]> git.proxmox.com Git - mirror_qemu.git/blob - hw/mips_malta.c
Move CPU save/load registration to common code.
[mirror_qemu.git] / hw / mips_malta.c
1 /*
2 * QEMU Malta board support
3 *
4 * Copyright (c) 2006 Aurelien Jarno
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "pci.h"
35 #include "qemu-char.h"
36 #include "sysemu.h"
37 #include "audio/audio.h"
38 #include "boards.h"
39
40 //#define DEBUG_BOARD_INIT
41
42 #ifdef TARGET_WORDS_BIGENDIAN
43 #define BIOS_FILENAME "mips_bios.bin"
44 #else
45 #define BIOS_FILENAME "mipsel_bios.bin"
46 #endif
47
48 #ifdef TARGET_MIPS64
49 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
50 #else
51 #define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
52 #endif
53
54 #define ENVP_ADDR (int32_t)0x80002000
55 #define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
56
57 #define ENVP_NB_ENTRIES 16
58 #define ENVP_ENTRY_SIZE 256
59
60 #define MAX_IDE_BUS 2
61
62 extern FILE *logfile;
63
64 typedef struct {
65 uint32_t leds;
66 uint32_t brk;
67 uint32_t gpout;
68 uint32_t i2cin;
69 uint32_t i2coe;
70 uint32_t i2cout;
71 uint32_t i2csel;
72 CharDriverState *display;
73 char display_text[9];
74 SerialState *uart;
75 } MaltaFPGAState;
76
77 static PITState *pit;
78
79 static struct _loaderparams {
80 int ram_size;
81 const char *kernel_filename;
82 const char *kernel_cmdline;
83 const char *initrd_filename;
84 } loaderparams;
85
86 /* Malta FPGA */
87 static void malta_fpga_update_display(void *opaque)
88 {
89 char leds_text[9];
90 int i;
91 MaltaFPGAState *s = opaque;
92
93 for (i = 7 ; i >= 0 ; i--) {
94 if (s->leds & (1 << i))
95 leds_text[i] = '#';
96 else
97 leds_text[i] = ' ';
98 }
99 leds_text[8] = '\0';
100
101 qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
102 qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
103 }
104
105 /*
106 * EEPROM 24C01 / 24C02 emulation.
107 *
108 * Emulation for serial EEPROMs:
109 * 24C01 - 1024 bit (128 x 8)
110 * 24C02 - 2048 bit (256 x 8)
111 *
112 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
113 */
114
115 //~ #define DEBUG
116
117 #if defined(DEBUG)
118 # define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
119 #else
120 # define logout(fmt, args...) ((void)0)
121 #endif
122
123 struct _eeprom24c0x_t {
124 uint8_t tick;
125 uint8_t address;
126 uint8_t command;
127 uint8_t ack;
128 uint8_t scl;
129 uint8_t sda;
130 uint8_t data;
131 //~ uint16_t size;
132 uint8_t contents[256];
133 };
134
135 typedef struct _eeprom24c0x_t eeprom24c0x_t;
136
137 static eeprom24c0x_t eeprom = {
138 contents: {
139 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
140 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
141 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
142 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
143 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
144 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
147 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
154 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
155 },
156 };
157
158 static uint8_t eeprom24c0x_read()
159 {
160 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
161 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
162 return eeprom.sda;
163 }
164
165 static void eeprom24c0x_write(int scl, int sda)
166 {
167 if (eeprom.scl && scl && (eeprom.sda != sda)) {
168 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
169 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
170 if (!sda) {
171 eeprom.tick = 1;
172 eeprom.command = 0;
173 }
174 } else if (eeprom.tick == 0 && !eeprom.ack) {
175 /* Waiting for start. */
176 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
177 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
178 } else if (!eeprom.scl && scl) {
179 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
