, 0xa00, 0x10000-0xa00);
552
553 memory_region_add_subregion(address_space, base, &s->iomem_lo);
554 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
555
556 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
557
558 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
559 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
560
561 malta_fpga_reset(s);
562 qemu_register_reset(malta_fpga_reset, s);
563
564 return s;
565 }
566
567 /* Network support */
568 static void network_init(PCIBus *pci_bus)
569 {
570 int i;
571
572 for(i = 0; i < nb_nics; i++) {
573 NICInfo *nd = &nd_table[i];
574 const char *default_devaddr = NULL;
575
576 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
577 /* The malta board has a PCNet card using PCI SLOT 11 */
578 default_devaddr = "0b";
579
580 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
581 }
582 }
583
584 /* ROM and pseudo bootloader
585
586 The following code implements a very very simple bootloader. It first
587 loads the registers a0 to a3 to the values expected by the OS, and
588 then jump at the kernel address.
589
590 The bootloader should pass the locations of the kernel arguments and
591 environment variables tables. Those tables contain the 32-bit address
592 of NULL terminated strings. The environment variables table should be
593 terminated by a NULL address.
594
595 For a simpler implementation, the number of kernel arguments is fixed
596 to two (the name of the kernel and the command line), and the two
597 tables are actually the same one.
598
599 The registers a0 to a3 should contain the following values:
600 a0 - number of kernel arguments
601 a1 - 32-bit address of the kernel arguments table
602 a2 - 32-bit address of the environment variables table
603 a3 - RAM size in bytes
604 */
605
606 static void write_bootloader (CPUMIPSState *env, uint8_t *base,
607 int64_t run_addr, int64_t kernel_entry)
608 {
609 uint32_t *p;
610
611 /* Small bootloader */
612 p = (uint32_t *)base;
613
614 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
615 ((run_addr + 0x580) & 0x0fffffff) >> 2);
616 stl_p(p++, 0x00000000); /* nop */
617
618 /* YAMON service vector */
619 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
620 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
621 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
622 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
623 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
624 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
625 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
626 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
627 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
628 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
629 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
630 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
631 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
632
633
634 /* Second part of the bootloader */
635 p = (uint32_t *) (base + 0x580);
636 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
637 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
638 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
639 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
640 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
641 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
642 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
643 stl_p(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
644 stl_p(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
645
646 /* Load BAR registers as done by YAMON */
647 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
648
649 #ifdef TARGET_WORDS_BIGENDIAN
650 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
651 #else
652 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
653 #endif
654 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
655
656 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
657
658 #ifdef TARGET_WORDS_BIGENDIAN
659 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
660 #else
661 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
662 #endif
663 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
664 #ifdef TARGET_WORDS_BIGENDIAN
665 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
666 #else
667 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
668 #endif
669 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
670
671 #ifdef TARGET_WORDS_BIGENDIAN
672 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
673 #else
674 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
675 #endif
676 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
