]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/arm_sysctl.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / misc / arm_sysctl.c
1 /*
2 * Status and system control registers for ARM RealView/Versatile boards.
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
7 * This code is licensed under the GPL.
8 */
9
10 #include "qemu/osdep.h"
11 #include "hw/hw.h"
12 #include "qemu/timer.h"
13 #include "qemu/bitops.h"
14 #include "hw/sysbus.h"
15 #include "hw/arm/primecell.h"
16 #include "sysemu/sysemu.h"
17 #include "qemu/log.h"
18 #include "qemu/module.h"
19
20 #define LOCK_VALUE 0xa05f
21
22 #define TYPE_ARM_SYSCTL "realview_sysctl"
23 #define ARM_SYSCTL(obj) \
24 OBJECT_CHECK(arm_sysctl_state, (obj), TYPE_ARM_SYSCTL)
25
26 typedef struct {
27 SysBusDevice parent_obj;
28
29 MemoryRegion iomem;
30 qemu_irq pl110_mux_ctrl;
31
32 uint32_t sys_id;
33 uint32_t leds;
34 uint16_t lockval;
35 uint32_t cfgdata1;
36 uint32_t cfgdata2;
37 uint32_t flags;
38 uint32_t nvflags;
39 uint32_t resetlevel;
40 uint32_t proc_id;
41 uint32_t sys_mci;
42 uint32_t sys_cfgdata;
43 uint32_t sys_cfgctrl;
44 uint32_t sys_cfgstat;
45 uint32_t sys_clcd;
46 uint32_t mb_clock[6];
47 uint32_t *db_clock;
48 uint32_t db_num_vsensors;
49 uint32_t *db_voltage;
50 uint32_t db_num_clocks;
51 uint32_t *db_clock_reset;
52 } arm_sysctl_state;
53
54 static const VMStateDescription vmstate_arm_sysctl = {
55 .name = "realview_sysctl",
56 .version_id = 4,
57 .minimum_version_id = 1,
58 .fields = (VMStateField[]) {
59 VMSTATE_UINT32(leds, arm_sysctl_state),
60 VMSTATE_UINT16(lockval, arm_sysctl_state),
61 VMSTATE_UINT32(cfgdata1, arm_sysctl_state),
62 VMSTATE_UINT32(cfgdata2, arm_sysctl_state),
63 VMSTATE_UINT32(flags, arm_sysctl_state),
64 VMSTATE_UINT32(nvflags, arm_sysctl_state),
65 VMSTATE_UINT32(resetlevel, arm_sysctl_state),
66 VMSTATE_UINT32_V(sys_mci, arm_sysctl_state, 2),
67 VMSTATE_UINT32_V(sys_cfgdata, arm_sysctl_state, 2),
68 VMSTATE_UINT32_V(sys_cfgctrl, arm_sysctl_state, 2),
69 VMSTATE_UINT32_V(sys_cfgstat, arm_sysctl_state, 2),
70 VMSTATE_UINT32_V(sys_clcd, arm_sysctl_state, 3),
71 VMSTATE_UINT32_ARRAY_V(mb_clock, arm_sysctl_state, 6, 4),
72 VMSTATE_VARRAY_UINT32(db_clock, arm_sysctl_state, db_num_clocks,
73 4, vmstate_info_uint32, uint32_t),
74 VMSTATE_END_OF_LIST()
75 }
76 };
77
78 /* The PB926 actually uses a different format for
79 * its SYS_ID register. Fortunately the bits which are
80 * board type on later boards are distinct.