180 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
181 if (eeprom.ack) {
182 logout("\ti2c ack bit = 0\n");
183 sda = 0;
184 eeprom.ack = 0;
185 } else if (eeprom.sda == sda) {
186 uint8_t bit = (sda != 0);
187 logout("\ti2c bit = %d\n", bit);
188 if (eeprom.tick < 9) {
189 eeprom.command <<= 1;
190 eeprom.command += bit;
191 eeprom.tick++;
192 if (eeprom.tick == 9) {
193 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
194 eeprom.ack = 1;
195 }
196 } else if (eeprom.tick < 17) {
197 if (eeprom.command & 1) {
198 sda = ((eeprom.data & 0x80) != 0);
199 }
200 eeprom.address <<= 1;
201 eeprom.address += bit;
202 eeprom.tick++;
203 eeprom.data <<= 1;
204 if (eeprom.tick == 17) {
205 eeprom.data = eeprom.contents[eeprom.address];
206 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
207 eeprom.ack = 1;
208 eeprom.tick = 0;
209 }
210 } else if (eeprom.tick >= 17) {
211 sda = 0;
212 }
213 } else {
214 logout("\tsda changed with raising scl\n");
215 }
216 } else {
217 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
218 }
219 eeprom.scl = scl;
220 eeprom.sda = sda;
221 }
222
223 static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
224 {
225 MaltaFPGAState *s = opaque;
226 uint32_t val = 0;
227 uint32_t saddr;
228
229 saddr = (addr & 0xfffff);
230
231 switch (saddr) {
232
233 /* SWITCH Register */
234 case 0x00200:
235 val = 0x00000000; /* All switches closed */
236 break;
237
238 /* STATUS Register */
239 case 0x00208:
240 #ifdef TARGET_WORDS_BIGENDIAN
241 val = 0x00000012;
242 #else
243 val = 0x00000010;
244 #endif
245 break;
246
247 /* JMPRS Register */
248 case 0x00210:
249 val = 0x00;
250 break;
251
252 /* LEDBAR Register */
253 case 0x00408:
254 val = s->leds;
255 break;
256
257 /* BRKRES Register */
258 case 0x00508:
259 val = s->brk;
260 break;
261
262 /* UART Registers are handled directly by the serial device */
263
264 /* GPOUT Register */
265 case 0x00a00:
266 val = s->gpout;
267 break;
268
269 /* XXX: implement a real I2C controller */
270
271 /* GPINP Register */
272 case 0x00a08:
273 /* IN = OUT until a real I2C control is implemented */
274 if (s->i2csel)
275 val = s->i2cout;
276 else
277 val = 0x00;
278 break;
279
280 /* I2CINP Register */
281 case 0x00b00:
282 val = ((s->i2cin & ~1) | eeprom24c0x_read());
283 break;
284
285 /* I2COE Register */
286 case 0x00b08:
287 val = s->i2coe;
288 break;
289
290 /* I2COUT Register */
291 case 0x00b10:
292 val = s->i2cout;
293 break;
294
295 /* I2CSEL Register */
296 case 0x00b18:
297 val = s->i2csel;
298 break;
299
300 default:
301 #if 0
302 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
303 addr);
304 #endif
305 break;
306 }
307 return val;
308 }
309
310 static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
311 uint32_t val)
312 {
313 MaltaFPGAState *s = opaque;
314 uint32_t saddr;
315
316 saddr = (addr & 0xfffff);
317
318 switch (saddr) {
319
320 /* SWITCH Register */
321 case 0x00200:
322 break;
323
324 /* JMPRS Register */
325 case 0x00210:
326 break;
327
328 /* LEDBAR Register */
329 /* XXX: implement a 8-LED array */
330 case 0x00408:
331 s->leds = val & 0xff;
332 break;
333
334 /* ASCIIWORD Register */
335 case 0x00410:
336 snprintf(s->display_text, 9, "%08X", val);
337 malta_fpga_update_display(s);
338 break;
339
340 /* ASCIIPOS0 to ASCIIPOS7 Registers */
341 case 0x00418:
342 case 0x00420:
343 case 0x00428:
344 case 0x00430:
345 case 0x00438:
346 case 0x00440:
347 case 0x00448:
348 case 0x00450:
349 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
350 malta_fpga_update_display(s);
351 break;
352
353 /* SOFTRES Register */
354 case 0x00500:
355 if (val == 0x42)
356 qemu_system_reset_request ();
357 break;
358
359 /* BRKRES Register */
360 case 0x00508:
361 s->brk = val & 0xff;
362 break;
363
364 /* UART Registers are handled directly by the serial device */
365
366 /* GPOUT Register */