677 #ifdef TARGET_WORDS_BIGENDIAN
678 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
679 #else
680 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
681 #endif
682 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
683
684 #ifdef TARGET_WORDS_BIGENDIAN
685 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
686 #else
687 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
688 #endif
689 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
690 #ifdef TARGET_WORDS_BIGENDIAN
691 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
692 #else
693 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
694 #endif
695 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
696
697 /* Jump to kernel code */
698 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
699 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
700 stl_p(p++, 0x03e00008); /* jr ra */
701 stl_p(p++, 0x00000000); /* nop */
702
703 /* YAMON subroutines */
704 p = (uint32_t *) (base + 0x800);
705 stl_p(p++, 0x03e00008); /* jr ra */
706 stl_p(p++, 0x24020000); /* li v0,0 */
707 /* 808 YAMON print */
708 stl_p(p++, 0x03e06821); /* move t5,ra */
709 stl_p(p++, 0x00805821); /* move t3,a0 */
710 stl_p(p++, 0x00a05021); /* move t2,a1 */
711 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
712 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
713 stl_p(p++, 0x10800005); /* beqz a0,834 */
714 stl_p(p++, 0x00000000); /* nop */
715 stl_p(p++, 0x0ff0021c); /* jal 870 */
716 stl_p(p++, 0x00000000); /* nop */
717 stl_p(p++, 0x08000205); /* j 814 */
718 stl_p(p++, 0x00000000); /* nop */
719 stl_p(p++, 0x01a00008); /* jr t5 */
720 stl_p(p++, 0x01602021); /* move a0,t3 */
721 /* 0x83c YAMON print_count */
722 stl_p(p++, 0x03e06821); /* move t5,ra */
723 stl_p(p++, 0x00805821); /* move t3,a0 */
724 stl_p(p++, 0x00a05021); /* move t2,a1 */
725 stl_p(p++, 0x00c06021); /* move t4,a2 */
726 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
727 stl_p(p++, 0x0ff0021c); /* jal 870 */
728 stl_p(p++, 0x00000000); /* nop */
729 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
730 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
731 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
732 stl_p(p++, 0x00000000); /* nop */
733 stl_p(p++, 0x01a00008); /* jr t5 */
734 stl_p(p++, 0x01602021); /* move a0,t3 */
735 /* 0x870 */
736 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
737 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
738 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
739 stl_p(p++, 0x00000000); /* nop */
740 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
741 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
742 stl_p(p++, 0x00000000); /* nop */
743 stl_p(p++, 0x03e00008); /* jr ra */
744 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
745
746 }
747
748 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
749 const char *string, ...)
750 {
751 va_list ap;
752 int32_t table_addr;
753
754 if (index >= ENVP_NB_ENTRIES)
755 return;
756
757 if (string == NULL) {
758 prom_buf[index] = 0;
759 return;
760 }
761
762 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
763 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
764
765 va_start(ap, string);
766 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
767 va_end(ap);
768 }
769
770 /* Kernel */
771 static int64_t load_kernel (void)
772 {
773 int64_t kernel_entry, kernel_high;
774 long initrd_size;
775 ram_addr_t initrd_offset;
776 int big_endian;
777 uint32_t *prom_buf;
778 long prom_size;
779 int prom_index = 0;
780 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
781
782 #ifdef TARGET_WORDS_BIGENDIAN
783 big_endian = 1;
784 #else
785 big_endian = 0;
786 #endif
787
788 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
789 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
790 big_endian, ELF_MACHINE, 1) < 0) {
791 fprintf(stderr, "qemu: could not load kernel '%s'\n",
792 loaderparams.kernel_filename);
793 exit(1);
794 }
795
796 /* Sanity check where the kernel has been linked */
797 if (kvm_enabled()) {
798 if (kernel_entry & 0x80000000ll) {
799 error_report("KVM guest kernels must be linked in useg. "
800 "Did you forget to enable CONFIG_KVM_GUEST?");
801 exit(1);
802 }
803
804 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
805 } else {
806 if (!(kernel_entry & 0x80000000ll)) {
807 error_report("KVM guest kernels aren't supported with TCG. "
808 "Did you unintentionally enable CONFIG_KVM_GUEST?");
809 exit(1);
810 }
811
812 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
813 }
814
815 /* load initrd */
816 initrd_size = 0;
817 initrd_offset = 0;
818 if (loaderparams.initrd_filename) {
