]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/macio/cuda.c
Merge tag 'pull-maintainer-may24-160524-2' of https://gitlab.com/stsquad/qemu into...
[mirror_qemu.git] / hw / misc / macio / cuda.c
1 /*
2 * QEMU PowerMac CUDA device support
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25
26 #include "qemu/osdep.h"
27 #include "hw/irq.h"
28 #include "hw/qdev-properties.h"
29 #include "migration/vmstate.h"
30 #include "hw/misc/macio/cuda.h"
31 #include "qemu/timer.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/rtc.h"
34 #include "qapi/error.h"
35 #include "qemu/cutils.h"
36 #include "qemu/log.h"
37 #include "qemu/module.h"
38 #include "trace.h"
39
40 /* Bits in B data register: all active low */
41 #define TREQ 0x08 /* Transfer request (input) */
42 #define TACK 0x10 /* Transfer acknowledge (output) */
43 #define TIP 0x20 /* Transfer in progress (output) */
44
45 /* commands (1st byte) */
46 #define ADB_PACKET 0
47 #define CUDA_PACKET 1
48 #define ERROR_PACKET 2
49 #define TIMER_PACKET 3
50 #define POWER_PACKET 4
51 #define MACIIC_PACKET 5
52 #define PMU_PACKET 6
53
54 #define CUDA_TIMER_FREQ (4700000 / 6)
55
56 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
57 #define RTC_OFFSET 2082844800
58
59 static void cuda_receive_packet_from_host(CUDAState *s,
60 const uint8_t *data, int len);
61
62 /* MacOS uses timer 1 for calibration on startup, so we use
63 * the timebase frequency and cuda_get_counter_value() with
64 * cuda_get_load_time() to steer MacOS to calculate calibrate its timers
65 * correctly for both TCG and KVM (see commit b981289c49 "PPC: Cuda: Use cuda
66 * timer to expose tbfreq to guest" for more information) */
67
68 static uint64_t cuda_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
69 {
70 MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
71 CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
72
73 /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup */
74 uint64_t tb_diff = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
75 cs->tb_frequency, NANOSECONDS_PER_SECOND) -
76 ti->load_time;
77
78 return (tb_diff * 0xBF401675E5DULL) / (cs->tb_frequency << 24);
79 }
80
81 static uint64_t cuda_get_load_time(MOS6522State *s, MOS6522Timer *ti)
82 {
83 MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
84 CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
85
86 uint64_t load_time = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
87 cs->tb_frequency, NANOSECONDS_PER_SECOND);
88 return load_time;
89 }
90
91 static void cuda_set_sr_int(void *opaque)
92 {
93 CUDAState *s = opaque;
94 MOS6522CUDAState *mcs = &s->mos6522_cuda;
95 MOS6522State *ms = MOS6522(mcs);
96 qemu_irq irq = qdev_get_gpio_in(DEVICE(ms), SR_INT_BIT);
97
98 qemu_set_irq(irq, 1);
99 }
100
101 static void cuda_delay_set_sr_int(CUDAState *s)
102 {
103 int64_t expire;
104
105 trace_cuda_delay_set_sr_int();
106
107 expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->sr_delay_ns;
108 timer_mod(s->sr_delay_timer, expire);
109 }
110
111 /* NOTE: TIP and TREQ are negated */
112 static void cuda_update(CUDAState *s)
113 {
114 MOS6522CUDAState *mcs = &s->mos6522_cuda;
115 MOS6522State *ms = MOS6522(mcs);
116 ADBBusState *adb_bus = &s->adb_bus;
117 int packet_received, len;
118
119 packet_received = 0;
120 if (!(ms->b & TIP)) {
121 /* transfer requested from host */
122
123 if (ms->acr & SR_OUT) {
124 /* data output */