367 case 0x00a00:
368 s->gpout = val & 0xff;
369 break;
370
371 /* I2COE Register */
372 case 0x00b08:
373 s->i2coe = val & 0x03;
374 break;
375
376 /* I2COUT Register */
377 case 0x00b10:
378 eeprom24c0x_write(val & 0x02, val & 0x01);
379 s->i2cout = val;
380 break;
381
382 /* I2CSEL Register */
383 case 0x00b18:
384 s->i2csel = val & 0x01;
385 break;
386
387 default:
388 #if 0
389 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
390 addr);
391 #endif
392 break;
393 }
394 }
395
396 static CPUReadMemoryFunc *malta_fpga_read[] = {
397 malta_fpga_readl,
398 malta_fpga_readl,
399 malta_fpga_readl
400 };
401
402 static CPUWriteMemoryFunc *malta_fpga_write[] = {
403 malta_fpga_writel,
404 malta_fpga_writel,
405 malta_fpga_writel
406 };
407
408 static void malta_fpga_reset(void *opaque)
409 {
410 MaltaFPGAState *s = opaque;
411
412 s->leds = 0x00;
413 s->brk = 0x0a;
414 s->gpout = 0x00;
415 s->i2cin = 0x3;
416 s->i2coe = 0x0;
417 s->i2cout = 0x3;
418 s->i2csel = 0x1;
419
420 s->display_text[8] = '\0';
421 snprintf(s->display_text, 9, " ");
422 malta_fpga_update_display(s);
423 }
424
425 static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
426 {
427 MaltaFPGAState *s;
428 CharDriverState *uart_chr;
429 int malta;
430
431 s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
432
433 malta = cpu_register_io_memory(0, malta_fpga_read,
434 malta_fpga_write, s);
435
436 cpu_register_physical_memory(base, 0x900, malta);
437 cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
438
439 s->display = qemu_chr_open("vc:320x200");
440 qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
441 qemu_chr_printf(s->display, "+--------+\r\n");
442 qemu_chr_printf(s->display, "+ +\r\n");
443 qemu_chr_printf(s->display, "+--------+\r\n");
444 qemu_chr_printf(s->display, "\n");
445 qemu_chr_printf(s->display, "Malta ASCII\r\n");
446 qemu_chr_printf(s->display, "+--------+\r\n");
447 qemu_chr_printf(s->display, "+ +\r\n");
448 qemu_chr_printf(s->display, "+--------+\r\n");
449
450 uart_chr = qemu_chr_open("vc:80Cx24C");
451 qemu_chr_printf(uart_chr, "CBUS UART\r\n");
452 s->uart =
453 serial_mm_init(base + 0x900, 3, env->irq[2], 230400, uart_chr, 1);
454
455 malta_fpga_reset(s);
456 qemu_register_reset(malta_fpga_reset, s);
457
458 return s;
459 }
460
461 /* Audio support */
462 #ifdef HAS_AUDIO
463 static void audio_init (PCIBus *pci_bus)
464 {
465 struct soundhw *c;
466 int audio_enabled = 0;
467
468 for (c = soundhw; !audio_enabled && c->name; ++c) {
469 audio_enabled = c->enabled;
470 }
471
472 if (audio_enabled) {
473 AudioState *s;
474
475 s = AUD_init ();
476 if (s) {
477 for (c = soundhw; c->name; ++c) {
478 if (c->enabled)
479 c->init.init_pci (pci_bus, s);
480 }
481 }
482 }
483 }
484 #endif
485
486 /* Network support */
487 static void network_init (PCIBus *pci_bus)
488 {
489 int i;
490 NICInfo *nd;
491
492 for(i = 0; i < nb_nics; i++) {
493 nd = &nd_table[i];
494 if (!nd->model) {
495 nd->model = "pcnet";
496 }
497 if (i == 0 && strcmp(nd->model, "pcnet") == 0) {
498 /* The malta board has a PCNet card using PCI SLOT 11 */
499 pci_nic_init(pci_bus, nd, 88);
500 } else {
501 pci_nic_init(pci_bus, nd, -1);
502 }
503 }
504 }
505
506 /* ROM and pseudo bootloader
507
508 The following code implements a very very simple bootloader. It first
509 loads the registers a0 to a3 to the values expected by the OS, and
510 then jump at the kernel address.
511
512 The bootloader should pass the locations of the kernel arguments and
513 environment variables tables. Those tables contain the 32-bit address
514 of NULL terminated strings. The environment variables table should be
515 terminated by a NULL address.
516
517 For a simpler implementation, the number of kernel arguments is fixed
518 to two (the name of the kernel and the command line), and the two
519 tables are actually the same one.
