]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/macio/cuda.c
cuda: move unknown commands reject out of switch
[mirror_qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/ppc/mac.h"
28 #include "hw/input/adb.h"
29 #include "qemu/timer.h"
30 #include "sysemu/sysemu.h"
31
32 /* XXX: implement all timer modes */
33
34 /* debug CUDA */
35 //#define DEBUG_CUDA
36
37 /* debug CUDA packets */
38 //#define DEBUG_CUDA_PACKET
39
40 #ifdef DEBUG_CUDA
41 #define CUDA_DPRINTF(fmt, ...) \
42 do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
43 #else
44 #define CUDA_DPRINTF(fmt, ...)
45 #endif
46
47 /* Bits in B data register: all active low */
48 #define TREQ 0x08 /* Transfer request (input) */
49 #define TACK 0x10 /* Transfer acknowledge (output) */
50 #define TIP 0x20 /* Transfer in progress (output) */
51
52 /* Bits in ACR */
53 #define SR_CTRL 0x1c /* Shift register control bits */
54 #define SR_EXT 0x0c /* Shift on external clock */
55 #define SR_OUT 0x10 /* Shift out if 1 */
56
57 /* Bits in IFR and IER */
58 #define IER_SET 0x80 /* set bits in IER */
59 #define IER_CLR 0 /* clear bits in IER */
60 #define SR_INT 0x04 /* Shift register full/empty */
61 #define SR_DATA_INT 0x08
62 #define SR_CLOCK_INT 0x10
63 #define T1_INT 0x40 /* Timer 1 interrupt */
64 #define T2_INT 0x20 /* Timer 2 interrupt */
65
66 /* Bits in ACR */
67 #define T1MODE 0xc0 /* Timer 1 mode */
68 #define T1MODE_CONT 0x40 /* continuous interrupts */
69
70 /* commands (1st byte) */
71 #define ADB_PACKET 0
72 #define CUDA_PACKET 1
73 #define ERROR_PACKET 2
74 #define TIMER_PACKET 3
75 #define POWER_PACKET 4
76 #define MACIIC_PACKET 5
77 #define PMU_PACKET 6
78
79
80 /* CUDA commands (2nd byte) */
81 #define CUDA_WARM_START 0x0
82 #define CUDA_AUTOPOLL 0x1
83 #define CUDA_GET_6805_ADDR 0x2
84 #define CUDA_GET_TIME 0x3
85 #define CUDA_GET_PRAM 0x7
86 #define CUDA_SET_6805_ADDR 0x8
87 #define CUDA_SET_TIME 0x9
88 #define CUDA_POWERDOWN 0xa
89 #define CUDA_POWERUP_TIME 0xb
90 #define CUDA_SET_PRAM 0xc
91 #define CUDA_MS_RESET 0xd
92 #define CUDA_SEND_DFAC 0xe
93 #define CUDA_BATTERY_SWAP_SENSE 0x10
94 #define CUDA_RESET_SYSTEM 0x11
95 #define CUDA_SET_IPL 0x12
96 #define CUDA_FILE_SERVER_FLAG 0x13
97 #define CUDA_SET_AUTO_RATE 0x14
98 #define CUDA_GET_AUTO_RATE 0x16
99 #define CUDA_SET_DEVICE_LIST 0x19
100 #define CUDA_GET_DEVICE_LIST 0x1a
101 #define CUDA_SET_ONE_SECOND_MODE 0x1b
102 #define CUDA_SET_POWER_MESSAGES 0x21
103 #define CUDA_GET_SET_IIC 0x22
104 #define CUDA_WAKEUP 0x23
105 #define CUDA_TIMER_TICKLE 0x24
106 #define CUDA_COMBINED_FORMAT_IIC 0x25
107
108 #define CUDA_TIMER_FREQ (4700000 / 6)
109 #define CUDA_ADB_POLL_FREQ 50
110
111 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
112 #define RTC_OFFSET 2082844800
113
114 /* CUDA registers */
115 #define CUDA_REG_B 0x00
116 #define CUDA_REG_A 0x01
117 #define CUDA_REG_DIRB 0x02
118 #define CUDA_REG_DIRA 0x03
119 #define CUDA_REG_T1CL 0x04
120 #define CUDA_REG_T1CH 0x05
121 #define CUDA_REG_T1LL 0x06
122 #define CUDA_REG_T1LH 0x07
123 #define CUDA_REG_T2CL 0x08
124 #define CUDA_REG_T2CH 0x09
125 #define CUDA_REG_SR 0x0a
126 #define CUDA_REG_ACR 0x0b
127 #define CUDA_REG_PCR 0x0c
128 #define CUDA_REG_IFR 0x0d
