]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/macio/cuda.c
util: move declarations out of qemu-common.h
[mirror_qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/mac.h"
28 #include "hw/input/adb.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31 #include "qemu/cutils.h"
32
33 /* XXX: implement all timer modes */
34
35 /* debug CUDA */
36 //#define DEBUG_CUDA
37
38 /* debug CUDA packets */
39 //#define DEBUG_CUDA_PACKET
40
41 #ifdef DEBUG_CUDA
42 #define CUDA_DPRINTF(fmt, ...) \
43 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
44 #else
45 #define CUDA_DPRINTF(fmt, ...)
46 #endif
47
48 /* Bits in B data register: all active low */
49 #define TREQ 0x08 /* Transfer request (input) */
50 #define TACK 0x10 /* Transfer acknowledge (output) */
51 #define TIP 0x20 /* Transfer in progress (output) */
52
53 /* Bits in ACR */
54 #define SR_CTRL 0x1c /* Shift register control bits */
55 #define SR_EXT 0x0c /* Shift on external clock */
56 #define SR_OUT 0x10 /* Shift out if 1 */
57
58 /* Bits in IFR and IER */
59 #define IER_SET 0x80 /* set bits in IER */
60 #define IER_CLR 0 /* clear bits in IER */
61 #define SR_INT 0x04 /* Shift register full/empty */
62 #define SR_DATA_INT 0x08
63 #define SR_CLOCK_INT 0x10
64 #define T1_INT 0x40 /* Timer 1 interrupt */
65 #define T2_INT 0x20 /* Timer 2 interrupt */
66
67 /* Bits in ACR */
68 #define T1MODE 0xc0 /* Timer 1 mode */
69 #define T1MODE_CONT 0x40 /* continuous interrupts */
70
71 /* commands (1st byte) */
72 #define ADB_PACKET 0
73 #define CUDA_PACKET 1
74 #define ERROR_PACKET 2
75 #define TIMER_PACKET 3
76 #define POWER_PACKET 4
77 #define MACIIC_PACKET 5
78 #define PMU_PACKET 6
79
80
81 /* CUDA commands (2nd byte) */
82 #define CUDA_WARM_START 0x0
83 #define CUDA_AUTOPOLL 0x1
84 #define CUDA_GET_6805_ADDR 0x2
85 #define CUDA_GET_TIME 0x3
86 #define CUDA_GET_PRAM 0x7
87 #define CUDA_SET_6805_ADDR 0x8
88 #define CUDA_SET_TIME 0x9
89 #define CUDA_POWERDOWN 0xa
90 #define CUDA_POWERUP_TIME 0xb
91 #define CUDA_SET_PRAM 0xc
92 #define CUDA_MS_RESET 0xd
93 #define CUDA_SEND_DFAC 0xe
94 #define CUDA_BATTERY_SWAP_SENSE 0x10
95 #define CUDA_RESET_SYSTEM 0x11
96 #define CUDA_SET_IPL 0x12
97 #define CUDA_FILE_SERVER_FLAG 0x13
98 #define CUDA_SET_AUTO_RATE 0x14
99 #define CUDA_GET_AUTO_RATE 0x16
100 #define CUDA_SET_DEVICE_LIST 0x19
101 #define CUDA_GET_DEVICE_LIST 0x1a
102 #define CUDA_SET_ONE_SECOND_MODE 0x1b
103 #define CUDA_SET_POWER_MESSAGES 0x21
104 #define CUDA_GET_SET_IIC 0x22
105 #define CUDA_WAKEUP 0x23
106 #define CUDA_TIMER_TICKLE 0x24
107 #define CUDA_COMBINED_FORMAT_IIC 0x25
108
109 #define CUDA_TIMER_FREQ (4700000 / 6)
110
111 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
112 #define RTC_OFFSET 2082844800
113
114 /* CUDA registers */
115 #define CUDA_REG_B 0x00
116 #define CUDA_REG_A 0x01
117 #define CUDA_REG_DIRB 0x02
118 #define CUDA_REG_DIRA 0x03
119 #define CUDA_REG_T1CL 0x04
120 #define CUDA_REG_T1CH 0x05
121 #define CUDA_REG_T1LL 0x06
122 #define CUDA_REG_T1LH 0x07
123 #define CUDA_REG_T2CL 0x08
124 #define CUDA_REG_T2CH 0x09
125 #define CUDA_REG_SR 0x0a
126 #define CUDA_REG_ACR 0x0b
127 #define CUDA_REG_PCR 0x0c
128 #define CUDA_REG_IFR 0x0d
129 #define CUDA_REG_IER 0x0e
130 #define CUDA_REG_ANH 0x0f
131
132 static void cuda_update(CUDAState *s);
133 static void cuda_receive_packet_from_host(CUDAState *s,
134 const uint8_t *data, int len);
135 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
136 int64_t current_time);
137
138 static void cuda_update_irq(CUDAState *s)
139 {
