]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips/mips_malta.c
char: remove init callback
[mirror_qemu.git] / hw / mips / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/i386/pc.h"
30 #include "hw/char/serial.h"
31 #include "hw/block/fdc.h"
32 #include "net/net.h"
33 #include "hw/boards.h"
34 #include "hw/i2c/smbus.h"
35 #include "sysemu/block-backend.h"
36 #include "hw/block/flash.h"
37 #include "hw/mips/mips.h"
38 #include "hw/mips/cpudevs.h"
39 #include "hw/pci/pci.h"
40 #include "sysemu/char.h"
41 #include "sysemu/sysemu.h"
42 #include "sysemu/arch_init.h"
43 #include "qemu/log.h"
44 #include "hw/mips/bios.h"
45 #include "hw/ide.h"
46 #include "hw/loader.h"
47 #include "elf.h"
48 #include "hw/timer/mc146818rtc.h"
49 #include "hw/timer/i8254.h"
50 #include "sysemu/block-backend.h"
51 #include "sysemu/blockdev.h"
52 #include "exec/address-spaces.h"
53 #include "hw/sysbus.h" /* SysBusDevice */
54 #include "qemu/host-utils.h"
55 #include "sysemu/qtest.h"
56 #include "qemu/error-report.h"
57 #include "hw/empty_slot.h"
58 #include "sysemu/kvm.h"
59 #include "exec/semihost.h"
60 #include "hw/mips/cps.h"
61
62 //#define DEBUG_BOARD_INIT
63
64 #define ENVP_ADDR 0x80002000l
65 #define ENVP_NB_ENTRIES 16
66 #define ENVP_ENTRY_SIZE 256
67
68 /* Hardware addresses */
69 #define FLASH_ADDRESS 0x1e000000ULL
70 #define FPGA_ADDRESS 0x1f000000ULL
71 #define RESET_ADDRESS 0x1fc00000ULL
72
73 #define FLASH_SIZE 0x400000
74
75 #define MAX_IDE_BUS 2
76
77 typedef struct {
78 MemoryRegion iomem;
79 MemoryRegion iomem_lo; /* 0 - 0x900 */
80 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
81 uint32_t leds;
82 uint32_t brk;
83 uint32_t gpout;
84 uint32_t i2cin;
85 uint32_t i2coe;
86 uint32_t i2cout;
87 uint32_t i2csel;
88 CharDriverState *display;
89 char display_text[9];
90 SerialState *uart;
91 bool display_inited;
92 } MaltaFPGAState;
93
94 #define TYPE_MIPS_MALTA "mips-malta"
95 #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA)
96
97 typedef struct {
98 SysBusDevice parent_obj;
99
100 MIPSCPSState *cps;
101 qemu_irq *i8259;
102 } MaltaState;
103
104 static ISADevice *pit;
105
106 static struct _loaderparams {
107 int ram_size, ram_low_size;
108 const char *kernel_filename;
109 const char *kernel_cmdline;
110 const char *initrd_filename;
111 } loaderparams;
112
113 /* Malta FPGA */
114 static void malta_fpga_update_display(void *opaque)
115 {
116 char leds_text[9];
117 int i;
118 MaltaFPGAState *s = opaque;
119
120 for (i = 7 ; i >= 0 ; i--) {
121 if (s->leds & (1 << i))
122 leds_text[i] = '#';
123 else
124 leds_text[i] = ' ';
125 }
126 leds_text[8] = '\0';
127
128 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
129 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
130 }
131
132 /*
133 * EEPROM 24C01 / 24C02 emulation.