819 initrd_size = get_image_size (loaderparams.initrd_filename);
820 if (initrd_size > 0) {
821 initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
822 if (initrd_offset + initrd_size > ram_size) {
823 fprintf(stderr,
824 "qemu: memory too small for initial ram disk '%s'\n",
825 loaderparams.initrd_filename);
826 exit(1);
827 }
828 initrd_size = load_image_targphys(loaderparams.initrd_filename,
829 initrd_offset,
830 ram_size - initrd_offset);
831 }
832 if (initrd_size == (target_ulong) -1) {
833 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
834 loaderparams.initrd_filename);
835 exit(1);
836 }
837 }
838
839 /* Setup prom parameters. */
840 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
841 prom_buf = g_malloc(prom_size);
842
843 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
844 if (initrd_size > 0) {
845 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
846 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
847 loaderparams.kernel_cmdline);
848 } else {
849 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
850 }
851
852 prom_set(prom_buf, prom_index++, "memsize");
853 prom_set(prom_buf, prom_index++, "%i",
854 MIN(loaderparams.ram_size, 256 << 20));
855
856 prom_set(prom_buf, prom_index++, "modetty0");
857 prom_set(prom_buf, prom_index++, "38400n8r");
858 prom_set(prom_buf, prom_index++, NULL);
859
860 rom_add_blob_fixed("prom", prom_buf, prom_size,
861 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
862
863 return kernel_entry;
864 }
865
866 static void malta_mips_config(MIPSCPU *cpu)
867 {
868 CPUMIPSState *env = &cpu->env;
869 CPUState *cs = CPU(cpu);
870
871 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
872 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
873 }
874
875 static void main_cpu_reset(void *opaque)
876 {
877 MIPSCPU *cpu = opaque;
878 CPUMIPSState *env = &cpu->env;
879
880 cpu_reset(CPU(cpu));
881
882 /* The bootloader does not need to be rewritten as it is located in a
883 read only location. The kernel location and the arguments table
884 location does not change. */
885 if (loaderparams.kernel_filename) {
886 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
887 }
888
889 malta_mips_config(cpu);
890
891 if (kvm_enabled()) {
892 /* Start running from the bootloader we wrote to end of RAM */
893 env->active_tc.PC = 0x40000000 + loaderparams.ram_size;
894 }
895 }
896
897 static void cpu_request_exit(void *opaque, int irq, int level)
898 {
899 CPUState *cpu = current_cpu;
900
901 if (cpu && level) {
902 cpu_exit(cpu);
903 }
904 }
905
906 static
907 void mips_malta_init(MachineState *machine)
908 {
909 ram_addr_t ram_size = machine->ram_size;
910 ram_addr_t ram_low_size;
911 const char *cpu_model = machine->cpu_model;
912 const char *kernel_filename = machine->kernel_filename;
913 const char *kernel_cmdline = machine->kernel_cmdline;
914 const char *initrd_filename = machine->initrd_filename;
915 char *filename;
916 pflash_t *fl;
917 MemoryRegion *system_memory = get_system_memory();
918 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
919 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
920 MemoryRegion *ram_low_postio;
921 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
922 target_long bios_size = FLASH_SIZE;
923 const size_t smbus_eeprom_size = 8 * 256;
924 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
925 int64_t kernel_entry, bootloader_run_addr;
926 PCIBus *pci_bus;
927 ISABus *isa_bus;
928 MIPSCPU *cpu;
929 CPUMIPSState *env;
930 qemu_irq *isa_irq;
931 qemu_irq *cpu_exit_irq;
932 int piix4_devfn;
933 I2CBus *smbus;
934 int i;
935 DriveInfo *dinfo;
936 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
937 DriveInfo *fd[MAX_FD];
938 int fl_idx = 0;
939 int fl_sectors = bios_size >> 16;
940 int be;
941
942 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
943 MaltaState *s = MIPS_MALTA(dev);
944
945 /* The whole address space decoded by the GT-64120A doesn't generate
946 exception when accessing invalid memory. Create an empty slot to
947 emulate this feature. */
948 empty_slot_init(0, 0x20000000);
949
950 qdev_init_nofail(dev);
951
952 /* Make sure the first 3 serial ports are associated with a device. */
953 for(i = 0; i < 3; i++) {
954 if (!serial_hds[i]) {
955 char label[32];
956 snprintf(label, sizeof(label), "serial%d", i);
957 serial_hds[i] = qemu_chr_new(label, "null", NULL);
958 }
959 }
960
961 /* init CPUs */
962 if (cpu_model == NULL) {
963 #ifdef TARGET_MIPS64
964 cpu_model = "20Kc";
965 #else
966 cpu_model = "24Kf";
967 #endif
968 }
969
970 for (i = 0; i < smp_cpus; i++) {
971 cpu = cpu_mips_init(cpu_model);
972 if (cpu == NULL) {