129 #define CUDA_REG_IER 0x0e
130 #define CUDA_REG_ANH 0x0f
131
132 static void cuda_update(CUDAState *s);
133 static void cuda_receive_packet_from_host(CUDAState *s,
134 const uint8_t *data, int len);
135 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
136 int64_t current_time);
137
138 static void cuda_update_irq(CUDAState *s)
139 {
140 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
141 qemu_irq_raise(s->irq);
142 } else {
143 qemu_irq_lower(s->irq);
144 }
145 }
146
147 static uint64_t get_tb(uint64_t time, uint64_t freq)
148 {
149 return muldiv64(time, freq, get_ticks_per_sec());
150 }
151
152 static unsigned int get_counter(CUDATimer *ti)
153 {
154 int64_t d;
155 unsigned int counter;
156 uint64_t tb_diff;
157 uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
158
159 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
160 tb_diff = get_tb(current_time, ti->frequency) - ti->load_time;
161 d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24);
162
163 if (ti->index == 0) {
164 /* the timer goes down from latch to -1 (period of latch + 2) */
165 if (d <= (ti->counter_value + 1)) {
166 counter = (ti->counter_value - d) & 0xffff;
167 } else {
168 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
169 counter = (ti->latch - counter) & 0xffff;
170 }
171 } else {
172 counter = (ti->counter_value - d) & 0xffff;
173 }
174 return counter;
175 }
176
177 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
178 {
179 CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val);
180 ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
181 s->frequency);
182 ti->counter_value = val;
183 cuda_timer_update(s, ti, ti->load_time);
184 }
185
186 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
187 {
188 int64_t d, next_time;
189 unsigned int counter;
190
191 /* current counter value */
192 d = muldiv64(current_time - s->load_time,
193 CUDA_TIMER_FREQ, get_ticks_per_sec());
194 /* the timer goes down from latch to -1 (period of latch + 2) */
195 if (d <= (s->counter_value + 1)) {
196 counter = (s->counter_value - d) & 0xffff;
197 } else {
198 counter = (d - (s->counter_value + 1)) % (s->latch + 2);
199 counter = (s->latch - counter) & 0xffff;
200 }
201
202 /* Note: we consider the irq is raised on 0 */
203 if (counter == 0xffff) {
204 next_time = d + s->latch + 1;
205 } else if (counter == 0) {
206 next_time = d + s->latch + 2;
207 } else {
208 next_time = d + counter;
209 }
210 CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
211 s->latch, d, next_time - d);
212 next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
213 s->load_time;
214 if (next_time <= current_time)
215 next_time = current_time + 1;
216 return next_time;
217 }
218
219 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
220 int64_t current_time)
221 {
222 if (!ti->timer)
223 return;
224 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
225 timer_del(ti->timer);
226 } else {
227 ti->next_irq_time = get_next_irq_time(ti, current_time);
228 timer_mod(ti->timer, ti->next_irq_time);
229 }
230 }
231
232 static void cuda_timer1(void *opaque)
233 {
234 CUDAState *s = opaque;
235 CUDATimer *ti = &s->timers[0];
236