134 *
135 * Emulation for serial EEPROMs:
136 * 24C01 - 1024 bit (128 x 8)
137 * 24C02 - 2048 bit (256 x 8)
138 *
139 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
140 */
141
142 //~ #define DEBUG
143
144 #if defined(DEBUG)
145 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
146 #else
147 # define logout(fmt, ...) ((void)0)
148 #endif
149
150 struct _eeprom24c0x_t {
151 uint8_t tick;
152 uint8_t address;
153 uint8_t command;
154 uint8_t ack;
155 uint8_t scl;
156 uint8_t sda;
157 uint8_t data;
158 //~ uint16_t size;
159 uint8_t contents[256];
160 };
161
162 typedef struct _eeprom24c0x_t eeprom24c0x_t;
163
164 static eeprom24c0x_t spd_eeprom = {
165 .contents = {
166 /* 00000000: */ 0x80,0x08,0xFF,0x0D,0x0A,0xFF,0x40,0x00,
167 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
168 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x00,0x00,
169 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0xFF,
170 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
171 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
172 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
173 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
174 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
175 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
176 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
177 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
178 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
179 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
180 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
181 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
182 },
183 };
184
185 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
186 {
187 enum { SDR = 0x4, DDR2 = 0x8 } type;
188 uint8_t *spd = spd_eeprom.contents;
189 uint8_t nbanks = 0;
190 uint16_t density = 0;
191 int i;
192
193 /* work in terms of MB */
194 ram_size >>= 20;
195
196 while ((ram_size >= 4) && (nbanks <= 2)) {
197 int sz_log2 = MIN(31 - clz32(ram_size), 14);
198 nbanks++;
199 density |= 1 << (sz_log2 - 2);
200 ram_size -= 1 << sz_log2;
201 }
202
203 /* split to 2 banks if possible */
204 if ((nbanks == 1) && (density > 1)) {
205 nbanks++;
206 density >>= 1;
207 }
208
209 if (density & 0xff00) {
210 density = (density & 0xe0) | ((density >> 8) & 0x1f);
211 type = DDR2;
212 } else if (!(density & 0x1f)) {
213 type = DDR2;
214 } else {
215 type = SDR;
216 }
217
218 if (ram_size) {
219 fprintf(stderr, "Warning: SPD cannot represent final %dMB"
220 " of SDRAM\n", (int)ram_size);
221 }
222
223 /* fill in SPD memory information */
224 spd[2] = type;
225 spd[5] = nbanks;
226 spd[31] = density;
227
228 /* checksum */
229 spd[63] = 0;
230 for (i = 0; i < 63; i++) {
231 spd[63] += spd[i];
232 }
233
234 /* copy for SMBUS */
235 memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
236 }
237
238 static void generate_eeprom_serial(uint8_t *eeprom)
239 {
240 int i, pos = 0;
241 uint8_t mac[6] = { 0x00 };
242 uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
243
244 /* version */
245 eeprom[pos++] = 0x01;
246
247 /* count */
248 eeprom[pos++] = 0x02;
249
250 /* MAC address */
251 eeprom[pos++] = 0x01; /* MAC */
252 eeprom[pos++] = 0x06; /* length */
253 memcpy(&eeprom[pos], mac, sizeof(mac));
254 pos += sizeof(mac);
255
256 /* serial number */
257 eeprom[pos++] = 0x02; /* serial */
258 eeprom[pos++] = 0x05; /* length */
259 memcpy(&eeprom[pos], sn, sizeof(sn));
260 pos += sizeof(sn);
261
262 /* checksum */
263 eeprom[pos] = 0;
264 for (i = 0; i < pos; i++) {
265 eeprom[pos] += eeprom[i];
266 }
267 }
268
269 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
270 {
271 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
272 eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
273 return eeprom->sda;
274 }
275
276 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
277 {
278 if (eeprom->scl && scl && (eeprom->sda != sda)) {
279 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
280 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
281 sda ? "stop" : "start");
282 if (!sda) {
283 eeprom->tick = 1;
284 eeprom->command = 0;
285 }
286 } else if (eeprom->tick == 0 && !eeprom->ack) {
287 /* Waiting for start. */
288 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
289 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
290 } else if (!eeprom->scl && scl) {
291 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
292 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
293 if (eeprom->ack) {
294 logout("\ti2c ack bit = 0\n");
295 sda = 0;
296 eeprom->ack = 0;
297 } else if (eeprom->sda == sda) {
298 uint8_t bit = (sda != 0);
299 logout("\ti2c bit = %d\n", bit);
300 if (eeprom->tick < 9) {
301 eeprom->command <<= 1;
302 eeprom->command += bit;
303 eeprom->tick++;
304 if (eeprom->tick == 9) {
305 logout("\tcommand 0x%04x, %s\n", eeprom->command,
306 bit ? "read" : "write");
307 eeprom->ack = 1;
308 }
309 } else if (eeprom->tick < 17) {
310 if (eeprom->command & 1) {
311 sda = ((eeprom->data & 0x80) != 0);
312 }
313 eeprom->address <<= 1;
314 eeprom->address += bit;
315 eeprom->tick++;
316 eeprom->data <<= 1;
317 if (eeprom->tick == 17) {