140 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
141 qemu_irq_raise(s->irq);
142 } else {
143 qemu_irq_lower(s->irq);
144 }
145 }
146
147 static uint64_t get_tb(uint64_t time, uint64_t freq)
148 {
149 return muldiv64(time, freq, NANOSECONDS_PER_SECOND);
150 }
151
152 static unsigned int get_counter(CUDATimer *ti)
153 {
154 int64_t d;
155 unsigned int counter;
156 uint64_t tb_diff;
157 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
158
159 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
160 tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
161 d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
162
163 if (ti->index == 0) {
164 /* the timer goes down from latch to -1 (period of latch + 2) */
165 if (d <= (ti->counter_value + 1)) {
166 counter = (ti->counter_value - d) & 0xffff;
167 } else {
168 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
169 counter = (ti->latch - counter) & 0xffff;
170 }
171 } else {
172 counter = (ti->counter_value - d) & 0xffff;
173 }
174 return counter;
175 }
176
177 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
178 {
179 CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
180 ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
181 s->frequency);
182 ti->counter_value = val;
183 cuda_timer_update(s, ti, ti->load_time);
184 }
185
186 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
187 {
188 int64_t d, next_time;
189 unsigned int counter;
190
191 /* current counter value */
192 d = muldiv64(current_time - s->load_time,
193 CUDA_TIMER_FREQ, NANOSECONDS_PER_SECOND);
194 /* the timer goes down from latch to -1 (period of latch + 2) */
195 if (d <= (s->counter_value + 1)) {
196 counter = (s->counter_value - d) & 0xffff;
197 } else {
198 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
199 counter = (s->latch - counter) & 0xffff;
200 }
201
202 /* Note: we consider the irq is raised on 0 */
203 if (counter == 0xffff) {
204 next_time = d + s->latch + 1;
205 } else if (counter == 0) {
206 next_time = d + s->latch + 2;
207 } else {
208 next_time = d + counter;
209 }
210 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
211 s->latch, d, next_time - d);
212 next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, CUDA_TIMER_FREQ) +
213 s->load_time;
214 if (next_time <= current_time)
215 next_time = current_time + 1;
216 return next_time;
217 }
218
219 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
220 int64_t current_time)
221 {
222 if (!ti->timer)
223 return;
224 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
225 timer_del(ti->timer);
226 } else {
227 ti->next_irq_time = get_next_irq_time(ti, current_time);
228 timer_mod(ti->timer, ti->next_irq_time);
229 }
230 }
231
232 static void cuda_timer1(void *opaque)
233 {
234 CUDAState *s = opaque;
235 CUDATimer *ti = &s->timers[0];
236
237 cuda_timer_update(s, ti, ti->next_irq_time);
238 s->ifr |= T1_INT;
239 cuda_update_irq(s);
240 }
241
242 static void cuda_timer2(void *opaque)
243 {
244 CUDAState *s = opaque;
245 CUDATimer *ti = &s->timers[1];
246
247 cuda_timer_update(s, ti, ti->next_irq_time);
248 s->ifr |= T2_INT;
249 cuda_update_irq(s);
250 }
251
252 static void cuda_set_sr_int(void *opaque)
253 {
254 CUDAState *s = opaque;
255
256 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
257 s->ifr |= SR_INT;
258 cuda_update_irq(s);
259 }
260
261 static void cuda_delay_set_sr_int(CUDAState *s)
262 {
263 int64_t expire;
264
265 if (s->dirb == 0xff) {
266 /* Not in Mac OS, fire the IRQ directly */
267 cuda_set_sr_int(s);