125 if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
126 if (s->data_out_index < sizeof(s->data_out)) {
127 if (s->data_out_index == 0) {
128 adb_autopoll_block(adb_bus);
129 }
130 trace_cuda_data_send(ms->sr);
131 s->data_out[s->data_out_index++] = ms->sr;
132 cuda_delay_set_sr_int(s);
133 }
134 }
135 } else {
136 if (s->data_in_index < s->data_in_size) {
137 /* data input */
138 if ((ms->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
139 ms->sr = s->data_in[s->data_in_index++];
140 trace_cuda_data_recv(ms->sr);
141 /* indicate end of transfer */
142 if (s->data_in_index >= s->data_in_size) {
143 ms->b = (ms->b | TREQ);
144 adb_autopoll_unblock(adb_bus);
145 }
146 cuda_delay_set_sr_int(s);
147 }
148 }
149 }
150 } else {
151 /* no transfer requested: handle sync case */
152 if ((s->last_b & TIP) && (ms->b & TACK) != (s->last_b & TACK)) {
153 /* update TREQ state each time TACK change state */
154 if (ms->b & TACK) {
155 ms->b = (ms->b | TREQ);
156 } else {
157 ms->b = (ms->b & ~TREQ);
158 }
159 cuda_delay_set_sr_int(s);
160 } else {
161 if (!(s->last_b & TIP)) {
162 /* handle end of host to cuda transfer */
163 packet_received = (s->data_out_index > 0);
164 /* always an IRQ at the end of transfer */
165 cuda_delay_set_sr_int(s);
166 }
167 /* signal if there is data to read */
168 if (s->data_in_index < s->data_in_size) {
169 ms->b = (ms->b & ~TREQ);
170 }
171 }
172 }
173
174 s->last_acr = ms->acr;
175 s->last_b = ms->b;
176
177 /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
178 recursively */
179 if (packet_received) {
180 len = s->data_out_index;
181 s->data_out_index = 0;
182 cuda_receive_packet_from_host(s, s->data_out, len);
183 }
184 }
185
186 static void cuda_send_packet_to_host(CUDAState *s,
187 const uint8_t *data, int len)
188 {
189 int i;
190
191 trace_cuda_packet_send(len);
192 for (i = 0; i < len; i++) {
193 trace_cuda_packet_send_data(i, data[i]);
194 }
195
196 memcpy(s->data_in, data, len);
197 s->data_in_size = len;
198 s->data_in_index = 0;
199 cuda_update(s);
200 cuda_delay_set_sr_int(s);
201 }
202
203 static void cuda_adb_poll(void *opaque)
204 {
205 CUDAState *s = opaque;
206 ADBBusState *adb_bus = &s->adb_bus;
207 uint8_t obuf[ADB_MAX_OUT_LEN + 2];
208 int olen;
209
210 olen = adb_poll(adb_bus, obuf + 2, adb_bus->autopoll_mask);
211 if (olen > 0) {
212 obuf[0] = ADB_PACKET;
213 obuf[1] = 0x40; /* polled data */
214 cuda_send_packet_to_host(s, obuf, olen + 2);
215 }
216 }
217
218 /* description of commands */
219 typedef struct CudaCommand {
220 uint8_t command;
221 const char *name;
222 bool (*handler)(CUDAState *s,
223 const uint8_t *in_args, int in_len,
224 uint8_t *out_args, int *out_len);
225 } CudaCommand;
226
227 static bool cuda_cmd_autopoll(CUDAState *s,
228 const uint8_t *in_data, int in_len,
229 uint8_t *out_data, int *out_len)
230 {
231 ADBBusState *adb_bus = &s->adb_bus;
232 bool autopoll;
233
234 if (in_len != 1) {
235 return false;
236 }
237
238 autopoll = (in_data[0] != 0) ? true : false;
239
240 adb_set_autopoll_enabled(adb_bus, autopoll);
241 return true;
242 }
243
244 static bool cuda_cmd_set_autorate(CUDAState *s,
245 const uint8_t *in_data, int in_len,
246 uint8_t *out_data, int *out_len)
247 {
248 ADBBusState *adb_bus = &s->adb_bus;
249
250 if (in_len != 1) {
251 return false;
252 }
253
254 /* we don't want a period of 0 ms */
255 /* FIXME: check what real hardware does */
256 if (in_data[0] == 0) {