318 eeprom->data = eeprom->contents[eeprom->address];
319 logout("\taddress 0x%04x, data 0x%02x\n",
320 eeprom->address, eeprom->data);
321 eeprom->ack = 1;
322 eeprom->tick = 0;
323 }
324 } else if (eeprom->tick >= 17) {
325 sda = 0;
326 }
327 } else {
328 logout("\tsda changed with raising scl\n");
329 }
330 } else {
331 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
332 scl, eeprom->sda, sda);
333 }
334 eeprom->scl = scl;
335 eeprom->sda = sda;
336 }
337
338 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
339 unsigned size)
340 {
341 MaltaFPGAState *s = opaque;
342 uint32_t val = 0;
343 uint32_t saddr;
344
345 saddr = (addr & 0xfffff);
346
347 switch (saddr) {
348
349 /* SWITCH Register */
350 case 0x00200:
351 val = 0x00000000; /* All switches closed */
352 break;
353
354 /* STATUS Register */
355 case 0x00208:
356 #ifdef TARGET_WORDS_BIGENDIAN
357 val = 0x00000012;
358 #else
359 val = 0x00000010;
360 #endif
361 break;
362
363 /* JMPRS Register */
364 case 0x00210:
365 val = 0x00;
366 break;
367
368 /* LEDBAR Register */
369 case 0x00408:
370 val = s->leds;
371 break;
372
373 /* BRKRES Register */
374 case 0x00508:
375 val = s->brk;
376 break;
377
378 /* UART Registers are handled directly by the serial device */
379
380 /* GPOUT Register */
381 case 0x00a00:
382 val = s->gpout;
383 break;
384
385 /* XXX: implement a real I2C controller */
386
387 /* GPINP Register */
388 case 0x00a08:
389 /* IN = OUT until a real I2C control is implemented */
390 if (s->i2csel)
391 val = s->i2cout;
392 else
393 val = 0x00;
394 break;
395
396 /* I2CINP Register */
397 case 0x00b00:
398 val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
399 break;
400
401 /* I2COE Register */
402 case 0x00b08:
403 val = s->i2coe;
404 break;
405
406 /* I2COUT Register */
407 case 0x00b10:
408 val = s->i2cout;
409 break;
410
411 /* I2CSEL Register */
412 case 0x00b18:
413 val = s->i2csel;
414 break;
415
416 default:
417 #if 0
418 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
419 addr);
420 #endif
421 break;
422 }
423 return val;
424 }
425
426 static void malta_fpga_write(void *opaque, hwaddr addr,
427 uint64_t val, unsigned size)
428 {
429 MaltaFPGAState *s = opaque;
430 uint32_t saddr;
431
432 saddr = (addr & 0xfffff);
433
434 switch (saddr) {
435
436 /* SWITCH Register */
437 case 0x00200:
438 break;
439
440 /* JMPRS Register */
441 case 0x00210:
442 break;
443
444 /* LEDBAR Register */
445 case 0x00408:
446 s->leds = val & 0xff;
447 malta_fpga_update_display(s);
448 break;
449
450 /* ASCIIWORD Register */
451 case 0x00410:
452 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
453 malta_fpga_update_display(s);
454 break;
455
456 /* ASCIIPOS0 to ASCIIPOS7 Registers */
457 case 0x00418:
458 case 0x00420:
459 case 0x00428:
460 case 0x00430:
461 case 0x00438:
462 case 0x00440:
463 case 0x00448:
464 case 0x00450:
465 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
466 malta_fpga_update_display(s);
467 break;
468
469 /* SOFTRES Register */
470 case 0x00500:
471 if (val == 0x42)
472 qemu_system_reset_request ();
473 break;
474
475 /* BRKRES Register */
476 case 0x00508:
477 s->brk = val & 0xff;
478 break;
479
480 /* UART Registers are handled directly by the serial device */
481
482 /* GPOUT Register */
483 case 0x00a00:
484 s->gpout = val & 0xff;
485 break;
486
487 /* I2COE Register */
488 case 0x00b08:
489 s->i2coe = val & 0x03;
490 break;
491
492 /* I2COUT Register */
493 case 0x00b10:
494 eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
495 s->i2cout = val;
496 break;
497
498 /* I2CSEL Register */
499 case 0x00b18:
500 s->i2csel = val & 0x01;
501 break;
502
503 default:
504 #if 0
505 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
506 addr);
507 #endif
508 break;
509 }
510 }
511
512 static const MemoryRegionOps malta_fpga_ops = {
513 .read = malta_fpga_read,
514 .write = malta_fpga_write,
515 .endianness = DEVICE_NATIVE_ENDIAN,
516 };
517
518 static void malta_fpga_reset(void *opaque)
519 {
520 MaltaFPGAState *s = opaque;
521
522 s->leds = 0x00;
523 s->brk = 0x0a;
524 s->gpout = 0x00;
525 s->i2cin = 0x3;
526 s->i2coe = 0x0;
527 s->i2cout = 0x3;
528 s->i2csel = 0x1;
529
530 s->display_text[8] = '\0';
531 snprintf(s->display_text, 9, " ");
532 }
533
534 static void malta_fgpa_display_event(void *opaque, int event)
535 {
536 MaltaFPGAState *s = opaque;
537
538 if (event == CHR_EVENT_OPENED && !s->display_inited) {
539 qemu_chr_fe_printf(s->display, "\e[HMalta LEDBAR\r\n");
540 qemu_chr_fe_printf(s->display, "+--------+\r\n");
541 qemu_chr_fe_printf(s->display, "+ +\r\n");
542 qemu_chr_fe_printf(s->display, "+--------+\r\n");
543 qemu_chr_fe_printf(s->display, "\n");
544 qemu_chr_fe_printf(s->display, "Malta ASCII\r\n");
545 qemu_chr_fe_printf(s->display, "+--------+\r\n");
546 qemu_chr_fe_printf(s->display, "+ +\r\n");
547 qemu_chr_fe_printf(s->display, "+--------+\r\n");
548 s->display_inited = true;
549 }
550 }
551
552 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
553 hwaddr base, qemu_irq uart_irq, CharDriverState *uart_chr)
554 {
555 MaltaFPGAState *s;
556
557 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
558