268 return;
269 }
270
271 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
272
273 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
274 timer_mod(s->sr_delay_timer, expire);
275 }
276
277 static uint32_t cuda_readb(void *opaque, hwaddr addr)
278 {
279 CUDAState *s = opaque;
280 uint32_t val;
281
282 addr = (addr >> 9) & 0xf;
283 switch(addr) {
284 case CUDA_REG_B:
285 val = s->b;
286 break;
287 case CUDA_REG_A:
288 val = s->a;
289 break;
290 case CUDA_REG_DIRB:
291 val = s->dirb;
292 break;
293 case CUDA_REG_DIRA:
294 val = s->dira;
295 break;
296 case CUDA_REG_T1CL:
297 val = get_counter(&s->timers[0]) & 0xff;
298 s->ifr &= ~T1_INT;
299 cuda_update_irq(s);
300 break;
301 case CUDA_REG_T1CH:
302 val = get_counter(&s->timers[0]) >> 8;
303 cuda_update_irq(s);
304 break;
305 case CUDA_REG_T1LL:
306 val = s->timers[0].latch & 0xff;
307 break;
308 case CUDA_REG_T1LH:
309 /* XXX: check this */
310 val = (s->timers[0].latch >> 8) & 0xff;
311 break;
312 case CUDA_REG_T2CL:
313 val = get_counter(&s->timers[1]) & 0xff;
314 s->ifr &= ~T2_INT;
315 cuda_update_irq(s);
316 break;
317 case CUDA_REG_T2CH:
318 val = get_counter(&s->timers[1]) >> 8;
319 break;
320 case CUDA_REG_SR:
321 val = s->sr;
322 s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
323 cuda_update_irq(s);
324 break;
325 case CUDA_REG_ACR:
326 val = s->acr;
327 break;
328 case CUDA_REG_PCR:
329 val = s->pcr;
330 break;
331 case CUDA_REG_IFR:
332 val = s->ifr;
333 if (s->ifr & s->ier) {
334 val |= 0x80;
335 }
336 break;
337 case CUDA_REG_IER:
338 val = s->ier | 0x80;
339 break;
340 default:
341 case CUDA_REG_ANH:
342 val = s->anh;
343 break;
344 }
345 if (addr != CUDA_REG_IFR || val != 0) {
346 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
347 }
348
349 return val;
350 }
351
352 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
353 {
354 CUDAState *s = opaque;
355
356 addr = (addr >> 9) & 0xf;
357 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
358
359 switch(addr) {
360 case CUDA_REG_B:
361 s->b = val;
362 cuda_update(s);
363 break;
364 case CUDA_REG_A:
365 s->a = val;
366 break;
367 case CUDA_REG_DIRB:
368 s->dirb = val;
369 break;
370 case CUDA_REG_DIRA:
371 s->dira = val;
372 break;
373 case CUDA_REG_T1CL:
374 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
375 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
376 break;
377 case CUDA_REG_T1CH:
378 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
379 s->ifr &= ~T1_INT;
380 set_counter(s, &s->timers[0], s->timers[0].latch);
381 break;
382 case CUDA_REG_T1LL:
383 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
384 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
385 break;
386 case CUDA_REG_T1LH:
387 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
388 s->ifr &= ~T1_INT;
389 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
390 break;
391 case CUDA_REG_T2CL:
392 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
393 break;
394 case CUDA_REG_T2CH:
395 /* To ensure T2 generates an interrupt on zero crossing with the
396 common timer code, write the value directly from the latch to
397 the counter */
398 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
399 s->ifr &= ~T2_INT;
400 set_counter(s, &s->timers[1], s->timers[1].latch);
401 break;
402 case CUDA_REG_SR:
403 s->sr = val;
404 break;
405 case CUDA_REG_ACR:
406 s->acr = val;
407 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
408 cuda_update(s);
409 break;
410 case CUDA_REG_PCR:
411 s->pcr = val;
412 break;
413 case CUDA_REG_IFR:
414 /* reset bits */
415 s->ifr &= ~val;
416 cuda_update_irq(s);
417 break;
418 case CUDA_REG_IER:
419 if (val & IER_SET) {
420 /* set bits */
421 s->ier |= val & 0x7f;
422 } else {
423 /* reset bits */
424 s->ier &= ~val;
425 }
426 cuda_update_irq(s);
427 break;
428 default:
429 case CUDA_REG_ANH:
430 s->anh = val;
431 break;
432 }
433 }
434
435 /* NOTE: TIP and TREQ are negated */
436 static void cuda_update(CUDAState *s)
437 {
438 int packet_received, len;
439
440 packet_received = 0;
441 if (!(s->b & TIP)) {
442 /* transfer requested from host */
443
444 if (s->acr & SR_OUT) {
445 /* data output */
446 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
447 if (s->data_out_index < sizeof(s->data_out)) {
448 CUDA_DPRINTF("send: %02x\n", s->sr);
449 s->data_out[s->data_out_index++] = s->sr;
450 cuda_delay_set_sr_int(s);
451 }
452 }
453 } else {
454 if (s->data_in_index < s->data_in_size) {
455 /* data input */
456 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
457 s->sr = s->data_in[s->data_in_index++];
458 CUDA_DPRINTF("recv: %02x\n", s->sr);
459 /* indicate end of transfer */
460 if (s->data_in_index >= s->data_in_size) {
461 s->b = (s->b | TREQ);
462 }
463 cuda_delay_set_sr_int(s);
464 }
465 }
466 }
467 } else {
468 /* no transfer requested: handle sync case */
469 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
470 /* update TREQ state each time TACK change state */
471 if (s->b & TACK)
472 s->b = (s->b | TREQ);
473 else
474 s->b = (s->b & ~TREQ);
475 cuda_delay_set_sr_int(s);
476 } else {
477 if (!(s->last_b & TIP)) {
478 /* handle end of host to cuda transfer */
479 packet_received = (s->data_out_index > 0);
480 /* always an IRQ at the end of transfer */
481 cuda_delay_set_sr_int(s);
482 }
483 /* signal if there is data to read */
484 if (s->data_in_index < s->data_in_size) {
485 s->b = (s->b & ~TREQ);
486 }
487 }
488 }
489
490 s->last_acr = s->acr;
491 s->last_b = s->b;
492
493 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
494 recursively */
495 if (packet_received) {
496 len = s->data_out_index;
497 s->data_out_index = 0;
498 cuda_receive_packet_from_host(s, s->data_out, len);
499 }
500 }
501
502 static void cuda_send_packet_to_host(CUDAState *s,
503 const uint8_t *data, int len)
504 {
505 #ifdef DEBUG_CUDA_PACKET
506 {
507 int i;
508 printf("cuda_send_packet_to_host:\n");
509 for(i = 0; i < len; i++)
510 printf(" %02x", data[i]);
511 printf("\n");
512 }
513 #endif
514 memcpy(s->data_in, data, len);
515 s->data_in_size = len;
516 s->data_in_index = 0;
517 cuda_update(s);
518 cuda_delay_set_sr_int(s);
519 }
520
521 static void cuda_adb_poll(void *opaque)
522 {
523 CUDAState *s = opaque;
524 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
525 int olen;
526
527 olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask);
528 if (olen > 0) {
529 obuf[0] = ADB_PACKET;
530 obuf[1] = 0x40; /* polled data */
531 cuda_send_packet_to_host(s, obuf, olen + 2);
532 }
533 timer_mod(s->adb_poll_timer,
534 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
535 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
536 }
537
538 /* description of commands */
539 typedef struct CudaCommand {
540 uint8_t command;
541 const char *name;
542 bool (*handler)(CUDAState *s,
543 const uint8_t *in_args, int in_len,
544 uint8_t *out_args, int *out_len);
545 } CudaCommand;
546
547 static bool cuda_cmd_autopoll(CUDAState *s,
548 const uint8_t *in_data, int in_len,
549 uint8_t *out_data, int *out_len)
550 {
551 int autopoll;
552
553 if (in_len != 1) {