973 fprintf(stderr, "Unable to find CPU definition\n");
974 exit(1);
975 }
976 env = &cpu->env;
977
978 /* Init internal devices */
979 cpu_mips_irq_init_cpu(env);
980 cpu_mips_clock_init(env);
981 qemu_register_reset(main_cpu_reset, cpu);
982 }
983 cpu = MIPS_CPU(first_cpu);
984 env = &cpu->env;
985
986 /* allocate RAM */
987 if (ram_size > (2048u << 20)) {
988 fprintf(stderr,
989 "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
990 ((unsigned int)ram_size / (1 << 20)));
991 exit(1);
992 }
993
994 /* register RAM at high address where it is undisturbed by IO */
995 memory_region_init_ram(ram_high, NULL, "mips_malta.ram", ram_size,
996 &error_abort);
997 vmstate_register_ram_global(ram_high);
998 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
999
1000 /* alias for pre IO hole access */
1001 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1002 ram_high, 0, MIN(ram_size, (256 << 20)));
1003 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1004
1005 /* alias for post IO hole access, if there is enough RAM */
1006 if (ram_size > (512 << 20)) {
1007 ram_low_postio = g_new(MemoryRegion, 1);
1008 memory_region_init_alias(ram_low_postio, NULL,
1009 "mips_malta_low_postio.ram",
1010 ram_high, 512 << 20,
1011 ram_size - (512 << 20));
1012 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1013 }
1014
1015 /* generate SPD EEPROM data */
1016 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1017 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1018
1019 #ifdef TARGET_WORDS_BIGENDIAN
1020 be = 1;
1021 #else
1022 be = 0;
1023 #endif
1024 /* FPGA */
1025 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1026 malta_fpga_init(system_memory, FPGA_ADDRESS, env->irq[4], serial_hds[2]);
1027
1028 /* Load firmware in flash / BIOS. */
1029 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1030 #ifdef DEBUG_BOARD_INIT
1031 if (dinfo) {
1032 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1033 "addr %08llx '%s' %x\n",
1034 fl_idx, bios_size, FLASH_ADDRESS,
1035 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
1036 }
1037 #endif
1038 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1039 BIOS_SIZE, dinfo ? dinfo->bdrv : NULL,
1040 65536, fl_sectors,
1041 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1042 bios = pflash_cfi01_get_memory(fl);
1043 fl_idx++;
1044 if (kernel_filename) {
1045 ram_low_size = MIN(ram_size, 256 << 20);
1046 /* For KVM we reserve 1MB of RAM for running bootloader */
1047 if (kvm_enabled()) {
1048 ram_low_size -= 0x100000;
1049 bootloader_run_addr = 0x40000000 + ram_low_size;
1050 } else {
1051 bootloader_run_addr = 0xbfc00000;
1052 }
1053
1054 /* Write a small bootloader to the flash location. */
1055 loaderparams.ram_size = ram_low_size;
1056 loaderparams.kernel_filename = kernel_filename;
1057 loaderparams.kernel_cmdline = kernel_cmdline;
1058 loaderparams.initrd_filename = initrd_filename;
1059 kernel_entry = load_kernel();
1060
1061 write_bootloader(env, memory_region_get_ram_ptr(bios),
1062 bootloader_run_addr, kernel_entry);
1063 if (kvm_enabled()) {
1064 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1065 write_bootloader(env, memory_region_get_ram_ptr(ram_low_preio) +
1066 ram_low_size,
1067 bootloader_run_addr, kernel_entry);
1068 }
1069 } else {
1070 /* The flash region isn't executable from a KVM guest */
1071 if (kvm_enabled()) {
1072 error_report("KVM enabled but no -kernel argument was specified. "
1073 "Booting from flash is not supported with KVM.");
1074 exit(1);
1075 }
1076 /* Load firmware from flash. */
1077 if (!dinfo) {
1078 /* Load a BIOS image. */
1079 if (bios_name == NULL) {
1080 bios_name = BIOS_FILENAME;
1081 }
1082 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1083 if (filename) {
1084 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1085 BIOS_SIZE);
1086 g_free(filename);
1087 } else {
1088 bios_size = -1;
1089 }
1090 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1091 !kernel_filename && !qtest_enabled()) {
1092 error_report("Could not load MIPS bios '%s', and no "
1093 "-kernel argument was specified", bios_name);
1094 exit(1);
1095 }
1096 }
1097 /* In little endian mode the 32bit words in the bios are swapped,
1098 a neat trick which allows bi-endian firmware. */
1099 #ifndef TARGET_WORDS_BIGENDIAN
1100 {
1101 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1102 if (!addr) {
1103 addr = memory_region_get_ram_ptr(bios);
1104 }
1105 end = (void *)addr + MIN(bios_size, 0x3e0000);
1106 while (addr < end) {
1107 bswap32s(addr);
1108 addr++;
1109 }
1110 }
1111 #endif
1112 }
1113
1114 /*
1115 * Map the BIOS at a 2nd physical location, as on the real board.