559 memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
560 "malta-fpga", 0x100000);
561 memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
562 &s->iomem, 0, 0x900);
563 memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
564 &s->iomem, 0xa00, 0x10000-0xa00);
565
566 memory_region_add_subregion(address_space, base, &s->iomem_lo);
567 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
568
569 s->display = qemu_chr_new("fpga", "vc:320x200");
570 qemu_chr_add_handlers(s->display, NULL, NULL,
571 malta_fgpa_display_event, s);
572
573 s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
574 230400, uart_chr, DEVICE_NATIVE_ENDIAN);
575
576 malta_fpga_reset(s);
577 qemu_register_reset(malta_fpga_reset, s);
578
579 return s;
580 }
581
582 /* Network support */
583 static void network_init(PCIBus *pci_bus)
584 {
585 int i;
586
587 for(i = 0; i < nb_nics; i++) {
588 NICInfo *nd = &nd_table[i];
589 const char *default_devaddr = NULL;
590
591 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
592 /* The malta board has a PCNet card using PCI SLOT 11 */
593 default_devaddr = "0b";
594
595 pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr);
596 }
597 }
598
599 /* ROM and pseudo bootloader
600
601 The following code implements a very very simple bootloader. It first
602 loads the registers a0 to a3 to the values expected by the OS, and
603 then jump at the kernel address.
604
605 The bootloader should pass the locations of the kernel arguments and
606 environment variables tables. Those tables contain the 32-bit address
607 of NULL terminated strings. The environment variables table should be
608 terminated by a NULL address.
609
610 For a simpler implementation, the number of kernel arguments is fixed
611 to two (the name of the kernel and the command line), and the two
612 tables are actually the same one.
613
614 The registers a0 to a3 should contain the following values:
615 a0 - number of kernel arguments
616 a1 - 32-bit address of the kernel arguments table
617 a2 - 32-bit address of the environment variables table
618 a3 - RAM size in bytes
619 */
620
621 static void write_bootloader(uint8_t *base, int64_t run_addr,
622 int64_t kernel_entry)
623 {
624 uint32_t *p;
625
626 /* Small bootloader */
627 p = (uint32_t *)base;
628
629 stl_p(p++, 0x08000000 | /* j 0x1fc00580 */
630 ((run_addr + 0x580) & 0x0fffffff) >> 2);
631 stl_p(p++, 0x00000000); /* nop */
632
633 /* YAMON service vector */
634 stl_p(base + 0x500, run_addr + 0x0580); /* start: */
635 stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */
636 stl_p(base + 0x520, run_addr + 0x0580); /* start: */
637 stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */
638 stl_p(base + 0x534, run_addr + 0x0808); /* print: */
639 stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */
640 stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */
641 stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */
642 stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */
643 stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */
644 stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */
645 stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */
646 stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */
647
648
649 /* Second part of the bootloader */
650 p = (uint32_t *) (base + 0x580);
651
652 if (semihosting_get_argc()) {
653 /* Preserve a0 content as arguments have been passed */
654 stl_p(p++, 0x00000000); /* nop */
655 } else {
656 stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */
657 }
658 stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
659 stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
660 stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
661 stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
662 stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
663 stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
664 stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); /* lui a3, high(ram_low_size) */
665 stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); /* ori a3, a3, low(ram_low_size) */
666
667 /* Load BAR registers as done by YAMON */
668 stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */
669
670 #ifdef TARGET_WORDS_BIGENDIAN
671 stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */
672 #else
673 stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */
674 #endif
675 stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */
676
677 stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
678
679 #ifdef TARGET_WORDS_BIGENDIAN
680 stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */
681 #else
682 stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
683 #endif
684 stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */
685 #ifdef TARGET_WORDS_BIGENDIAN
686 stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */
687 #else
688 stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */
689 #endif
690 stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */
691
692 #ifdef TARGET_WORDS_BIGENDIAN
693 stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */
694 #else
695 stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */
696 #endif
697 stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */
698 #ifdef TARGET_WORDS_BIGENDIAN
699 stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */
700 #else
701 stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */
702 #endif
703 stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */
704
705 #ifdef TARGET_WORDS_BIGENDIAN
706 stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */
707 #else
708 stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
709 #endif
710 stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */
711 #ifdef TARGET_WORDS_BIGENDIAN
712 stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */
713 #else
714 stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */
715 #endif
716 stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */
717
718 /* Jump to kernel code */
719 stl_p(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
720 stl_p(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
721 stl_p(p++, 0x03e00009); /* jalr ra */
722 stl_p(p++, 0x00000000); /* nop */
723
724 /* YAMON subroutines */
725 p = (uint32_t *) (base + 0x800);
726 stl_p(p++, 0x03e00009); /* jalr ra */
727 stl_p(p++, 0x24020000); /* li v0,0 */
728 /* 808 YAMON print */
729 stl_p(p++, 0x03e06821); /* move t5,ra */
730 stl_p(p++, 0x00805821); /* move t3,a0 */
731 stl_p(p++, 0x00a05021); /* move t2,a1 */
732 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
733 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
734 stl_p(p++, 0x10800005); /* beqz a0,834 */
735 stl_p(p++, 0x00000000); /* nop */
736 stl_p(p++, 0x0ff0021c); /* jal 870 */
737 stl_p(p++, 0x00000000); /* nop */
738 stl_p(p++, 0x1000fff9); /* b 814 */
739 stl_p(p++, 0x00000000); /* nop */
740 stl_p(p++, 0x01a00009); /* jalr t5 */
741 stl_p(p++, 0x01602021); /* move a0,t3 */
742 /* 0x83c YAMON print_count */
743 stl_p(p++, 0x03e06821); /* move t5,ra */
744 stl_p(p++, 0x00805821); /* move t3,a0 */
745 stl_p(p++, 0x00a05021); /* move t2,a1 */
746 stl_p(p++, 0x00c06021); /* move t4,a2 */
747 stl_p(p++, 0x91440000); /* lbu a0,0(t2) */
748 stl_p(p++, 0x0ff0021c); /* jal 870 */
749 stl_p(p++, 0x00000000); /* nop */
750 stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */
751 stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */
752 stl_p(p++, 0x1580fffa); /* bnez t4,84c */
753 stl_p(p++, 0x00000000); /* nop */
754 stl_p(p++, 0x01a00009); /* jalr t5 */
755 stl_p(p++, 0x01602021); /* move a0,t3 */
756 /* 0x870 */
757 stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */
758 stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
759 stl_p(p++, 0x91090005); /* lbu t1,5(t0) */
760 stl_p(p++, 0x00000000); /* nop */
761 stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */
762 stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
763 stl_p(p++, 0x00000000); /* nop */
764 stl_p(p++, 0x03e00009); /* jalr ra */
765 stl_p(p++, 0xa1040000); /* sb a0,0(t0) */
766
767 }
768
769 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
770 const char *string, ...)
771 {
772 va_list ap;
773 int32_t table_addr;
774
775 if (index >= ENVP_NB_ENTRIES)
776 return;
777
778 if (string == NULL) {
779 prom_buf[index] = 0;
780 return;
781 }
782
783 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
784 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
785
786 va_start(ap, string);
787 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
788 va_end(ap);
789 }
790
791 /* Kernel */
792 static int64_t load_kernel (void)
793 {
794 int64_t kernel_entry, kernel_high;
795 long initrd_size;
796 ram_addr_t initrd_offset;
797 int big_endian;
798 uint32_t *prom_buf;
799 long prom_size;
800 int prom_index = 0;
801 uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr);
802
803 #ifdef TARGET_WORDS_BIGENDIAN
804 big_endian = 1;
805 #else
806 big_endian = 0;
807 #endif
808
809 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
810 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
811 big_endian, EM_MIPS, 1, 0) < 0) {
812 fprintf(stderr, "qemu: could not load kernel '%s'\n",
813 loaderparams.kernel_filename);
814 exit(1);
815 }
816
817 /* Sanity check where the kernel has been linked */
818 if (kvm_enabled()) {
819 if (kernel_entry & 0x80000000ll) {
820 error_report("KVM guest kernels must be linked in useg. "
821 "Did you forget to enable CONFIG_KVM_GUEST?");
822 exit(1);
823 }
824
825 xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0;
826 } else {
827 if (!(kernel_entry & 0x80000000ll)) {
828 error_report("KVM guest kernels aren't supported with TCG. "
829 "Did you unintentionally enable CONFIG_KVM_GUEST?");
830 exit(1);
831 }
832
833 xlate_to_kseg0 = cpu_mips_phys_to_kseg0;
834 }
835
836 /* load initrd */
837 initrd_size = 0;
838 initrd_offset = 0;
839 if (loaderparams.initrd_filename) {
840 initrd_size = get_image_size (loaderparams.initrd_filename);
841 if (initrd_size > 0) {
842 initrd_offset = (kernel_high + ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK;
843 if (initrd_offset + initrd_size > ram_size) {
844 fprintf(stderr,
845 "qemu: memory too small for initial ram disk '%s'\n",
846 loaderparams.initrd_filename);
847 exit(1);