554 return false;
555 }
556
557 autopoll = (in_data[0] != 0);
558 if (autopoll != s->autopoll) {
559 s->autopoll = autopoll;
560 if (autopoll) {
561 timer_mod(s->adb_poll_timer,
562 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
563 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
564 } else {
565 timer_del(s->adb_poll_timer);
566 }
567 }
568 return true;
569 }
570
571 static bool cuda_cmd_set_autorate(CUDAState *s,
572 const uint8_t *in_data, int in_len,
573 uint8_t *out_data, int *out_len)
574 {
575 if (in_len != 1) {
576 return false;
577 }
578
579 /* we don't want a period of 0 ms */
580 /* FIXME: check what real hardware does */
581 if (in_data[0] == 0) {
582 return false;
583 }
584
585 s->autopoll_rate_ms = in_data[0];
586 if (s->autopoll) {
587 timer_mod(s->adb_poll_timer,
588 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
589 (NANOSECONDS_PER_SECOND / (1000 / s->autopoll_rate_ms)));
590 }
591 return true;
592 }
593
594 static bool cuda_cmd_set_device_list(CUDAState *s,
595 const uint8_t *in_data, int in_len,
596 uint8_t *out_data, int *out_len)
597 {
598 if (in_len != 2) {
599 return false;
600 }
601
602 s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
603 return true;
604 }
605
606 static bool cuda_cmd_powerdown(CUDAState *s,
607 const uint8_t *in_data, int in_len,
608 uint8_t *out_data, int *out_len)
609 {
610 if (in_len != 0) {
611 return false;
612 }
613
614 qemu_system_shutdown_request();
615 return true;
616 }
617
618 static bool cuda_cmd_reset_system(CUDAState *s,
619 const uint8_t *in_data, int in_len,
620 uint8_t *out_data, int *out_len)
621 {
622 if (in_len != 0) {
623 return false;
624 }
625
626 qemu_system_reset_request();
627 return true;
628 }
629
630 static bool cuda_cmd_set_file_server_flag(CUDAState *s,
631 const uint8_t *in_data, int in_len,
632 uint8_t *out_data, int *out_len)
633 {
634 if (in_len != 1) {
635 return false;
636 }
637
638 qemu_log_mask(LOG_UNIMP,
639 "CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
640 in_data[0]);
641 return true;
642 }
643
644 static bool cuda_cmd_set_power_message(CUDAState *s,
645 const uint8_t *in_data, int in_len,
646 uint8_t *out_data, int *out_len)
647 {
648 if (in_len != 1) {
649 return false;
650 }
651
652 qemu_log_mask(LOG_UNIMP,
653 "CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
654 in_data[0]);
655 return true;
656 }
657
658 static bool cuda_cmd_get_time(CUDAState *s,
659 const uint8_t *in_data, int in_len,
660 uint8_t *out_data, int *out_len)
661 {
662 uint32_t ti;
663
664 if (in_len != 0) {
665 return false;
666 }
667
668 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
669 / NANOSECONDS_PER_SECOND);
670 out_data[0] = ti >> 24;
671 out_data[1] = ti >> 16;
672 out_data[2] = ti >> 8;
673 out_data[3] = ti;
674 *out_len = 4;
675 return true;
676 }
677
678 static bool cuda_cmd_set_time(CUDAState *s,
679 const uint8_t *in_data, int in_len,
680 uint8_t *out_data, int *out_len)
681 {
682 uint32_t ti;
683
684 if (in_len != 4) {
685 return false;
686 }
687
688 ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16)
689 + (((uint32_t)in_data[3]) << 8) + in_data[4];
690 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
691 / NANOSECONDS_PER_SECOND);
692 return true;
693 }
694
695 static const CudaCommand handlers[] = {
696 { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
697 { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
698 { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
699 { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