1116 * Copy it so that we can patch in the MIPS revision, which cannot be
1117 * handled by an overlapping region as the resulting ROM code subpage
1118 * regions are not executable.
1119 */
1120 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1121 &error_abort);
1122 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1123 FLASH_ADDRESS, BIOS_SIZE)) {
1124 memcpy(memory_region_get_ram_ptr(bios_copy),
1125 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1126 }
1127 memory_region_set_readonly(bios_copy, true);
1128 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1129
1130 /* Board ID = 0x420 (Malta Board with CoreLV) */
1131 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1132
1133 /* Init internal devices */
1134 cpu_mips_irq_init_cpu(env);
1135 cpu_mips_clock_init(env);
1136
1137 /*
1138 * We have a circular dependency problem: pci_bus depends on isa_irq,
1139 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1140 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1141 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1142 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1143 */
1144 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1145
1146 /* Northbridge */
1147 pci_bus = gt64120_register(isa_irq);
1148
1149 /* Southbridge */
1150 ide_drive_get(hd, ARRAY_SIZE(hd));
1151
1152 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1153
1154 /* Interrupt controller */
1155 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1156 s->i8259 = i8259_init(isa_bus, env->irq[2]);
1157
1158 isa_bus_irqs(isa_bus, s->i8259);
1159 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1160 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1161 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1162 isa_get_irq(NULL, 9), NULL, 0, NULL, NULL);
1163 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1164 g_free(smbus_eeprom_buf);
1165 pit = pit_init(isa_bus, 0x40, 0, NULL);
1166 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1167 DMA_init(0, cpu_exit_irq);
1168
1169 /* Super I/O */
1170 isa_create_simple(isa_bus, "i8042");
1171
1172 rtc_init(isa_bus, 2000, NULL);
1173 serial_isa_init(isa_bus, 0, serial_hds[0]);
1174 serial_isa_init(isa_bus, 1, serial_hds[1]);
1175 if (parallel_hds[0])
1176 parallel_init(isa_bus, 0, parallel_hds[0]);
1177 for(i = 0; i < MAX_FD; i++) {
1178 fd[i] = drive_get(IF_FLOPPY, 0, i);
1179 }
1180 fdctrl_init_isa(isa_bus, fd);
1181
1182 /* Network card */
1183 network_init(pci_bus);
1184
1185 /* Optional PCI video card */
1186 pci_vga_init(pci_bus);
1187 }
1188
1189 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1190 {
1191 return 0;
1192 }
1193
1194 static void mips_malta_class_init(ObjectClass *klass, void *data)
1195 {
1196 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1197
1198 k->init = mips_malta_sysbus_device_init;
1199 }
1200
1201 static const TypeInfo mips_malta_device = {
1202 .name = TYPE_MIPS_MALTA,
1203 .parent = TYPE_SYS_BUS_DEVICE,
1204 .instance_size = sizeof(MaltaState),
1205 .class_init = mips_malta_class_init,
1206 };
1207
1208 static QEMUMachine mips_malta_machine = {
1209 .name = "malta",
1210 .desc = "MIPS Malta Core LV",
1211 .init = mips_malta_init,
1212 .max_cpus = 16,
1213 .is_default = 1,
1214 };
1215
1216 static void mips_malta_register_types(void)
1217 {
1218 type_register_static(&mips_malta_device);
1219 }
1220
1221 static void mips_malta_machine_init(void)
1222 {
1223 qemu_register_machine(&mips_malta_machine);
1224 }
1225
1226 type_init(mips_malta_register_types)
1227 machine_init(mips_malta_machine_init);