81 */
82 #define BOARD_ID_PB926 0x100
83 #define BOARD_ID_EB 0x140
84 #define BOARD_ID_PBA8 0x178
85 #define BOARD_ID_PBX 0x182
86 #define BOARD_ID_VEXPRESS 0x190
87
88 static int board_id(arm_sysctl_state *s)
89 {
90 /* Extract the board ID field from the SYS_ID register value */
91 return (s->sys_id >> 16) & 0xfff;
92 }
93
94 static void arm_sysctl_reset(DeviceState *d)
95 {
96 arm_sysctl_state *s = ARM_SYSCTL(d);
97 int i;
98
99 s->leds = 0;
100 s->lockval = 0;
101 s->cfgdata1 = 0;
102 s->cfgdata2 = 0;
103 s->flags = 0;
104 s->resetlevel = 0;
105 /* Motherboard oscillators (in Hz) */
106 s->mb_clock[0] = 50000000; /* Static memory clock: 50MHz */
107 s->mb_clock[1] = 23750000; /* motherboard CLCD clock: 23.75MHz */
108 s->mb_clock[2] = 24000000; /* IO FPGA peripheral clock: 24MHz */
109 s->mb_clock[3] = 24000000; /* IO FPGA reserved clock: 24MHz */
110 s->mb_clock[4] = 24000000; /* System bus global clock: 24MHz */
111 s->mb_clock[5] = 24000000; /* IO FPGA reserved clock: 24MHz */
112 /* Daughterboard oscillators: reset from property values */
113 for (i = 0; i < s->db_num_clocks; i++) {
114 s->db_clock[i] = s->db_clock_reset[i];
115 }
116 if (board_id(s) == BOARD_ID_VEXPRESS) {
117 /* On VExpress this register will RAZ/WI */
118 s->sys_clcd = 0;
119 } else {
120 /* All others: CLCDID 0x1f, indicating VGA */
121 s->sys_clcd = 0x1f00;
122 }
123 }
124
125 static uint64_t arm_sysctl_read(void *opaque, hwaddr offset,
126 unsigned size)
127 {
128 arm_sysctl_state *s = (arm_sysctl_state *)opaque;
129
130 switch (offset) {
131 case 0x00: /* ID */
132 return s->sys_id;
133 case 0x04: /* SW */
134 /* General purpose hardware switches.
135 We don't have a useful way of exposing these to the user. */
136 return 0;
137 case 0x08: /* LED */
138 return s->leds;
139 case 0x20: /* LOCK */
140 return s->lockval;
141 case 0x0c: /* OSC0 */
142 case 0x10: /* OSC1 */
143 case 0x14: /* OSC2 */
144 case 0x18: /* OSC3 */
145 case 0x1c: /* OSC4 */
146 case 0x24: /* 100HZ */
147 /* ??? Implement these. */
148 return 0;
149 case 0x28: /* CFGDATA1 */
150 return s->cfgdata1;
151 case 0x2c: /* CFGDATA2 */
152 return s->cfgdata2;
153 case 0x30: /* FLAGS */
154 return s->flags;
155 case 0x38: /* NVFLAGS */
156 return s->nvflags;
157 case 0x40: /* RESETCTL */
158 if (board_id(s) == BOARD_ID_VEXPRESS) {
159 /* reserved: RAZ/WI */
160 return 0;
161 }
162 return s->resetlevel;
163 case 0x44: /* PCICTL */
164 return 1;
165 case 0x48: /* MCI */
166 return s->sys_mci;
167 case 0x4c: /* FLASH */
168 return 0;
169 case 0x50: /* CLCD */
170 return s->sys_clcd;
171 case 0x54: /* CLCDSER */
172 return 0;
173 case 0x58: /* BOOTCS */
174 return 0;
175 case 0x5c: /* 24MHz */
176 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 24000000,
177 NANOSECONDS_PER_SECOND);
178 case 0x60: /* MISC */
179 return 0;
180 case 0x84: /* PROCID0 */
181 return s->proc_id;
182 case 0x88: /* PROCID1 */
183 return 0xff000000;
184 case 0x64: /* DMAPSR0 */
185 case 0x68: /* DMAPSR1 */
186 case 0x6c: /* DMAPSR2 */
187 case 0x70: /* IOSEL */
188 case 0x74: /* PLDCTL */
189 case 0x80: /* BUSID */
190 case 0x8c: /* OSCRESET0 */
191 case 0x90: /* OSCRESET1 */
192 case 0x94: /* OSCRESET2 */
193 case 0x98: /* OSCRESET3 */
194 case 0x9c: /* OSCRESET4 */
195 case 0xc0: /* SYS_TEST_OSC0 */
196 case 0xc4: /* SYS_TEST_OSC1 */
197 case 0xc8: /* SYS_TEST_OSC2 */