257 return false;
258 }
259
260 adb_set_autopoll_rate_ms(adb_bus, in_data[0]);
261 return true;
262 }
263
264 static bool cuda_cmd_set_device_list(CUDAState *s,
265 const uint8_t *in_data, int in_len,
266 uint8_t *out_data, int *out_len)
267 {
268 ADBBusState *adb_bus = &s->adb_bus;
269 uint16_t mask;
270
271 if (in_len != 2) {
272 return false;
273 }
274
275 mask = (((uint16_t)in_data[0]) << 8) | in_data[1];
276
277 adb_set_autopoll_mask(adb_bus, mask);
278 return true;
279 }
280
281 static bool cuda_cmd_powerdown(CUDAState *s,
282 const uint8_t *in_data, int in_len,
283 uint8_t *out_data, int *out_len)
284 {
285 if (in_len != 0) {
286 return false;
287 }
288
289 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
290 return true;
291 }
292
293 static bool cuda_cmd_reset_system(CUDAState *s,
294 const uint8_t *in_data, int in_len,
295 uint8_t *out_data, int *out_len)
296 {
297 if (in_len != 0) {
298 return false;
299 }
300
301 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
302 return true;
303 }
304
305 static bool cuda_cmd_set_file_server_flag(CUDAState *s,
306 const uint8_t *in_data, int in_len,
307 uint8_t *out_data, int *out_len)
308 {
309 if (in_len != 1) {
310 return false;
311 }
312
313 qemu_log_mask(LOG_UNIMP,
314 "CUDA: unimplemented command FILE_SERVER_FLAG %d\n",
315 in_data[0]);
316 return true;
317 }
318
319 static bool cuda_cmd_set_power_message(CUDAState *s,
320 const uint8_t *in_data, int in_len,
321 uint8_t *out_data, int *out_len)
322 {
323 if (in_len != 1) {
324 return false;
325 }
326
327 qemu_log_mask(LOG_UNIMP,
328 "CUDA: unimplemented command SET_POWER_MESSAGE %d\n",
329 in_data[0]);
330 return true;
331 }
332
333 static bool cuda_cmd_get_time(CUDAState *s,
334 const uint8_t *in_data, int in_len,
335 uint8_t *out_data, int *out_len)
336 {
337 uint32_t ti;
338
339 if (in_len != 0) {
340 return false;
341 }
342
343 ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
344 / NANOSECONDS_PER_SECOND);
345 out_data[0] = ti >> 24;
346 out_data[1] = ti >> 16;
347 out_data[2] = ti >> 8;
348 out_data[3] = ti;
349 *out_len = 4;
350 return true;
351 }
352
353 static bool cuda_cmd_set_time(CUDAState *s,
354 const uint8_t *in_data, int in_len,
355 uint8_t *out_data, int *out_len)
356 {
357 uint32_t ti;
358
359 if (in_len != 4) {
360 return false;
361 }
362
363 ti = (((uint32_t)in_data[0]) << 24) + (((uint32_t)in_data[1]) << 16)
364 + (((uint32_t)in_data[2]) << 8) + in_data[3];
365 s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)
366 / NANOSECONDS_PER_SECOND);
367 return true;
368 }
369
370 static const CudaCommand handlers[] = {
371 { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll },
372 { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate },
373 { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list },
374 { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown },
375 { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system },
376 { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG",
377 cuda_cmd_set_file_server_flag },
378 { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES",
379 cuda_cmd_set_power_message },
380 { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time },
381 { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time },
382 };
383
384 static void cuda_receive_packet(CUDAState *s,
385 const uint8_t *data, int len)
386 {
387 uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