520
521 The registers a0 to a3 should contain the following values:
522 a0 - number of kernel arguments
523 a1 - 32-bit address of the kernel arguments table
524 a2 - 32-bit address of the environment variables table
525 a3 - RAM size in bytes
526 */
527
528 static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
529 {
530 uint32_t *p;
531
532 /* Small bootloader */
533 p = (uint32_t *) (phys_ram_base + bios_offset);
534 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
535 stl_raw(p++, 0x00000000); /* nop */
536
537 /* YAMON service vector */
538 stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580); /* start: */
539 stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c); /* print_count: */
540 stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580); /* start: */
541 stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800); /* flush_cache: */
542 stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808); /* print: */
543 stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800); /* reg_cpu_isr: */
544 stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
545 stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800); /* reg_ic_isr: */
546 stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800); /* unred_ic_isr: */
547 stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800); /* reg_esr: */
548 stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800); /* unreg_esr: */
549 stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800); /* getchar: */
550 stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800); /* syscon_read: */
551
552
553 /* Second part of the bootloader */
554 p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
555 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
556 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
557 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
558 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
559 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
560 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
561 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
562 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
563 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
564
565 /* Load BAR registers as done by YAMON */
566 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
567
568 #ifdef TARGET_WORDS_BIGENDIAN
569 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
570 #else
571 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
572 #endif
573 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
574
575 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
576
577 #ifdef TARGET_WORDS_BIGENDIAN
578 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
579 #else
580 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
581 #endif
582 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
583 #ifdef TARGET_WORDS_BIGENDIAN
584 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
585 #else
586 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
587 #endif
588 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
589
590 #ifdef TARGET_WORDS_BIGENDIAN
591 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
592 #else
593 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
594 #endif
595 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
596 #ifdef TARGET_WORDS_BIGENDIAN
597 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
598 #else
599 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
600 #endif
601 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
602
603 #ifdef TARGET_WORDS_BIGENDIAN
604 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
605 #else
606 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
607 #endif
608 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
609 #ifdef TARGET_WORDS_BIGENDIAN
610 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
611 #else
612 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
613 #endif
614 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
615
616 /* Jump to kernel code */
617 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
618 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
619 stl_raw(p++, 0x03e00008); /* jr ra */
620 stl_raw(p++, 0x00000000); /* nop */
621
622 /* YAMON subroutines */
623 p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
624 stl_raw(p++, 0x03e00008); /* jr ra */
625 stl_raw(p++, 0x24020000); /* li v0,0 */
626 /* 808 YAMON print */
627 stl_raw(p++, 0x03e06821); /* move t5,ra */
628 stl_raw(p++, 0x00805821); /* move t3,a0 */
629 stl_raw(p++, 0x00a05021); /* move t2,a1 */
630 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
631 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
632 stl_raw(p++, 0x10800005); /* beqz a0,834 */
633 stl_raw(p++, 0x00000000); /* nop */
634 stl_raw(p++, 0x0ff0021c); /* jal 870 */
635 stl_raw(p++, 0x00000000); /* nop */
636 stl_raw(p++, 0x08000205); /* j 814 */
637 stl_raw(p++, 0x00000000); /* nop */
638 stl_raw(p++, 0x01a00008); /* jr t5 */
639 stl_raw(p++, 0x01602021); /* move a0,t3 */
640 /* 0x83c YAMON print_count */
641 stl_raw(p++, 0x03e06821); /* move t5,ra */
642 stl_raw(p++, 0x00805821); /* move t3,a0 */
643 stl_raw(p++, 0x00a05021); /* move t2,a1 */
644 stl_raw(p++, 0x00c06021); /* move t4,a2 */
645 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
646 stl_raw(p++, 0x0ff0021c); /* jal 870 */
647 stl_raw(p++, 0x00000000); /* nop */
648 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
649 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
650 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
651 stl_raw(p++, 0x00000000); /* nop */
652 stl_raw(p++, 0x01a00008); /* jr t5 */
653 stl_raw(p++, 0x01602021); /* move a0,t3 */
654 /* 0x870 */
655 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
656 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
657 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
658 stl_raw(p++, 0x00000000); /* nop */
659 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
660 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
661 stl_raw(p++, 0x00000000); /* nop */
662 stl_raw(p++, 0x03e00008); /* jr ra */
663 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
664
665 }
666
667 static void prom_set(int index, const char *string, ...)