848 }
849 initrd_size = load_image_targphys(loaderparams.initrd_filename,
850 initrd_offset,
851 ram_size - initrd_offset);
852 }
853 if (initrd_size == (target_ulong) -1) {
854 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
855 loaderparams.initrd_filename);
856 exit(1);
857 }
858 }
859
860 /* Setup prom parameters. */
861 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
862 prom_buf = g_malloc(prom_size);
863
864 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
865 if (initrd_size > 0) {
866 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
867 xlate_to_kseg0(NULL, initrd_offset), initrd_size,
868 loaderparams.kernel_cmdline);
869 } else {
870 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
871 }
872
873 prom_set(prom_buf, prom_index++, "memsize");
874 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
875
876 prom_set(prom_buf, prom_index++, "ememsize");
877 prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
878
879 prom_set(prom_buf, prom_index++, "modetty0");
880 prom_set(prom_buf, prom_index++, "38400n8r");
881 prom_set(prom_buf, prom_index++, NULL);
882
883 rom_add_blob_fixed("prom", prom_buf, prom_size,
884 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
885
886 g_free(prom_buf);
887 return kernel_entry;
888 }
889
890 static void malta_mips_config(MIPSCPU *cpu)
891 {
892 CPUMIPSState *env = &cpu->env;
893 CPUState *cs = CPU(cpu);
894
895 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
896 ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC);
897 }
898
899 static void main_cpu_reset(void *opaque)
900 {
901 MIPSCPU *cpu = opaque;
902 CPUMIPSState *env = &cpu->env;
903
904 cpu_reset(CPU(cpu));
905
906 /* The bootloader does not need to be rewritten as it is located in a
907 read only location. The kernel location and the arguments table
908 location does not change. */
909 if (loaderparams.kernel_filename) {
910 env->CP0_Status &= ~(1 << CP0St_ERL);
911 }
912
913 malta_mips_config(cpu);
914
915 if (kvm_enabled()) {
916 /* Start running from the bootloader we wrote to end of RAM */
917 env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size;
918 }
919 }
920
921 static void create_cpu_without_cps(const char *cpu_model,
922 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
923 {
924 CPUMIPSState *env;
925 MIPSCPU *cpu;
926 int i;
927
928 for (i = 0; i < smp_cpus; i++) {
929 cpu = cpu_mips_init(cpu_model);
930 if (cpu == NULL) {
931 fprintf(stderr, "Unable to find CPU definition\n");
932 exit(1);
933 }
934
935 /* Init internal devices */
936 cpu_mips_irq_init_cpu(cpu);
937 cpu_mips_clock_init(cpu);
938 qemu_register_reset(main_cpu_reset, cpu);
939 }
940
941 cpu = MIPS_CPU(first_cpu);
942 env = &cpu->env;
943 *i8259_irq = env->irq[2];
944 *cbus_irq = env->irq[4];
945 }
946
947 static void create_cps(MaltaState *s, const char *cpu_model,
948 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
949 {
950 Error *err = NULL;
951 s->cps = g_new0(MIPSCPSState, 1);
952
953 object_initialize(s->cps, sizeof(MIPSCPSState), TYPE_MIPS_CPS);
954 qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
955
956 object_property_set_str(OBJECT(s->cps), cpu_model, "cpu-model", &err);
957 object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
958 object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
959 if (err != NULL) {
960 error_report("%s", error_get_pretty(err));
961 exit(1);
962 }
963
964 sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
965
966 *i8259_irq = get_cps_irq(s->cps, 3);
967 *cbus_irq = NULL;
968 }
969
970 static void create_cpu(MaltaState *s, const char *cpu_model,
971 qemu_irq *cbus_irq, qemu_irq *i8259_irq)
972 {
973 if (cpu_model == NULL) {
974 #ifdef TARGET_MIPS64
975 cpu_model = "20Kc";
976 #else
977 cpu_model = "24Kf";
978 #endif
979 }
980
981 if ((smp_cpus > 1) && cpu_supports_cps_smp(cpu_model)) {
982 create_cps(s, cpu_model, cbus_irq, i8259_irq);
983 } else {
984 create_cpu_without_cps(cpu_model, cbus_irq, i8259_irq);
985 }
986 }
987
988 static
989 void mips_malta_init(MachineState *machine)
990 {
991 ram_addr_t ram_size = machine->ram_size;
992 ram_addr_t ram_low_size;
993 const char *kernel_filename = machine->kernel_filename;
994 const char *kernel_cmdline = machine->kernel_cmdline;
995 const char *initrd_filename = machine->initrd_filename;
996 char *filename;
997 pflash_t *fl;
998 MemoryRegion *system_memory = get_system_memory();
999 MemoryRegion *ram_high = g_new(MemoryRegion, 1);
1000 MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1001 MemoryRegion *ram_low_postio;
1002 MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1003 target_long bios_size = FLASH_SIZE;
1004 const size_t smbus_eeprom_size = 8 * 256;
1005 uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1006 int64_t kernel_entry, bootloader_run_addr;
1007 PCIBus *pci_bus;
1008 ISABus *isa_bus;
1009 qemu_irq *isa_irq;
1010 qemu_irq cbus_irq, i8259_irq;
1011 int piix4_devfn;
1012 I2CBus *smbus;
1013 int i;
1014 DriveInfo *dinfo;
1015 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
1016 DriveInfo *fd[MAX_FD];
1017 int fl_idx = 0;
1018 int fl_sectors = bios_size >> 16;
1019 int be;
1020