388 int i, out_len = 0;
389
390 for (i = 0; i < ARRAY_SIZE(handlers); i++) {
391 const CudaCommand *desc = &handlers[i];
392 if (desc->command == data[0]) {
393 trace_cuda_receive_packet_cmd(desc->name);
394 out_len = 0;
395 if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) {
396 cuda_send_packet_to_host(s, obuf, 3 + out_len);
397 } else {
398 qemu_log_mask(LOG_GUEST_ERROR,
399 "CUDA: %s: wrong parameters %d\n",
400 desc->name, len);
401 obuf[0] = ERROR_PACKET;
402 obuf[1] = 0x5; /* bad parameters */
403 obuf[2] = CUDA_PACKET;
404 obuf[3] = data[0];
405 cuda_send_packet_to_host(s, obuf, 4);
406 }
407 return;
408 }
409 }
410
411 qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]);
412 obuf[0] = ERROR_PACKET;
413 obuf[1] = 0x2; /* unknown command */
414 obuf[2] = CUDA_PACKET;
415 obuf[3] = data[0];
416 cuda_send_packet_to_host(s, obuf, 4);
417 }
418
419 static void cuda_receive_packet_from_host(CUDAState *s,
420 const uint8_t *data, int len)
421 {
422 int i;
423
424 trace_cuda_packet_receive(len);
425 for (i = 0; i < len; i++) {
426 trace_cuda_packet_receive_data(i, data[i]);
427 }
428
429 switch(data[0]) {
430 case ADB_PACKET:
431 {
432 uint8_t obuf[ADB_MAX_OUT_LEN + 3];
433 int olen;
434 olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
435 if (olen > 0) {
436 obuf[0] = ADB_PACKET;
437 obuf[1] = 0x00;
438 cuda_send_packet_to_host(s, obuf, olen + 2);
439 } else {
440 /* error */
441 obuf[0] = ADB_PACKET;
442 obuf[1] = -olen;
443 obuf[2] = data[1];
444 olen = 0;
445 cuda_send_packet_to_host(s, obuf, olen + 3);
446 }
447 }
448 break;
449 case CUDA_PACKET:
450 cuda_receive_packet(s, data + 1, len - 1);
451 break;
452 }
453 }
454
455 static uint64_t mos6522_cuda_read(void *opaque, hwaddr addr, unsigned size)
456 {
457 CUDAState *s = opaque;
458 MOS6522CUDAState *mcs = &s->mos6522_cuda;
459 MOS6522State *ms = MOS6522(mcs);
460
461 addr = (addr >> 9) & 0xf;
462 return mos6522_read(ms, addr, size);
463 }
464
465 static void mos6522_cuda_write(void *opaque, hwaddr addr, uint64_t val,
466 unsigned size)
467 {
468 CUDAState *s = opaque;
469 MOS6522CUDAState *mcs = &s->mos6522_cuda;
470 MOS6522State *ms = MOS6522(mcs);
471
472 addr = (addr >> 9) & 0xf;
473 mos6522_write(ms, addr, val, size);
474 }
475
476 static const MemoryRegionOps mos6522_cuda_ops = {
477 .read = mos6522_cuda_read,
478 .write = mos6522_cuda_write,
479 .endianness = DEVICE_BIG_ENDIAN,
480 .valid = {
481 .min_access_size = 1,
482 .max_access_size = 1,
483 },
484 };
485
486 static const VMStateDescription vmstate_cuda = {
487 .name = "cuda",
488 .version_id = 6,
489 .minimum_version_id = 6,
490 .fields = (const VMStateField[]) {
491 VMSTATE_STRUCT(mos6522_cuda.parent_obj, CUDAState, 0, vmstate_mos6522,
492 MOS6522State),
493 VMSTATE_UINT8(last_b, CUDAState),
494 VMSTATE_UINT8(last_acr, CUDAState),
495 VMSTATE_INT32(data_in_size, CUDAState),
496 VMSTATE_INT32(data_in_index, CUDAState),
497 VMSTATE_INT32(data_out_index, CUDAState),
498 VMSTATE_BUFFER(data_in, CUDAState),
499 VMSTATE_BUFFER(data_out, CUDAState),
500 VMSTATE_UINT32(tick_offset, CUDAState),
501 VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState),
502 VMSTATE_END_OF_LIST()
503 }
504 };
505
506 static void cuda_reset(DeviceState *dev)
507 {
508 CUDAState *s = CUDA(dev);
509 ADBBusState *adb_bus = &s->adb_bus;
510
511 s->data_in_size = 0;
512 s->data_in_index = 0;
513 s->data_out_index = 0;
514
515 adb_set_autopoll_enabled(adb_bus, false);