668 {
669 va_list ap;
670 int32_t *p;
671 int32_t table_addr;
672 char *s;
673
674 if (index >= ENVP_NB_ENTRIES)
675 return;
676
677 p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
678 p += index;
679
680 if (string == NULL) {
681 stl_raw(p, 0);
682 return;
683 }
684
685 table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
686 s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
687
688 stl_raw(p, table_addr);
689
690 va_start(ap, string);
691 vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
692 va_end(ap);
693 }
694
695 /* Kernel */
696 static int64_t load_kernel (CPUState *env)
697 {
698 int64_t kernel_entry, kernel_low, kernel_high;
699 int index = 0;
700 long initrd_size;
701 ram_addr_t initrd_offset;
702
703 if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
704 &kernel_entry, &kernel_low, &kernel_high) < 0) {
705 fprintf(stderr, "qemu: could not load kernel '%s'\n",
706 loaderparams.kernel_filename);
707 exit(1);
708 }
709
710 /* load initrd */
711 initrd_size = 0;
712 initrd_offset = 0;
713 if (loaderparams.initrd_filename) {
714 initrd_size = get_image_size (loaderparams.initrd_filename);
715 if (initrd_size > 0) {
716 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
717 if (initrd_offset + initrd_size > ram_size) {
718 fprintf(stderr,
719 "qemu: memory too small for initial ram disk '%s'\n",
720 loaderparams.initrd_filename);
721 exit(1);
722 }
723 initrd_size = load_image(loaderparams.initrd_filename,
724 phys_ram_base + initrd_offset);
725 }
726 if (initrd_size == (target_ulong) -1) {
727 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
728 loaderparams.initrd_filename);
729 exit(1);
730 }
731 }
732
733 /* Store command line. */
734 prom_set(index++, loaderparams.kernel_filename);
735 if (initrd_size > 0)
736 prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
737 PHYS_TO_VIRT(initrd_offset), initrd_size,
738 loaderparams.kernel_cmdline);
739 else
740 prom_set(index++, loaderparams.kernel_cmdline);
741
742 /* Setup minimum environment variables */
743 prom_set(index++, "memsize");
744 prom_set(index++, "%i", loaderparams.ram_size);
745 prom_set(index++, "modetty0");
746 prom_set(index++, "38400n8r");
747 prom_set(index++, NULL);
748
749 return kernel_entry;
750 }
751
752 static void main_cpu_reset(void *opaque)
753 {
754 CPUState *env = opaque;
755 cpu_reset(env);
756
757 /* The bootload does not need to be rewritten as it is located in a
758 read only location. The kernel location and the arguments table
759 location does not change. */
760 if (loaderparams.kernel_filename) {
761 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
762 load_kernel (env);
763 }
764 }
765
766 static
767 void mips_malta_init (ram_addr_t ram_size, int vga_ram_size,
768 const char *boot_device, DisplayState *ds,
769 const char *kernel_filename, const char *kernel_cmdline,
770 const char *initrd_filename, const char *cpu_model)
771 {
772 char buf[1024];
773 unsigned long bios_offset;
774 target_long bios_size;
775 int64_t kernel_entry;
776 PCIBus *pci_bus;
777 CPUState *env;
778 RTCState *rtc_state;
779 fdctrl_t *floppy_controller;
780 MaltaFPGAState *malta_fpga;
781 qemu_irq *i8259;
782 int piix4_devfn;
783 uint8_t *eeprom_buf;
784 i2c_bus *smbus;
785 int i;
786 int index;
787 BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
788 BlockDriverState *fd[MAX_FD];
789 int fl_idx = 0;
790 int fl_sectors = 0;
791
792 /* init CPUs */
793 if (cpu_model == NULL) {
794 #ifdef TARGET_MIPS64
795 cpu_model = "20Kc";
796 #else
797 cpu_model = "24Kf";
798 #endif
799 }
800 env = cpu_init(cpu_model);
801 if (!env) {
802 fprintf(stderr, "Unable to find CPU definition\n");
803 exit(1);
804 }
805 qemu_register_reset(main_cpu_reset, env);
806
807 /* allocate RAM */
808 cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
809
810 /* Map the bios at two physical locations, as on the real board. */
811 bios_offset = ram_size + vga_ram_size;
812 cpu_register_physical_memory(0x1e000000LL,
813 BIOS_SIZE, bios_offset | IO_MEM_ROM);
814 cpu_register_physical_memory(0x1fc00000LL,
815 BIOS_SIZE, bios_offset | IO_MEM_ROM);
816
817 /* FPGA */
818 malta_fpga = malta_fpga_init(0x1f000000LL, env);
819