237 cuda_timer_update(s, ti, ti->next_irq_time);
238 s->ifr |= T1_INT;
239 cuda_update_irq(s);
240 }
241
242 static void cuda_timer2(void *opaque)
243 {
244 CUDAState *s = opaque;
245 CUDATimer *ti = &s->timers[1];
246
247 cuda_timer_update(s, ti, ti->next_irq_time);
248 s->ifr |= T2_INT;
249 cuda_update_irq(s);
250 }
251
252 static void cuda_set_sr_int(void *opaque)
253 {
254 CUDAState *s = opaque;
255
256 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
257 s->ifr |= SR_INT;
258 cuda_update_irq(s);
259 }
260
261 static void cuda_delay_set_sr_int(CUDAState *s)
262 {
263 int64_t expire;
264
265 if (s->dirb == 0xff) {
266 /* Not in Mac OS, fire the IRQ directly */
267 cuda_set_sr_int(s);
268 return;
269 }
270
271 CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__);
272
273 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US;
274 timer_mod(s->sr_delay_timer, expire);
275 }
276
277 static uint32_t cuda_readb(void *opaque, hwaddr addr)
278 {
279 CUDAState *s = opaque;
280 uint32_t val;
281
282 addr = (addr >> 9) & 0xf;
283 switch(addr) {
284 case CUDA_REG_B:
285 val = s->b;
286 break;
287 case CUDA_REG_A:
288 val = s->a;
289 break;
290 case CUDA_REG_DIRB:
291 val = s->dirb;
292 break;
293 case CUDA_REG_DIRA:
294 val = s->dira;
295 break;
296 case CUDA_REG_T1CL:
297 val = get_counter(&s->timers[0]) & 0xff;
298 s->ifr &= ~T1_INT;
299 cuda_update_irq(s);
300 break;
301 case CUDA_REG_T1CH:
302 val = get_counter(&s->timers[0]) >> 8;
303 cuda_update_irq(s);
304 break;
305 case CUDA_REG_T1LL:
306 val = s->timers[0].latch & 0xff;
307 break;
308 case CUDA_REG_T1LH:
309 /* XXX: check this */
310 val = (s->timers[0].latch >> 8) & 0xff;
311 break;
312 case CUDA_REG_T2CL:
313 val = get_counter(&s->timers[1]) & 0xff;
314 s->ifr &= ~T2_INT;
315 cuda_update_irq(s);
316 break;
317 case CUDA_REG_T2CH:
318 val = get_counter(&s->timers[1]) >> 8;
319 break;
320 case CUDA_REG_SR:
321 val = s->sr;
322 s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
323 cuda_update_irq(s);
324 break;
325 case CUDA_REG_ACR:
326 val = s->acr;
327 break;
328 case CUDA_REG_PCR:
329 val = s->pcr;
330 break;
331 case CUDA_REG_IFR:
332 val = s->ifr;
333 if (s->ifr & s->ier) {
334 val |= 0x80;
335 }
336 break;
337 case CUDA_REG_IER:
338 val = s->ier | 0x80;
339 break;
340 default:
341 case CUDA_REG_ANH:
342 val = s->anh;
343 break;
344 }
345 if (addr != CUDA_REG_IFR || val != 0) {
346 CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
347 }
348
349 return val;
350 }
351
352 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
353 {
354 CUDAState *s = opaque;
355
356 addr = (addr >> 9) & 0xf;
357 CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
358
359 switch(addr) {
360 case CUDA_REG_B:
361 s->b = val;
362 cuda_update(s);
363 break;
364 case CUDA_REG_A:
365 s->a = val;
366 break;
367 case CUDA_REG_DIRB:
368 s->dirb = val;
369 break;
370 case CUDA_REG_DIRA:
371 s->dira = val;
372 break;
373 case CUDA_REG_T1CL:
374 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
375 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
376 break;
377 case CUDA_REG_T1CH:
378 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
379 s->ifr &= ~T1_INT;
380 set_counter(s, &s->timers[0], s->timers[0].latch);
