]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/imx6_src.c
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20160512' into...
[mirror_qemu.git] / hw / misc / imx6_src.c
1 /*
2 * IMX6 System Reset Controller
3 *
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
15 #include "arm-powerctl.h"
16
17 #ifndef DEBUG_IMX6_SRC
18 #define DEBUG_IMX6_SRC 0
19 #endif
20
21 #define DPRINTF(fmt, args...) \
22 do { \
23 if (DEBUG_IMX6_SRC) { \
24 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
25 __func__, ##args); \
26 } \
27 } while (0)
28
29 static char const *imx6_src_reg_name(uint32_t reg)
30 {
31 static char unknown[20];
32
33 switch (reg) {
34 case SRC_SCR:
35 return "SRC_SCR";
36 case SRC_SBMR1:
37 return "SRC_SBMR1";
38 case SRC_SRSR:
39 return "SRC_SRSR";
40 case SRC_SISR:
41 return "SRC_SISR";
42 case SRC_SIMR:
43 return "SRC_SIMR";
44 case SRC_SBMR2:
45 return "SRC_SBMR2";
46 case SRC_GPR1:
47 return "SRC_GPR1";
48 case SRC_GPR2:
49 return "SRC_GPR2";
50 case SRC_GPR3:
51 return "SRC_GPR3";
52 case SRC_GPR4:
53 return "SRC_GPR4";
54 case SRC_GPR5:
55 return "SRC_GPR5";
56 case SRC_GPR6:
57 return "SRC_GPR6";
58 case SRC_GPR7:
59 return "SRC_GPR7";
60 case SRC_GPR8:
61 return "SRC_GPR8";
62 case SRC_GPR9:
63 return "SRC_GPR9";
64 case SRC_GPR10:
65 return "SRC_GPR10";
66 default:
67 sprintf(unknown, "%d ?", reg);
68 return unknown;
69 }
70 }
71
72 static const VMStateDescription vmstate_imx6_src = {
73 .name = TYPE_IMX6_SRC,
74 .version_id = 1,
75 .minimum_version_id = 1,
76 .fields = (VMStateField[]) {
77 VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
78 VMSTATE_END_OF_LIST()
79 },
80 };
81
82 static void imx6_src_reset(DeviceState *dev)
83 {
84 IMX6SRCState *s = IMX6_SRC(dev);
85
86 DPRINTF("\n");
87
88 memset(s->regs, 0, sizeof(s->regs));
89
90 /* Set reset values */
91 s->regs[SRC_SCR] = 0x521;
92 s->regs[SRC_SRSR] = 0x1;
93 s->regs[SRC_SIMR] = 0x1F;
94 }
95
96 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
97 {
98 uint32_t value = 0;
99 IMX6SRCState *s = (IMX6SRCState *)opaque;
100 uint32_t index = offset >> 2;
101
102 if (index < SRC_MAX) {
103 value = s->regs[index];
104 } else {
105 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
106 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
107
108 }
109
110 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
111
112 return value;
113 }
114
115 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
116 unsigned size)
117 {
118 IMX6SRCState *s = (IMX6SRCState *)opaque;
119 uint32_t index = offset >> 2;
120 unsigned long change_mask;
121 unsigned long current_value = value;
122
123 if (index >= SRC_MAX) {
124 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
125 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
126 return;
127 }
128
129 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
130 (uint32_t)current_value);
131
132 change_mask = s->regs[index] ^ (uint32_t)current_value;
133
134 switch (index) {
135 case SRC_SCR:
136 /*
137 * On real hardware when the system reset controller starts a
138 * secondary CPU it runs through some boot ROM code which reads
139 * the SRC_GPRX registers controlling the start address and branches
140 * to it.