820 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
821 if (kernel_filename) {
822 /* Write a small bootloader to the flash location. */
823 loaderparams.ram_size = ram_size;
824 loaderparams.kernel_filename = kernel_filename;
825 loaderparams.kernel_cmdline = kernel_cmdline;
826 loaderparams.initrd_filename = initrd_filename;
827 kernel_entry = load_kernel(env);
828 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
829 write_bootloader(env, bios_offset, kernel_entry);
830 } else {
831 index = drive_get_index(IF_PFLASH, 0, fl_idx);
832 if (index != -1) {
833 /* Load firmware from flash. */
834 bios_size = 0x400000;
835 fl_sectors = bios_size >> 16;
836 #ifdef DEBUG_BOARD_INIT
837 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
838 "offset %08lx addr %08llx '%s' %x\n",
839 fl_idx, bios_size, bios_offset, 0x1e000000LL,
840 bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
841 #endif
842 pflash_cfi01_register(0x1e000000LL, bios_offset,
843 drives_table[index].bdrv, 65536, fl_sectors,
844 4, 0x0000, 0x0000, 0x0000, 0x0000);
845 fl_idx++;
846 } else {
847 /* Load a BIOS image. */
848 if (bios_name == NULL)
849 bios_name = BIOS_FILENAME;
850 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
851 bios_size = load_image(buf, phys_ram_base + bios_offset);
852 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
853 fprintf(stderr,
854 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
855 buf);
856 exit(1);
857 }
858 }
859 /* In little endian mode the 32bit words in the bios are swapped,
860 a neat trick which allows bi-endian firmware. */
861 #ifndef TARGET_WORDS_BIGENDIAN
862 {
863 uint32_t *addr;
864 for (addr = (uint32_t *)(phys_ram_base + bios_offset);
865 addr < (uint32_t *)(phys_ram_base + bios_offset + bios_size);
866 addr++) {
867 *addr = bswap32(*addr);
868 }
869 }
870 #endif
871 }
872
873 /* Board ID = 0x420 (Malta Board with CoreLV)
874 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
875 map to the board ID. */
876 stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
877
878 /* Init internal devices */
879 cpu_mips_irq_init_cpu(env);
880 cpu_mips_clock_init(env);
881 cpu_mips_irqctrl_init();
882
883 /* Interrupt controller */
884 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
885 i8259 = i8259_init(env->irq[2]);
886
887 /* Northbridge */
888 pci_bus = pci_gt64120_init(i8259);
889
890 /* Southbridge */
891
892 if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
893 fprintf(stderr, "qemu: too many IDE bus\n");
894 exit(1);
895 }
896
897 for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
898 index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
899 if (index != -1)
900 hd[i] = drives_table[index].bdrv;
901 else
902 hd[i] = NULL;
903 }
904
905 piix4_devfn = piix4_init(pci_bus, 80);
906 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
907 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
908 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
909 eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
910 for (i = 0; i < 8; i++) {
911 /* TODO: Populate SPD eeprom data. */
912 smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
913 }
914 pit = pit_init(0x40, i8259[0]);
915 DMA_init(0);
916
917 /* Super I/O */
918 i8042_init(i8259[1], i8259[12], 0x60);
919 rtc_state = rtc_init(0x70, i8259[8]);
920 if (serial_hds[0])
921 serial_init(0x3f8, i8259[4], 115200, serial_hds[0]);
922 if (serial_hds[1])
923 serial_init(0x2f8, i8259[3], 115200, serial_hds[1]);
924 if (parallel_hds[0])
925 parallel_init(0x378, i8259[7], parallel_hds[0]);
926 for(i = 0; i < MAX_FD; i++) {
927 index = drive_get_index(IF_FLOPPY, 0, i);
928 if (index != -1)
929 fd[i] = drives_table[index].bdrv;
930 else
931 fd[i] = NULL;
932 }
933 floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
934
935 /* Sound card */
936 #ifdef HAS_AUDIO
937 audio_init(pci_bus);
938 #endif
939
940 /* Network card */
941 network_init(pci_bus);
942
943 /* Optional PCI video card */
944 pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
945 ram_size, vga_ram_size);
946 }
947
948 QEMUMachine mips_malta_machine = {
949 "malta",
950 "MIPS Malta Core LV",
951 mips_malta_init,
952 VGA_RAM_SIZE + BIOS_SIZE,
953 };