198 case 0xcc: /* SYS_TEST_OSC3 */
199 case 0xd0: /* SYS_TEST_OSC4 */
200 return 0;
201 case 0xa0: /* SYS_CFGDATA */
202 if (board_id(s) != BOARD_ID_VEXPRESS) {
203 goto bad_reg;
204 }
205 return s->sys_cfgdata;
206 case 0xa4: /* SYS_CFGCTRL */
207 if (board_id(s) != BOARD_ID_VEXPRESS) {
208 goto bad_reg;
209 }
210 return s->sys_cfgctrl;
211 case 0xa8: /* SYS_CFGSTAT */
212 if (board_id(s) != BOARD_ID_VEXPRESS) {
213 goto bad_reg;
214 }
215 return s->sys_cfgstat;
216 default:
217 bad_reg:
218 qemu_log_mask(LOG_GUEST_ERROR,
219 "arm_sysctl_read: Bad register offset 0x%x\n",
220 (int)offset);
221 return 0;
222 }
223 }
224
225 /* SYS_CFGCTRL functions */
226 #define SYS_CFG_OSC 1
227 #define SYS_CFG_VOLT 2
228 #define SYS_CFG_AMP 3
229 #define SYS_CFG_TEMP 4
230 #define SYS_CFG_RESET 5
231 #define SYS_CFG_SCC 6
232 #define SYS_CFG_MUXFPGA 7
233 #define SYS_CFG_SHUTDOWN 8
234 #define SYS_CFG_REBOOT 9
235 #define SYS_CFG_DVIMODE 11
236 #define SYS_CFG_POWER 12
237 #define SYS_CFG_ENERGY 13
238
239 /* SYS_CFGCTRL site field values */
240 #define SYS_CFG_SITE_MB 0
241 #define SYS_CFG_SITE_DB1 1
242 #define SYS_CFG_SITE_DB2 2
243
244 /**
245 * vexpress_cfgctrl_read:
246 * @s: arm_sysctl_state pointer
247 * @dcc, @function, @site, @position, @device: split out values from
248 * SYS_CFGCTRL register
249 * @val: pointer to where to put the read data on success
250 *
251 * Handle a VExpress SYS_CFGCTRL register read. On success, return true and
252 * write the read value to *val. On failure, return false (and val may
253 * or may not be written to).
254 */
255 static bool vexpress_cfgctrl_read(arm_sysctl_state *s, unsigned int dcc,
256 unsigned int function, unsigned int site,
257 unsigned int position, unsigned int device,
258 uint32_t *val)
259 {
260 /* We don't support anything other than DCC 0, board stack position 0
261 * or sites other than motherboard/daughterboard:
262 */
263 if (dcc != 0 || position != 0 ||
264 (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) {
265 goto cfgctrl_unimp;
266 }
267
268 switch (function) {
269 case SYS_CFG_VOLT:
270 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_vsensors) {
271 *val = s->db_voltage[device];
272 return true;
273 }
274 if (site == SYS_CFG_SITE_MB && device == 0) {
275 /* There is only one motherboard voltage sensor:
276 * VIO : 3.3V : bus voltage between mother and daughterboard
277 */
278 *val = 3300000;
279 return true;
280 }
281 break;
282 case SYS_CFG_OSC:
283 if (site == SYS_CFG_SITE_MB && device < ARRAY_SIZE(s->mb_clock)) {
284 /* motherboard clock */
285 *val = s->mb_clock[device];
286 return true;
287 }
288 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_clocks) {
289 /* daughterboard clock */
290 *val = s->db_clock[device];
291 return true;
292 }
293 break;
294 default:
295 break;
296 }
297
298 cfgctrl_unimp:
299 qemu_log_mask(LOG_UNIMP,
300 "arm_sysctl: Unimplemented SYS_CFGCTRL read of function "
301 "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n",
302 function, dcc, site, position, device);
303 return false;
304 }
305
306 /**
307 * vexpress_cfgctrl_write:
308 * @s: arm_sysctl_state pointer
309 * @dcc, @function, @site, @position, @device: split out values from
310 * SYS_CFGCTRL register
311 * @val: data to write
312 *
313 * Handle a VExpress SYS_CFGCTRL register write. On success, return true.
314 * On failure, return false.