1021 DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA);
1022 MaltaState *s = MIPS_MALTA(dev);
1023
1024 /* The whole address space decoded by the GT-64120A doesn't generate
1025 exception when accessing invalid memory. Create an empty slot to
1026 emulate this feature. */
1027 empty_slot_init(0, 0x20000000);
1028
1029 qdev_init_nofail(dev);
1030
1031 /* Make sure the first 3 serial ports are associated with a device. */
1032 for(i = 0; i < 3; i++) {
1033 if (!serial_hds[i]) {
1034 char label[32];
1035 snprintf(label, sizeof(label), "serial%d", i);
1036 serial_hds[i] = qemu_chr_new(label, "null");
1037 }
1038 }
1039
1040 /* create CPU */
1041 create_cpu(s, machine->cpu_model, &cbus_irq, &i8259_irq);
1042
1043 /* allocate RAM */
1044 if (ram_size > (2048u << 20)) {
1045 fprintf(stderr,
1046 "qemu: Too much memory for this machine: %d MB, maximum 2048 MB\n",
1047 ((unsigned int)ram_size / (1 << 20)));
1048 exit(1);
1049 }
1050
1051 /* register RAM at high address where it is undisturbed by IO */
1052 memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram",
1053 ram_size);
1054 memory_region_add_subregion(system_memory, 0x80000000, ram_high);
1055
1056 /* alias for pre IO hole access */
1057 memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1058 ram_high, 0, MIN(ram_size, (256 << 20)));
1059 memory_region_add_subregion(system_memory, 0, ram_low_preio);
1060
1061 /* alias for post IO hole access, if there is enough RAM */
1062 if (ram_size > (512 << 20)) {
1063 ram_low_postio = g_new(MemoryRegion, 1);
1064 memory_region_init_alias(ram_low_postio, NULL,
1065 "mips_malta_low_postio.ram",
1066 ram_high, 512 << 20,
1067 ram_size - (512 << 20));
1068 memory_region_add_subregion(system_memory, 512 << 20, ram_low_postio);
1069 }
1070
1071 /* generate SPD EEPROM data */
1072 generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1073 generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1074
1075 #ifdef TARGET_WORDS_BIGENDIAN
1076 be = 1;
1077 #else
1078 be = 0;
1079 #endif
1080 /* FPGA */
1081 /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1082 malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hds[2]);
1083
1084 /* Load firmware in flash / BIOS. */
1085 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1086 #ifdef DEBUG_BOARD_INIT
1087 if (dinfo) {
1088 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
1089 "addr %08llx '%s' %x\n",
1090 fl_idx, bios_size, FLASH_ADDRESS,
1091 blk_name(dinfo->bdrv), fl_sectors);
1092 }
1093 #endif
1094 fl = pflash_cfi01_register(FLASH_ADDRESS, NULL, "mips_malta.bios",
1095 BIOS_SIZE,
1096 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1097 65536, fl_sectors,
1098 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
1099 bios = pflash_cfi01_get_memory(fl);
1100 fl_idx++;
1101 if (kernel_filename) {
1102 ram_low_size = MIN(ram_size, 256 << 20);
1103 /* For KVM we reserve 1MB of RAM for running bootloader */
1104 if (kvm_enabled()) {
1105 ram_low_size -= 0x100000;
1106 bootloader_run_addr = 0x40000000 + ram_low_size;
1107 } else {
1108 bootloader_run_addr = 0xbfc00000;
1109 }
1110
1111 /* Write a small bootloader to the flash location. */
1112 loaderparams.ram_size = ram_size;
1113 loaderparams.ram_low_size = ram_low_size;
1114 loaderparams.kernel_filename = kernel_filename;
1115 loaderparams.kernel_cmdline = kernel_cmdline;
1116 loaderparams.initrd_filename = initrd_filename;
1117 kernel_entry = load_kernel();
1118
1119 write_bootloader(memory_region_get_ram_ptr(bios),
1120 bootloader_run_addr, kernel_entry);
1121 if (kvm_enabled()) {
1122 /* Write the bootloader code @ the end of RAM, 1MB reserved */
1123 write_bootloader(memory_region_get_ram_ptr(ram_low_preio) +
1124 ram_low_size,
1125 bootloader_run_addr, kernel_entry);
1126 }
1127 } else {
1128 /* The flash region isn't executable from a KVM guest */
1129 if (kvm_enabled()) {
1130 error_report("KVM enabled but no -kernel argument was specified. "
1131 "Booting from flash is not supported with KVM.");
1132 exit(1);
1133 }
1134 /* Load firmware from flash. */
1135 if (!dinfo) {
1136 /* Load a BIOS image. */
1137 if (bios_name == NULL) {
1138 bios_name = BIOS_FILENAME;
1139 }
1140 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1141 if (filename) {
1142 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1143 BIOS_SIZE);
1144 g_free(filename);
1145 } else {
1146 bios_size = -1;
1147 }
1148 if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1149 !kernel_filename && !qtest_enabled()) {
1150 error_report("Could not load MIPS bios '%s', and no "
1151 "-kernel argument was specified", bios_name);
1152 exit(1);
1153 }
1154 }
1155 /* In little endian mode the 32bit words in the bios are swapped,
1156 a neat trick which allows bi-endian firmware. */
1157 #ifndef TARGET_WORDS_BIGENDIAN
1158 {
1159 uint32_t *end, *addr = rom_ptr(FLASH_ADDRESS);
1160 if (!addr) {
1161 addr = memory_region_get_ram_ptr(bios);
1162 }
1163 end = (void *)addr + MIN(bios_size, 0x3e0000);
1164 while (addr < end) {
1165 bswap32s(addr);
1166 addr++;
1167 }
1168 }
1169 #endif
1170 }
1171
1172 /*
1173 * Map the BIOS at a 2nd physical location, as on the real board.