516 }
517
518 static void cuda_realize(DeviceState *dev, Error **errp)
519 {
520 CUDAState *s = CUDA(dev);
521 SysBusDevice *sbd;
522 ADBBusState *adb_bus = &s->adb_bus;
523 struct tm tm;
524
525 if (!sysbus_realize(SYS_BUS_DEVICE(&s->mos6522_cuda), errp)) {
526 return;
527 }
528
529 /* Pass IRQ from 6522 */
530 sbd = SYS_BUS_DEVICE(s);
531 sysbus_pass_irq(sbd, SYS_BUS_DEVICE(&s->mos6522_cuda));
532
533 qemu_get_timedate(&tm, 0);
534 s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
535
536 s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s);
537 s->sr_delay_ns = 20 * SCALE_US;
538
539 adb_register_autopoll_callback(adb_bus, cuda_adb_poll, s);
540 }
541
542 static void cuda_init(Object *obj)
543 {
544 CUDAState *s = CUDA(obj);
545 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
546
547 object_initialize_child(obj, "mos6522-cuda", &s->mos6522_cuda,
548 TYPE_MOS6522_CUDA);
549
550 memory_region_init_io(&s->mem, obj, &mos6522_cuda_ops, s, "cuda", 0x2000);
551 sysbus_init_mmio(sbd, &s->mem);
552
553 qbus_init(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
554 DEVICE(obj), "adb.0");
555 }
556
557 static Property cuda_properties[] = {
558 DEFINE_PROP_UINT64("timebase-frequency", CUDAState, tb_frequency, 0),
559 DEFINE_PROP_END_OF_LIST()
560 };
561
562 static void cuda_class_init(ObjectClass *oc, void *data)
563 {
564 DeviceClass *dc = DEVICE_CLASS(oc);
565
566 dc->realize = cuda_realize;
567 dc->reset = cuda_reset;
568 dc->vmsd = &vmstate_cuda;
569 device_class_set_props(dc, cuda_properties);
570 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
571 }
572
573 static const TypeInfo cuda_type_info = {
574 .name = TYPE_CUDA,
575 .parent = TYPE_SYS_BUS_DEVICE,
576 .instance_size = sizeof(CUDAState),
577 .instance_init = cuda_init,
578 .class_init = cuda_class_init,
579 };
580
581 static void mos6522_cuda_portB_write(MOS6522State *s)
582 {
583 MOS6522CUDAState *mcs = container_of(s, MOS6522CUDAState, parent_obj);
584 CUDAState *cs = container_of(mcs, CUDAState, mos6522_cuda);
585
586 cuda_update(cs);
587 }
588
589 static void mos6522_cuda_reset_hold(Object *obj, ResetType type)
590 {
591 MOS6522State *ms = MOS6522(obj);
592 MOS6522DeviceClass *mdc = MOS6522_GET_CLASS(ms);
593
594 if (mdc->parent_phases.hold) {
595 mdc->parent_phases.hold(obj, type);
596 }
597
598 ms->timers[0].frequency = CUDA_TIMER_FREQ;
599 ms->timers[1].frequency = (SCALE_US * 6000) / 4700;
600 }
601
602 static void mos6522_cuda_class_init(ObjectClass *oc, void *data)
603 {
604 ResettableClass *rc = RESETTABLE_CLASS(oc);
605 MOS6522DeviceClass *mdc = MOS6522_CLASS(oc);
606
607 resettable_class_set_parent_phases(rc, NULL, mos6522_cuda_reset_hold,
608 NULL, &mdc->parent_phases);
609 mdc->portB_write = mos6522_cuda_portB_write;
610 mdc->get_timer1_counter_value = cuda_get_counter_value;
611 mdc->get_timer2_counter_value = cuda_get_counter_value;
612 mdc->get_timer1_load_time = cuda_get_load_time;
613 mdc->get_timer2_load_time = cuda_get_load_time;
614 }
615
616 static const TypeInfo mos6522_cuda_type_info = {
617 .name = TYPE_MOS6522_CUDA,
618 .parent = TYPE_MOS6522,
619 .instance_size = sizeof(MOS6522CUDAState),
620 .class_init = mos6522_cuda_class_init,
621 };
622
623 static void cuda_register_types(void)
624 {
625 type_register_static(&mos6522_cuda_type_info);
626 type_register_static(&cuda_type_info);
627 }
628
629 type_init(cuda_register_types)