315 */
316 static bool vexpress_cfgctrl_write(arm_sysctl_state *s, unsigned int dcc,
317 unsigned int function, unsigned int site,
318 unsigned int position, unsigned int device,
319 uint32_t val)
320 {
321 /* We don't support anything other than DCC 0, board stack position 0
322 * or sites other than motherboard/daughterboard:
323 */
324 if (dcc != 0 || position != 0 ||
325 (site != SYS_CFG_SITE_MB && site != SYS_CFG_SITE_DB1)) {
326 goto cfgctrl_unimp;
327 }
328
329 switch (function) {
330 case SYS_CFG_OSC:
331 if (site == SYS_CFG_SITE_MB && device < ARRAY_SIZE(s->mb_clock)) {
332 /* motherboard clock */
333 s->mb_clock[device] = val;
334 return true;
335 }
336 if (site == SYS_CFG_SITE_DB1 && device < s->db_num_clocks) {
337 /* daughterboard clock */
338 s->db_clock[device] = val;
339 return true;
340 }
341 break;
342 case SYS_CFG_MUXFPGA:
343 if (site == SYS_CFG_SITE_MB && device == 0) {
344 /* Select whether video output comes from motherboard
345 * or daughterboard: log and ignore as QEMU doesn't
346 * support this.
347 */
348 qemu_log_mask(LOG_UNIMP, "arm_sysctl: selection of video output "
349 "not supported, ignoring\n");
350 return true;
351 }
352 break;
353 case SYS_CFG_SHUTDOWN:
354 if (site == SYS_CFG_SITE_MB && device == 0) {
355 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
356 return true;
357 }
358 break;
359 case SYS_CFG_REBOOT:
360 if (site == SYS_CFG_SITE_MB && device == 0) {
361 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
362 return true;
363 }
364 break;
365 case SYS_CFG_DVIMODE:
366 if (site == SYS_CFG_SITE_MB && device == 0) {
367 /* Selecting DVI mode is meaningless for QEMU: we will
368 * always display the output correctly according to the
369 * pixel height/width programmed into the CLCD controller.
370 */
371 return true;
372 }
373 default:
374 break;
375 }
376
377 cfgctrl_unimp:
378 qemu_log_mask(LOG_UNIMP,
379 "arm_sysctl: Unimplemented SYS_CFGCTRL write of function "
380 "0x%x DCC 0x%x site 0x%x position 0x%x device 0x%x\n",
381 function, dcc, site, position, device);
382 return false;
383 }
384
385 static void arm_sysctl_write(void *opaque, hwaddr offset,
386 uint64_t val, unsigned size)
387 {
388 arm_sysctl_state *s = (arm_sysctl_state *)opaque;
389
390 switch (offset) {
391 case 0x08: /* LED */
392 s->leds = val;
393 break;
394 case 0x0c: /* OSC0 */
395 case 0x10: /* OSC1 */
396 case 0x14: /* OSC2 */
397 case 0x18: /* OSC3 */
398 case 0x1c: /* OSC4 */
399 /* ??? */
400 break;
401 case 0x20: /* LOCK */
402 if (val == LOCK_VALUE)
403 s->lockval = val;
404 else
405 s->lockval = val & 0x7fff;
406 break;
407 case 0x28: /* CFGDATA1 */
408 /* ??? Need to implement this. */
409 s->cfgdata1 = val;
410 break;
411 case 0x2c: /* CFGDATA2 */
412 /* ??? Need to implement this. */
413 s->cfgdata2 = val;
414 break;
415 case 0x30: /* FLAGSSET */
416 s->flags |= val;
417 break;
418 case 0x34: /* FLAGSCLR */
419 s->flags &= ~val;
420 break;
421 case 0x38: /* NVFLAGSSET */
422 s->nvflags |= val;
423 break;
424 case 0x3c: /* NVFLAGSCLR */
425 s->nvflags &= ~val;
426 break;
427 case 0x40: /* RESETCTL */
428 switch (board_id(s)) {
429 case BOARD_ID_PB926:
430 if (s->lockval == LOCK_VALUE) {
431 s->resetlevel = val;
432 if (val & 0x100) {
433 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
434 }
435 }
436 break;
437 case BOARD_ID_PBX:
438 case BOARD_ID_PBA8:
439 if (s->lockval == LOCK_VALUE) {
440 s->resetlevel = val;
441 if (val & 0x04) {
442 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
443 }
444 }
445 break;
446 case BOARD_ID_VEXPRESS:
447 case BOARD_ID_EB:
448 default:
449 /* reserved: RAZ/WI */
450 break;
451 }
452 break;
453 case 0x44: /* PCICTL */
454 /* nothing to do. */
455 break;
456 case 0x4c: /* FLASH */
457 break;
458 case 0x50: /* CLCD */
459 switch (board_id(s)) {
460 case BOARD_ID_PB926:
461 /* On 926 bits 13:8 are R/O, bits 1:0 control
462 * the mux that defines how to interpret the PL110
463 * graphics format, and other bits are r/w but we
464 * don't implement them to do anything.