381 break;
382 case CUDA_REG_T1LL:
383 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
384 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
385 break;
386 case CUDA_REG_T1LH:
387 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
388 s->ifr &= ~T1_INT;
389 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
390 break;
391 case CUDA_REG_T2CL:
392 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
393 break;
394 case CUDA_REG_T2CH:
395 /* To ensure T2 generates an interrupt on zero crossing with the
396 common timer code, write the value directly from the latch to
397 the counter */
398 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
399 s->ifr &= ~T2_INT;
400 set_counter(s, &s->timers[1], s->timers[1].latch);
401 break;
402 case CUDA_REG_SR:
403 s->sr = val;
404 break;
405 case CUDA_REG_ACR:
406 s->acr = val;
407 cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
408 cuda_update(s);
409 break;
410 case CUDA_REG_PCR:
411 s->pcr = val;
412 break;
413 case CUDA_REG_IFR:
414 /* reset bits */
415 s->ifr &= ~val;
416 cuda_update_irq(s);
417 break;
418 case CUDA_REG_IER:
419 if (val & IER_SET) {
420 /* set bits */
421 s->ier |= val & 0x7f;
422 } else {
423 /* reset bits */
424 s->ier &= ~val;
425 }
426 cuda_update_irq(s);
427 break;
428 default:
429 case CUDA_REG_ANH:
430 s->anh = val;
431 break;
432 }
433 }
434
435 /* NOTE: TIP and TREQ are negated */
436 static void cuda_update(CUDAState *s)
437 {
438 int packet_received, len;
439
440 packet_received = 0;
441 if (!(s->b & TIP)) {
442 /* transfer requested from host */
443
444 if (s->acr & SR_OUT) {
445 /* data output */
446 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
447 if (s->data_out_index < sizeof(s->data_out)) {
448 CUDA_DPRINTF("send: %02x\n", s->sr);
449 s->data_out[s->data_out_index++] = s->sr;
450 cuda_delay_set_sr_int(s);
451 }
452 }
453 } else {
454 if (s->data_in_index < s->data_in_size) {
455 /* data input */
456 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
457 s->sr = s->data_in[s->data_in_index++];
458 CUDA_DPRINTF("recv: %02x\n", s->sr);
459 /* indicate end of transfer */
460 if (s->data_in_index >= s->data_in_size) {
461 s->b = (s->b | TREQ);
462 }
463 cuda_delay_set_sr_int(s);
464 }
465 }
466 }
467 } else {
468 /* no transfer requested: handle sync case */
469 if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
470 /* update TREQ state each time TACK change state */
471 if (s->b & TACK)
472 s->b = (s->b | TREQ);
473 else
474 s->b = (s->b & ~TREQ);
475 cuda_delay_set_sr_int(s);
476 } else {
477 if (!(s->last_b & TIP)) {
478 /* handle end of host to cuda transfer */
479 packet_received = (s->data_out_index > 0);
480 /* always an IRQ at the end of transfer */
481 cuda_delay_set_sr_int(s);
482 }
483 /* signal if there is data to read */
484 if (s->data_in_index < s->data_in_size) {
485 s->b = (s->b & ~TREQ);
486 }
487 }
488 }
489
490 s->last_acr = s->acr;
491 s->last_b = s->b;
492
493 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
494 recursively */
495 if (packet_received) {
496 len = s->data_out_index;
497 s->data_out_index = 0;
498 cuda_receive_packet_from_host(s, s->data_out, len);
499 }
500 }
501