700 { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
701 { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
702 cuda_cmd_set_file_server_flag },
703 { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
704 cuda_cmd_set_power_message },
705 { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
706 { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
707 };
708
709 static void cuda_receive_packet(CUDAState *s,
710 const uint8_t *data, int len)
711 {
712 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
713 int i, out_len = 0;
714
715 for (i = 0; i < ARRAY_SIZE(handlers); i++) {
716 const CudaCommand *desc = &handlers[i];
717 if (desc->command == data[0]) {
718 CUDA_DPRINTF("handling command %s\n", desc->name);
719 out_len = 0;
720 if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
721 cuda_send_packet_to_host(s, obuf, 3 + out_len);
722 } else {
723 qemu_log_mask(LOG_GUEST_ERROR,
724 "CUDA: %s: wrong parameters %d\n",
725 desc->name, len);
726 obuf[0] = ERROR_PACKET;
727 obuf[1] = 0x5; /* bad parameters */
728 obuf[2] = CUDA_PACKET;
729 obuf[3] = data[0];
730 cuda_send_packet_to_host(s, obuf, 4);
731 }
732 return;
733 }
734 }
735
736 qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
737 obuf[0] = ERROR_PACKET;
738 obuf[1] = 0x2; /* unknown command */
739 obuf[2] = CUDA_PACKET;
740 obuf[3] = data[0];
741 cuda_send_packet_to_host(s, obuf, 4);
742 }
743
744 static void cuda_receive_packet_from_host(CUDAState *s,
745 const uint8_t *data, int len)
746 {
747 #ifdef DEBUG_CUDA_PACKET
748 {
749 int i;
750 printf("cuda_receive_packet_from_host:\n");
751 for(i = 0; i < len; i++)
752 printf(" %02x", data[i]);
753 printf("\n");
754 }
755 #endif
756 switch(data[0]) {
757 case ADB_PACKET:
758 {
759 uint8_t obuf[ADB_MAX_OUT_LEN + 3];
760 int olen;
761 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
762 if (olen > 0) {
763 obuf[0] = ADB_PACKET;
764 obuf[1] = 0x00;
765 cuda_send_packet_to_host(s, obuf, olen + 2);
766 } else {
767 /* error */
768 obuf[0] = ADB_PACKET;
769 obuf[1] = -olen;
770 obuf[2] = data[1];
771 olen = 0;
772 cuda_send_packet_to_host(s, obuf, olen + 3);
773 }
774 }
775 break;
776 case CUDA_PACKET:
777 cuda_receive_packet(s, data + 1, len - 1);
778 break;
779 }
780 }
781
782 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
783 {
784 }
785
786 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
787 {
788 }
789
790 static uint32_t cuda_readw (void *opaque, hwaddr addr)
791 {
792 return 0;
793 }
794
795 static uint32_t cuda_readl (void *opaque, hwaddr addr)
796 {
797 return 0;
798 }
799
800 static const MemoryRegionOps cuda_ops = {
801 .old_mmio = {
802 .write = {
803 cuda_writeb,
804 cuda_writew,
805 cuda_writel,
806 },
807 .read = {
808 cuda_readb,
809 cuda_readw,
810 cuda_readl,
811 },
812 },
813 .endianness = DEVICE_NATIVE_ENDIAN,
814 };
815
816 static bool cuda_timer_exist(void *opaque, int version_id)
817 {
818 CUDATimer *s = opaque;
819
820 return s->timer != NULL;
821 }
822
823 static const VMStateDescription vmstate_cuda_timer = {
824 .name = "cuda_timer",
825 .version_id = 0,
826 .minimum_version_id = 0,
827 .fields = (VMStateField[]) {
828 VMSTATE_UINT16(latch, CUDATimer),
829 VMSTATE_UINT16(counter_value, CUDATimer),
830 VMSTATE_INT64(load_time, CUDATimer),
831 VMSTATE_INT64(next_irq_time, CUDATimer),
832 VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
833 VMSTATE_END_OF_LIST()
834 }
835 };
836
837 static const VMStateDescription vmstate_cuda = {
838 .name = "cuda",
839 .version_id = 4,