465 */
466 s->sys_clcd &= 0x3f00;
467 s->sys_clcd |= val & ~0x3f00;
468 qemu_set_irq(s->pl110_mux_ctrl, val & 3);
469 break;
470 case BOARD_ID_EB:
471 /* The EB is the same except that there is no mux since
472 * the EB has a PL111.
473 */
474 s->sys_clcd &= 0x3f00;
475 s->sys_clcd |= val & ~0x3f00;
476 break;
477 case BOARD_ID_PBA8:
478 case BOARD_ID_PBX:
479 /* On PBA8 and PBX bit 7 is r/w and all other bits
480 * are either r/o or RAZ/WI.
481 */
482 s->sys_clcd &= (1 << 7);
483 s->sys_clcd |= val & ~(1 << 7);
484 break;
485 case BOARD_ID_VEXPRESS:
486 default:
487 /* On VExpress this register is unimplemented and will RAZ/WI */
488 break;
489 }
490 break;
491 case 0x54: /* CLCDSER */
492 case 0x64: /* DMAPSR0 */
493 case 0x68: /* DMAPSR1 */
494 case 0x6c: /* DMAPSR2 */
495 case 0x70: /* IOSEL */
496 case 0x74: /* PLDCTL */
497 case 0x80: /* BUSID */
498 case 0x84: /* PROCID0 */
499 case 0x88: /* PROCID1 */
500 case 0x8c: /* OSCRESET0 */
501 case 0x90: /* OSCRESET1 */
502 case 0x94: /* OSCRESET2 */
503 case 0x98: /* OSCRESET3 */
504 case 0x9c: /* OSCRESET4 */
505 break;
506 case 0xa0: /* SYS_CFGDATA */
507 if (board_id(s) != BOARD_ID_VEXPRESS) {
508 goto bad_reg;
509 }
510 s->sys_cfgdata = val;
511 return;
512 case 0xa4: /* SYS_CFGCTRL */
513 if (board_id(s) != BOARD_ID_VEXPRESS) {
514 goto bad_reg;
515 }
516 /* Undefined bits [19:18] are RAZ/WI, and writing to
517 * the start bit just triggers the action; it always reads
518 * as zero.
519 */
520 s->sys_cfgctrl = val & ~((3 << 18) | (1 << 31));
521 if (val & (1 << 31)) {
522 /* Start bit set -- actually do something */
523 unsigned int dcc = extract32(s->sys_cfgctrl, 26, 4);
524 unsigned int function = extract32(s->sys_cfgctrl, 20, 6);
525 unsigned int site = extract32(s->sys_cfgctrl, 16, 2);
526 unsigned int position = extract32(s->sys_cfgctrl, 12, 4);
527 unsigned int device = extract32(s->sys_cfgctrl, 0, 12);
528 s->sys_cfgstat = 1; /* complete */
529 if (s->sys_cfgctrl & (1 << 30)) {
530 if (!vexpress_cfgctrl_write(s, dcc, function, site, position,
531 device, s->sys_cfgdata)) {
532 s->sys_cfgstat |= 2; /* error */
533 }
534 } else {
535 uint32_t val;
536 if (!vexpress_cfgctrl_read(s, dcc, function, site, position,
537 device, &val)) {
538 s->sys_cfgstat |= 2; /* error */
539 } else {
540 s->sys_cfgdata = val;
541 }
542 }
543 }
544 s->sys_cfgctrl &= ~(1 << 31);
545 return;
546 case 0xa8: /* SYS_CFGSTAT */
547 if (board_id(s) != BOARD_ID_VEXPRESS) {
548 goto bad_reg;
549 }
550 s->sys_cfgstat = val & 3;
551 return;
552 default:
553 bad_reg:
554 qemu_log_mask(LOG_GUEST_ERROR,
555 "arm_sysctl_write: Bad register offset 0x%x\n",
556 (int)offset);
557 return;
558 }
559 }
560
561 static const MemoryRegionOps arm_sysctl_ops = {
562 .read = arm_sysctl_read,
563 .write = arm_sysctl_write,
564 .endianness = DEVICE_NATIVE_ENDIAN,
565 };
566
567 static void arm_sysctl_gpio_set(void *opaque, int line, int level)
568 {
569 arm_sysctl_state *s = (arm_sysctl_state *)opaque;
570 switch (line) {
571 case ARM_SYSCTL_GPIO_MMC_WPROT:
572 {
573 /* For PB926 and EB write-protect is bit 2 of SYS_MCI;
574 * for all later boards it is bit 1.