502 static void cuda_send_packet_to_host(CUDAState *s,
503 const uint8_t *data, int len)
504 {
505 #ifdef DEBUG_CUDA_PACKET
506 {
507 int i;
508 printf("cuda_send_packet_to_host:\n");
509 for(i = 0; i < len; i++)
510 printf(" %02x", data[i]);
511 printf("\n");
512 }
513 #endif
514 memcpy(s->data_in, data, len);
515 s->data_in_size = len;
516 s->data_in_index = 0;
517 cuda_update(s);
518 cuda_delay_set_sr_int(s);
519 }
520
521 static void cuda_adb_poll(void *opaque)
522 {
523 CUDAState *s = opaque;
524 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
525 int olen;
526
527 olen = adb_poll(&s->adb_bus, obuf + 2);
528 if (olen > 0) {
529 obuf[0] = ADB_PACKET;
530 obuf[1] = 0x40; /* polled data */
531 cuda_send_packet_to_host(s, obuf, olen + 2);
532 }
533 timer_mod(s->adb_poll_timer,
534 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
535 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
536 }
537
538 /* description of commands */
539 typedef struct CudaCommand {
540 uint8_t command;
541 const char *name;
542 bool (*handler)(CUDAState *s,
543 const uint8_t *in_args, int in_len,
544 uint8_t *out_args, int *out_len);
545 } CudaCommand;
546
547 static const CudaCommand handlers[] = {
548 };
549
550 static void cuda_receive_packet(CUDAState *s,
551 const uint8_t *data, int len)
552 {
553 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
554 int autopoll;
555 int i, out_len = 0;
556 uint32_t ti;
557
558 for (i = 0; i < ARRAY_SIZE(handlers); i++) {
559 const CudaCommand *desc = &handlers[i];
560 if (desc->command == data[0]) {
561 CUDA_DPRINTF("handling command %s\n", desc->name);
562 out_len = 0;
563 if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
564 cuda_send_packet_to_host(s, obuf, 3 + out_len);
565 } else {
566 qemu_log_mask(LOG_GUEST_ERROR,
567 "CUDA: %s: wrong parameters %d\n",
568 desc->name, len);
569 obuf[0] = ERROR_PACKET;
570 obuf[1] = 0x5; /* bad parameters */
571 obuf[2] = CUDA_PACKET;
572 obuf[3] = data[0];
573 cuda_send_packet_to_host(s, obuf, 4);
574 }
575 return;
576 }
577 }
578
579 switch(data[0]) {
580 case CUDA_AUTOPOLL:
581 autopoll = (data[1] != 0);
582 if (autopoll != s->autopoll) {
583 s->autopoll = autopoll;
584 if (autopoll) {
585 timer_mod(s->adb_poll_timer,
586 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
587 (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
588 } else {
589 timer_del(s->adb_poll_timer);
590 }
591 }
592 cuda_send_packet_to_host(s, obuf, 3);
593 return;
594 case CUDA_GET_6805_ADDR:
595 cuda_send_packet_to_host(s, obuf, 3);
596 return;
597 case CUDA_SET_TIME:
598 ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
599 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
600 cuda_send_packet_to_host(s, obuf, 3);
601 return;
602 case CUDA_GET_TIME:
603 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
604 obuf[3] = ti >> 24;
605 obuf[4] = ti >> 16;
606 obuf[5] = ti >> 8;
607 obuf[6] = ti;
608 cuda_send_packet_to_host(s, obuf, 7);
609 return;
610 case CUDA_FILE_SERVER_FLAG:
611 case CUDA_SET_DEVICE_LIST:
612 case CUDA_SET_AUTO_RATE:
613 case CUDA_SET_POWER_MESSAGES:
614 cuda_send_packet_to_host(s, obuf, 3);
615 return;
616 case CUDA_POWERDOWN:
617 cuda_send_packet_to_host(s, obuf, 3);
618 qemu_system_shutdown_request();
619 return;
620 case CUDA_RESET_SYSTEM:
621 cuda_send_packet_to_host(s, obuf, 3);
622 qemu_system_reset_request();
623 return;
624 case CUDA_COMBINED_FORMAT_IIC:
625 obuf[0] = ERROR_PACKET;
626 obuf[1] = 0x5;
627 obuf[2] = CUDA_PACKET;
628 obuf[3] = data[0];
629 cuda_send_packet_to_host(s, obuf, 4);
630 return;
631 case CUDA_GET_SET_IIC:
632 if (len == 4) {
633 cuda_send_packet_to_host(s, obuf, 3);
634 } else {
635 obuf[0] = ERROR_PACKET;
636 obuf[1] = 0x2;
637 obuf[2] = CUDA_PACKET;
638 obuf[3] = data[0];
639 cuda_send_packet_to_host(s, obuf, 4);
640 }
641 return;
642 default:
643 break;
644 }
645
646 qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
647 obuf[0] = ERROR_PACKET;
648 obuf[1] = 0x2; /* unknown command */
649 obuf[2] = CUDA_PACKET;
650 obuf[3] = data[0];
651 cuda_send_packet_to_host(s, obuf, 4);
652 }
653
654 static void cuda_receive_packet_from_host(CUDAState *s,
655 const uint8_t *data, int len)
656 {
657 #ifdef DEBUG_CUDA_PACKET
658 {
659 int i;
660 printf("cuda_receive_packet_from_host:\n");
661 for(i = 0; i < len; i++)
662 printf(" %02x", data[i]);
663 printf("\n");
664 }
665 #endif
666 switch(data[0]) {
667 case ADB_PACKET:
668 {
669 uint8_t obuf[ADB_MAX_OUT_LEN + 3];
670 int olen;
671 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
672 if (olen > 0) {
673 obuf[0] = ADB_PACKET;
674 obuf[1] = 0x00;
675 cuda_send_packet_to_host(s, obuf, olen + 2);
676 } else {
677 /* error */
678 obuf[0] = ADB_PACKET;
679 obuf[1] = -olen;
680 obuf[2] = data[1];
681 olen = 0;
682 cuda_send_packet_to_host(s, obuf, olen + 3);
683 }
684 }
685 break;
686 case CUDA_PACKET:
687 cuda_receive_packet(s, data + 1, len - 1);
688 break;
689 }
690 }
691
692 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
693 {
694 }
695
696 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
697 {
698 }
699
700 static uint32_t cuda_readw (void *opaque, hwaddr addr)
701 {
702 return 0;
703 }
704
705 static uint32_t cuda_readl (void *opaque, hwaddr addr)
706 {
707 return 0;
708 }
709
710 static const MemoryRegionOps cuda_ops = {
711 .old_mmio = {
712 .write = {
713 cuda_writeb,
714 cuda_writew,
715 cuda_writel,
716 },
717 .read = {
718 cuda_readb,
719 cuda_readw,
720 cuda_readl,
721 },
722 },
723 .endianness = DEVICE_NATIVE_ENDIAN,
724 };
725
726 static bool cuda_timer_exist(void *opaque, int version_id)
727 {
728 CUDATimer *s = opaque;
729
730 return s->timer != NULL;
731 }
732
733 static const VMStateDescription vmstate_cuda_timer = {
734 .name = "cuda_timer",
735 .version_id = 0,
736 .minimum_version_id = 0,
737 .fields = (VMStateField[]) {
738 VMSTATE_UINT16(latch, CUDATimer),
739 VMSTATE_UINT16(counter_value, CUDATimer),
740 VMSTATE_INT64(load_time, CUDATimer),
741 VMSTATE_INT64(next_irq_time, CUDATimer),
742 VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
743 VMSTATE_END_OF_LIST()
744 }
745 };
746
747 static const VMStateDescription vmstate_cuda = {
748 .name = "cuda",
749 .version_id = 3,
750 .minimum_version_id = 3,
751 .fields = (VMStateField[]) {
752 VMSTATE_UINT8(a, CUDAState),
753 VMSTATE_UINT8(b, CUDAState),
754 VMSTATE_UINT8(last_b, CUDAState),
755 VMSTATE_UINT8(dira, CUDAState),