141 * Here we are taking a short cut and branching directly to the
142 * requested address (we don't want to run the boot ROM code inside
143 * QEMU)
144 */
145 if (EXTRACT(change_mask, CORE3_ENABLE)) {
146 if (EXTRACT(current_value, CORE3_ENABLE)) {
147 /* CORE 3 is brought up */
148 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
149 3, false);
150 } else {
151 /* CORE 3 is shut down */
152 arm_set_cpu_off(3);
153 }
154 /* We clear the reset bits as the processor changed state */
155 clear_bit(CORE3_RST_SHIFT, &current_value);
156 clear_bit(CORE3_RST_SHIFT, &change_mask);
157 }
158 if (EXTRACT(change_mask, CORE2_ENABLE)) {
159 if (EXTRACT(current_value, CORE2_ENABLE)) {
160 /* CORE 2 is brought up */
161 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
162 3, false);
163 } else {
164 /* CORE 3 is shut down */
165 arm_set_cpu_off(2);
166 }
167 /* We clear the reset bits as the processor changed state */
168 clear_bit(CORE2_RST_SHIFT, &current_value);
169 clear_bit(CORE2_RST_SHIFT, &change_mask);
170 }
171 if (EXTRACT(change_mask, CORE1_ENABLE)) {
172 if (EXTRACT(current_value, CORE1_ENABLE)) {
173 /* CORE 1 is brought up */
174 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
175 3, false);
176 } else {
177 /* CORE 3 is shut down */
178 arm_set_cpu_off(1);
179 }
180 /* We clear the reset bits as the processor changed state */
181 clear_bit(CORE1_RST_SHIFT, &current_value);
182 clear_bit(CORE1_RST_SHIFT, &change_mask);
183 }
184 if (EXTRACT(change_mask, CORE0_RST)) {
185 arm_reset_cpu(0);
186 clear_bit(CORE0_RST_SHIFT, &current_value);
187 }
188 if (EXTRACT(change_mask, CORE1_RST)) {
189 arm_reset_cpu(1);
190 clear_bit(CORE1_RST_SHIFT, &current_value);
191 }
192 if (EXTRACT(change_mask, CORE2_RST)) {
193 arm_reset_cpu(2);
194 clear_bit(CORE2_RST_SHIFT, &current_value);
195 }
196 if (EXTRACT(change_mask, CORE3_RST)) {
197 arm_reset_cpu(3);
198 clear_bit(CORE3_RST_SHIFT, &current_value);
199 }
200 if (EXTRACT(change_mask, SW_IPU2_RST)) {
201 /* We pretend the IPU2 is reset */
202 clear_bit(SW_IPU2_RST_SHIFT, &current_value);
203 }
204 if (EXTRACT(change_mask, SW_IPU1_RST)) {
205 /* We pretend the IPU1 is reset */
206 clear_bit(SW_IPU1_RST_SHIFT, &current_value);
207 }
208 s->regs[index] = current_value;
209 break;
210 default:
211 s->regs[index] = current_value;
212 break;
213 }
214 }
215
216 static const struct MemoryRegionOps imx6_src_ops = {
217 .read = imx6_src_read,
218 .write = imx6_src_write,
219 .endianness = DEVICE_NATIVE_ENDIAN,
220 .valid = {
221 /*
222 * Our device would not work correctly if the guest was doing
223 * unaligned access. This might not be a limitation on the real
224 * device but in practice there is no reason for a guest to access
225 * this device unaligned.
226 */
227 .min_access_size = 4,
228 .max_access_size = 4,
229 .unaligned = false,
230 },
231 };
232
233 static void imx6_src_realize(DeviceState *dev, Error **errp)
234 {
235 IMX6SRCState *s = IMX6_SRC(dev);
236
237 memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
238 TYPE_IMX6_SRC, 0x1000);
239 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
240 }
241
242 static void imx6_src_class_init(ObjectClass *klass, void *data)
243 {
244 DeviceClass *dc = DEVICE_CLASS(klass);
245
246 dc->realize = imx6_src_realize;
247 dc->reset = imx6_src_reset;
248 dc->vmsd = &vmstate_imx6_src;
249 dc->desc = "i.MX6 System Reset Controller";
250 }
251
252 static const TypeInfo imx6_src_info = {
253 .name = TYPE_IMX6_SRC,
254 .parent = TYPE_SYS_BUS_DEVICE,
255 .instance_size = sizeof(IMX6SRCState),
256 .class_init = imx6_src_class_init,
257 };
258
259 static void imx6_src_register_types(void)
260 {
261 type_register_static(&imx6_src_info);
262 }
263
264 type_init(imx6_src_register_types)