]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/macio/mac_dbdma.c
Merge remote-tracking branch 'remotes/kraxel/tags/ui-20180703-pull-request' into...
[mirror_qemu.git] / hw / misc / macio / mac_dbdma.c
1 /*
2 * PowerMac descriptor-based DMA emulation
3 *
4 * Copyright (c) 2005-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2009 Laurent Vivier
7 *
8 * some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
9 *
10 * Definitions for using the Apple Descriptor-Based DMA controller
11 * in Power Macintosh computers.
12 *
13 * Copyright (C) 1996 Paul Mackerras.
14 *
15 * some parts from mol 0.9.71
16 *
17 * Descriptor based DMA emulation
18 *
19 * Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
20 *
21 * Permission is hereby granted, free of charge, to any person obtaining a copy
22 * of this software and associated documentation files (the "Software"), to deal
23 * in the Software without restriction, including without limitation the rights
24 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
25 * copies of the Software, and to permit persons to whom the Software is
26 * furnished to do so, subject to the following conditions:
27 *
28 * The above copyright notice and this permission notice shall be included in
29 * all copies or substantial portions of the Software.
30 *
31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
32 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
33 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
34 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
35 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
36 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
37 * THE SOFTWARE.
38 */
39 #include "qemu/osdep.h"
40 #include "hw/hw.h"
41 #include "hw/isa/isa.h"
42 #include "hw/ppc/mac_dbdma.h"
43 #include "qemu/main-loop.h"
44 #include "qemu/log.h"
45 #include "sysemu/dma.h"
46
47 /* debug DBDMA */
48 #define DEBUG_DBDMA 0
49 #define DEBUG_DBDMA_CHANMASK ((1ull << DBDMA_CHANNELS) - 1)
50
51 #define DBDMA_DPRINTF(fmt, ...) do { \
52 if (DEBUG_DBDMA) { \
53 printf("DBDMA: " fmt , ## __VA_ARGS__); \
54 } \
55 } while (0)
56
57 #define DBDMA_DPRINTFCH(ch, fmt, ...) do { \
58 if (DEBUG_DBDMA) { \
59 if ((1ul << (ch)->channel) & DEBUG_DBDMA_CHANMASK) { \
60 printf("DBDMA[%02x]: " fmt , (ch)->channel, ## __VA_ARGS__); \
61 } \
62 } \
63 } while (0)
64
65 /*
66 */
67
68 static DBDMAState *dbdma_from_ch(DBDMA_channel *ch)
69 {
70 return container_of(ch, DBDMAState, channels[ch->channel]);
71 }
72
73 #if DEBUG_DBDMA
74 static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
75 {
76 DBDMA_DPRINTFCH(ch, "dbdma_cmd %p\n", cmd);
77 DBDMA_DPRINTFCH(ch, " req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
78 DBDMA_DPRINTFCH(ch, " command 0x%04x\n", le16_to_cpu(cmd->command));
79 DBDMA_DPRINTFCH(ch, " phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
80 DBDMA_DPRINTFCH(ch, " cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
81 DBDMA_DPRINTFCH(ch, " res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
82 DBDMA_DPRINTFCH(ch, " xfer_status 0x%04x\n",
83 le16_to_cpu(cmd->xfer_status));
84 }
85 #else
86 static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
87 {
88 }
89 #endif
90 static void dbdma_cmdptr_load(DBDMA_channel *ch)
91 {
92 DBDMA_DPRINTFCH(ch, "dbdma_cmdptr_load 0x%08x\n",
93 ch->regs[DBDMA_CMDPTR_LO]);
94 dma_memory_read(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
95 &ch->current, sizeof(dbdma_cmd));
96 }
97
98 static void dbdma_cmdptr_save(DBDMA_channel *ch)
99 {
100 DBDMA_DPRINTFCH(ch, "-> update 0x%08x stat=0x%08x, res=0x%04x\n",
101 ch->regs[DBDMA_CMDPTR_LO],
102 le16_to_cpu(ch->current.xfer_status),
103 le16_to_cpu(ch->current.res_count));
104 dma_memory_write(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
105 &ch->current, sizeof(dbdma_cmd));
106 }
107
108 static void kill_channel(DBDMA_channel *ch)
109 {
110 DBDMA_DPRINTFCH(ch, "kill_channel\n");
111
112 ch->regs[DBDMA_STATUS] |= DEAD;
113 ch->regs[DBDMA_STATUS] &= ~ACTIVE;
114
115 qemu_irq_raise(ch->irq);
116 }
117
118 static void conditional_interrupt(DBDMA_channel *ch)
119 {
120 dbdma_cmd *current = &ch->current;
121 uint16_t intr;
122 uint16_t sel_mask, sel_value;
123 uint32_t status;
124 int cond;