756 VMSTATE_UINT8(dirb, CUDAState),
757 VMSTATE_UINT8(sr, CUDAState),
758 VMSTATE_UINT8(acr, CUDAState),
759 VMSTATE_UINT8(last_acr, CUDAState),
760 VMSTATE_UINT8(pcr, CUDAState),
761 VMSTATE_UINT8(ifr, CUDAState),
762 VMSTATE_UINT8(ier, CUDAState),
763 VMSTATE_UINT8(anh, CUDAState),
764 VMSTATE_INT32(data_in_size, CUDAState),
765 VMSTATE_INT32(data_in_index, CUDAState),
766 VMSTATE_INT32(data_out_index, CUDAState),
767 VMSTATE_UINT8(autopoll, CUDAState),
768 VMSTATE_BUFFER(data_in, CUDAState),
769 VMSTATE_BUFFER(data_out, CUDAState),
770 VMSTATE_UINT32(tick_offset, CUDAState),
771 VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
772 vmstate_cuda_timer, CUDATimer),
773 VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
774 VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
775 VMSTATE_END_OF_LIST()
776 }
777 };
778
779 static void cuda_reset(DeviceState *dev)
780 {
781 CUDAState *s = CUDA(dev);
782
783 s->b = 0;
784 s->a = 0;
785 s->dirb = 0xff;
786 s->dira = 0;
787 s->sr = 0;
788 s->acr = 0;
789 s->pcr = 0;
790 s->ifr = 0;
791 s->ier = 0;
792 // s->ier = T1_INT | SR_INT;
793 s->anh = 0;
794 s->data_in_size = 0;
795 s->data_in_index = 0;
796 s->data_out_index = 0;
797 s->autopoll = 0;
798
799 s->timers[0].latch = 0xffff;
800 set_counter(s, &s->timers[0], 0xffff);
801
802 s->timers[1].latch = 0xffff;
803
804 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
805 }
806
807 static void cuda_realizefn(DeviceState *dev, Error **errp)
808 {
809 CUDAState *s = CUDA(dev);
810 struct tm tm;
811
812 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
813 s->timers[0].frequency = s->frequency;
814 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s);
815 s->timers[1].frequency = (SCALE_US * 6000) / 4700;
816
817 qemu_get_timedate(&tm, 0);
818 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
819
820 s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
821 }
822
823 static void cuda_initfn(Object *obj)
824 {
825 SysBusDevice *d = SYS_BUS_DEVICE(obj);
826 CUDAState *s = CUDA(obj);
827 int i;
828
829 memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
830 sysbus_init_mmio(d, &s->mem);
831 sysbus_init_irq(d, &s->irq);
832
833 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
834 s->timers[i].index = i;
835 }
836
837 qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
838 DEVICE(obj), "adb.0");
839 }
840
841 static Property cuda_properties[] = {
842 DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
843 DEFINE_PROP_END_OF_LIST()
844 };
845
846 static void cuda_class_init(ObjectClass *oc, void *data)
847 {
848 DeviceClass *dc = DEVICE_CLASS(oc);
849
850 dc->realize = cuda_realizefn;
851 dc->reset = cuda_reset;
852 dc->vmsd = &vmstate_cuda;
853 dc->props = cuda_properties;
854 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
855 }
856
857 static const TypeInfo cuda_type_info = {
858 .name = TYPE_CUDA,
859 .parent = TYPE_SYS_BUS_DEVICE,
860 .instance_size = sizeof(CUDAState),
861 .instance_init = cuda_initfn,
862 .class_init = cuda_class_init,
863 };
864
865 static void cuda_register_types(void)
866 {
867 type_register_static(&cuda_type_info);
868 }
869
870 type_init(cuda_register_types)