840 .minimum_version_id = 4,
841 .fields = (VMStateField[]) {
842 VMSTATE_UINT8(a, CUDAState),
843 VMSTATE_UINT8(b, CUDAState),
844 VMSTATE_UINT8(last_b, CUDAState),
845 VMSTATE_UINT8(dira, CUDAState),
846 VMSTATE_UINT8(dirb, CUDAState),
847 VMSTATE_UINT8(sr, CUDAState),
848 VMSTATE_UINT8(acr, CUDAState),
849 VMSTATE_UINT8(last_acr, CUDAState),
850 VMSTATE_UINT8(pcr, CUDAState),
851 VMSTATE_UINT8(ifr, CUDAState),
852 VMSTATE_UINT8(ier, CUDAState),
853 VMSTATE_UINT8(anh, CUDAState),
854 VMSTATE_INT32(data_in_size, CUDAState),
855 VMSTATE_INT32(data_in_index, CUDAState),
856 VMSTATE_INT32(data_out_index, CUDAState),
857 VMSTATE_UINT8(autopoll, CUDAState),
858 VMSTATE_UINT8(autopoll_rate_ms, CUDAState),
859 VMSTATE_UINT16(adb_poll_mask, CUDAState),
860 VMSTATE_BUFFER(data_in, CUDAState),
861 VMSTATE_BUFFER(data_out, CUDAState),
862 VMSTATE_UINT32(tick_offset, CUDAState),
863 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
864 vmstate_cuda_timer, CUDATimer),
865 VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
866 VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
867 VMSTATE_END_OF_LIST()
868 }
869 };
870
871 static void cuda_reset(DeviceState *dev)
872 {
873 CUDAState *s = CUDA(dev);
874
875 s->b = 0;
876 s->a = 0;
877 s->dirb = 0xff;
878 s->dira = 0;
879 s->sr = 0;
880 s->acr = 0;
881 s->pcr = 0;
882 s->ifr = 0;
883 s->ier = 0;
884 // s->ier = T1_INT | SR_INT;
885 s->anh = 0;
886 s->data_in_size = 0;
887 s->data_in_index = 0;
888 s->data_out_index = 0;
889 s->autopoll = 0;
890
891 s->timers[0].latch = 0xffff;
892 set_counter(s, &s->timers[0], 0xffff);
893
894 s->timers[1].latch = 0xffff;
895
896 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
897 }
898
899 static void cuda_realizefn(DeviceState *dev, Error **errp)
900 {
901 CUDAState *s = CUDA(dev);
902 struct tm tm;
903
904 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
905 s->timers[0].frequency = s->frequency;
906 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
907 s->timers[1].frequency = (SCALE_US * 6000) / 4700;
908
909 qemu_get_timedate(&tm, 0);
910 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
911
912 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
913 s->autopoll_rate_ms = 20;
914 s->adb_poll_mask = 0xffff;
915 }
916
917 static void cuda_initfn(Object *obj)
918 {
919 SysBusDevice *d = SYS_BUS_DEVICE(obj);
920 CUDAState *s = CUDA(obj);
921 int i;
922
923 memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
924 sysbus_init_mmio(d, &s->mem);
925 sysbus_init_irq(d, &s->irq);
926
927 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
928 s->timers[i].index = i;
929 }
930
931 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
932 DEVICE(obj), "adb.0");
933 }
934
935 static Property cuda_properties[] = {
936 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
937 DEFINE_PROP_END_OF_LIST()
938 };
939
940 static void cuda_class_init(ObjectClass *oc, void *data)
941 {
942 DeviceClass *dc = DEVICE_CLASS(oc);
943
944 dc->realize = cuda_realizefn;
945 dc->reset = cuda_reset;
946 dc->vmsd = &vmstate_cuda;
947 dc->props = cuda_properties;
948 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
949 }
950
951 static const TypeInfo cuda_type_info = {
952 .name = TYPE_CUDA,
953 .parent = TYPE_SYS_BUS_DEVICE,
954 .instance_size = sizeof(CUDAState),
955 .instance_init = cuda_initfn,
956 .class_init = cuda_class_init,
957 };
958
959 static void cuda_register_types(void)
960 {
961 type_register_static(&cuda_type_info);
962 }
963
964 type_init(cuda_register_types)