1174 * Copy it so that we can patch in the MIPS revision, which cannot be
1175 * handled by an overlapping region as the resulting ROM code subpage
1176 * regions are not executable.
1177 */
1178 memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1179 &error_fatal);
1180 if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1181 FLASH_ADDRESS, BIOS_SIZE)) {
1182 memcpy(memory_region_get_ram_ptr(bios_copy),
1183 memory_region_get_ram_ptr(bios), BIOS_SIZE);
1184 }
1185 memory_region_set_readonly(bios_copy, true);
1186 memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1187
1188 /* Board ID = 0x420 (Malta Board with CoreLV) */
1189 stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1190
1191 /*
1192 * We have a circular dependency problem: pci_bus depends on isa_irq,
1193 * isa_irq is provided by i8259, i8259 depends on ISA, ISA depends
1194 * on piix4, and piix4 depends on pci_bus. To stop the cycle we have
1195 * qemu_irq_proxy() adds an extra bit of indirection, allowing us
1196 * to resolve the isa_irq -> i8259 dependency after i8259 is initialized.
1197 */
1198 isa_irq = qemu_irq_proxy(&s->i8259, 16);
1199
1200 /* Northbridge */
1201 pci_bus = gt64120_register(isa_irq);
1202
1203 /* Southbridge */
1204 ide_drive_get(hd, ARRAY_SIZE(hd));
1205
1206 piix4_devfn = piix4_init(pci_bus, &isa_bus, 80);
1207
1208 /* Interrupt controller */
1209 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
1210 s->i8259 = i8259_init(isa_bus, i8259_irq);
1211
1212 isa_bus_irqs(isa_bus, s->i8259);
1213 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
1214 pci_create_simple(pci_bus, piix4_devfn + 2, "piix4-usb-uhci");
1215 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100,
1216 isa_get_irq(NULL, 9), NULL, 0, NULL);
1217 smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1218 g_free(smbus_eeprom_buf);
1219 pit = pit_init(isa_bus, 0x40, 0, NULL);
1220 DMA_init(isa_bus, 0);
1221
1222 /* Super I/O */
1223 isa_create_simple(isa_bus, "i8042");
1224
1225 rtc_init(isa_bus, 2000, NULL);
1226 serial_hds_isa_init(isa_bus, 0, 2);
1227 parallel_hds_isa_init(isa_bus, 1);
1228
1229 for(i = 0; i < MAX_FD; i++) {
1230 fd[i] = drive_get(IF_FLOPPY, 0, i);
1231 }
1232 fdctrl_init_isa(isa_bus, fd);
1233
1234 /* Network card */
1235 network_init(pci_bus);
1236
1237 /* Optional PCI video card */
1238 pci_vga_init(pci_bus);
1239 }
1240
1241 static int mips_malta_sysbus_device_init(SysBusDevice *sysbusdev)
1242 {
1243 return 0;
1244 }
1245
1246 static void mips_malta_class_init(ObjectClass *klass, void *data)
1247 {
1248 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1249
1250 k->init = mips_malta_sysbus_device_init;
1251 }
1252
1253 static const TypeInfo mips_malta_device = {
1254 .name = TYPE_MIPS_MALTA,
1255 .parent = TYPE_SYS_BUS_DEVICE,
1256 .instance_size = sizeof(MaltaState),
1257 .class_init = mips_malta_class_init,
1258 };
1259
1260 static void mips_malta_machine_init(MachineClass *mc)
1261 {
1262 mc->desc = "MIPS Malta Core LV";
1263 mc->init = mips_malta_init;
1264 mc->max_cpus = 16;
1265 mc->is_default = 1;
1266 }
1267
1268 DEFINE_MACHINE("malta", mips_malta_machine_init)
1269
1270 static void mips_malta_register_types(void)
1271 {
1272 type_register_static(&mips_malta_device);
1273 }
1274
1275 type_init(mips_malta_register_types)