575 */
576 int bit = 2;
577 if ((board_id(s) == BOARD_ID_PB926) || (board_id(s) == BOARD_ID_EB)) {
578 bit = 4;
579 }
580 s->sys_mci &= ~bit;
581 if (level) {
582 s->sys_mci |= bit;
583 }
584 break;
585 }
586 case ARM_SYSCTL_GPIO_MMC_CARDIN:
587 s->sys_mci &= ~1;
588 if (level) {
589 s->sys_mci |= 1;
590 }
591 break;
592 }
593 }
594
595 static void arm_sysctl_init(Object *obj)
596 {
597 DeviceState *dev = DEVICE(obj);
598 SysBusDevice *sd = SYS_BUS_DEVICE(obj);
599 arm_sysctl_state *s = ARM_SYSCTL(obj);
600
601 memory_region_init_io(&s->iomem, OBJECT(dev), &arm_sysctl_ops, s,
602 "arm-sysctl", 0x1000);
603 sysbus_init_mmio(sd, &s->iomem);
604 qdev_init_gpio_in(dev, arm_sysctl_gpio_set, 2);
605 qdev_init_gpio_out(dev, &s->pl110_mux_ctrl, 1);
606 }
607
608 static void arm_sysctl_realize(DeviceState *d, Error **errp)
609 {
610 arm_sysctl_state *s = ARM_SYSCTL(d);
611
612 s->db_clock = g_new0(uint32_t, s->db_num_clocks);
613 }
614
615 static void arm_sysctl_finalize(Object *obj)
616 {
617 arm_sysctl_state *s = ARM_SYSCTL(obj);
618
619 g_free(s->db_voltage);
620 g_free(s->db_clock);
621 g_free(s->db_clock_reset);
622 }
623
624 static Property arm_sysctl_properties[] = {
625 DEFINE_PROP_UINT32("sys_id", arm_sysctl_state, sys_id, 0),
626 DEFINE_PROP_UINT32("proc_id", arm_sysctl_state, proc_id, 0),
627 /* Daughterboard power supply voltages (as reported via SYS_CFG) */
628 DEFINE_PROP_ARRAY("db-voltage", arm_sysctl_state, db_num_vsensors,
629 db_voltage, qdev_prop_uint32, uint32_t),
630 /* Daughterboard clock reset values (as reported via SYS_CFG) */
631 DEFINE_PROP_ARRAY("db-clock", arm_sysctl_state, db_num_clocks,
632 db_clock_reset, qdev_prop_uint32, uint32_t),
633 DEFINE_PROP_END_OF_LIST(),
634 };
635
636 static void arm_sysctl_class_init(ObjectClass *klass, void *data)
637 {
638 DeviceClass *dc = DEVICE_CLASS(klass);
639
640 dc->realize = arm_sysctl_realize;
641 dc->reset = arm_sysctl_reset;
642 dc->vmsd = &vmstate_arm_sysctl;
643 dc->props = arm_sysctl_properties;
644 }
645
646 static const TypeInfo arm_sysctl_info = {
647 .name = TYPE_ARM_SYSCTL,
648 .parent = TYPE_SYS_BUS_DEVICE,
649 .instance_size = sizeof(arm_sysctl_state),
650 .instance_init = arm_sysctl_init,
651 .instance_finalize = arm_sysctl_finalize,
652 .class_init = arm_sysctl_class_init,
653 };
654
655 static void arm_sysctl_register_types(void)
656 {
657 type_register_static(&arm_sysctl_info);
658 }
659
660 type_init(arm_sysctl_register_types)