125
126 DBDMA_DPRINTFCH(ch, "%s\n", __func__);
127
128 intr = le16_to_cpu(current->command) & INTR_MASK;
129
130 switch(intr) {
131 case INTR_NEVER: /* don't interrupt */
132 return;
133 case INTR_ALWAYS: /* always interrupt */
134 qemu_irq_raise(ch->irq);
135 DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
136 return;
137 }
138
139 status = ch->regs[DBDMA_STATUS] & DEVSTAT;
140
141 sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f;
142 sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f;
143
144 cond = (status & sel_mask) == (sel_value & sel_mask);
145
146 switch(intr) {
147 case INTR_IFSET: /* intr if condition bit is 1 */
148 if (cond) {
149 qemu_irq_raise(ch->irq);
150 DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
151 }
152 return;
153 case INTR_IFCLR: /* intr if condition bit is 0 */
154 if (!cond) {
155 qemu_irq_raise(ch->irq);
156 DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
157 }
158 return;
159 }
160 }
161
162 static int conditional_wait(DBDMA_channel *ch)
163 {
164 dbdma_cmd *current = &ch->current;
165 uint16_t wait;
166 uint16_t sel_mask, sel_value;
167 uint32_t status;
168 int cond;
169 int res = 0;
170
171 wait = le16_to_cpu(current->command) & WAIT_MASK;
172 switch(wait) {
173 case WAIT_NEVER: /* don't wait */
174 return 0;
175 case WAIT_ALWAYS: /* always wait */
176 DBDMA_DPRINTFCH(ch, " [WAIT_ALWAYS]\n");
177 return 1;
178 }
179
180 status = ch->regs[DBDMA_STATUS] & DEVSTAT;
181
182 sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f;
183 sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f;
184
185 cond = (status & sel_mask) == (sel_value & sel_mask);
186
187 switch(wait) {
188 case WAIT_IFSET: /* wait if condition bit is 1 */
189 if (cond) {
190 res = 1;
191 }
192 DBDMA_DPRINTFCH(ch, " [WAIT_IFSET=%d]\n", res);
193 break;
194 case WAIT_IFCLR: /* wait if condition bit is 0 */
195 if (!cond) {
196 res = 1;
197 }
198 DBDMA_DPRINTFCH(ch, " [WAIT_IFCLR=%d]\n", res);
199 break;
200 }
201 return res;
202 }
203
204 static void next(DBDMA_channel *ch)
205 {
206 uint32_t cp;
207
208 ch->regs[DBDMA_STATUS] &= ~BT;
209
210 cp = ch->regs[DBDMA_CMDPTR_LO];
211 ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd);
212 dbdma_cmdptr_load(ch);
213 }
214
215 static void branch(DBDMA_channel *ch)
216 {
217 dbdma_cmd *current = &ch->current;
218
219 ch->regs[DBDMA_CMDPTR_LO] = le32_to_cpu(current->cmd_dep);
220 ch->regs[DBDMA_STATUS] |= BT;
221 dbdma_cmdptr_load(ch);
222 }
223
224 static void conditional_branch(DBDMA_channel *ch)
225 {
226 dbdma_cmd *current = &ch->current;
227 uint16_t br;
228 uint16_t sel_mask, sel_value;
229 uint32_t status;
230 int cond;
231
232 /* check if we must branch */
233
234 br = le16_to_cpu(current->command) & BR_MASK;
235
236 switch(br) {
237 case BR_NEVER: /* don't branch */
238 next(ch);
239 return;
240 case BR_ALWAYS: /* always branch */
241 DBDMA_DPRINTFCH(ch, " [BR_ALWAYS]\n");
242 branch(ch);
243 return;
244 }
245
246 status = ch->regs[DBDMA_STATUS] & DEVSTAT;
247
248 sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f;
249 sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f;
250
251 cond = (status & sel_mask) == (sel_value & sel_mask);
252
253 switch(br) {
254 case BR_IFSET: /* branch if condition bit is 1 */
255 if (cond) {
256 DBDMA_DPRINTFCH(ch, " [BR_IFSET = 1]\n");
257 branch(ch);
258 } else {
259 DBDMA_DPRINTFCH(ch, " [BR_IFSET = 0]\n");
260 next(ch);
261 }
262 return;
263 case BR_IFCLR: /* branch if condition bit is 0 */
264 if (!cond) {
265 DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 1]\n");
266 branch(ch);
267 } else {
268 DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 0]\n");
269 next(ch);
270 }
271 return;
272 }
273 }
274
275 static void channel_run(DBDMA_channel *ch);
276
277 static void dbdma_end(DBDMA_io *io)
278 {
279 DBDMA_channel *ch = io->channel;
280 dbdma_cmd *current = &ch->current;
281
282 DBDMA_DPRINTFCH(ch, "%s\n", __func__);
283
284 if (conditional_wait(ch))
285 goto wait;
286
287 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
288 current->res_count = cpu_to_le16(io->len);
289 dbdma_cmdptr_save(ch);
290 if (io->is_last)
291 ch->regs[DBDMA_STATUS] &= ~FLUSH;
292
293 conditional_interrupt(ch);
294 conditional_branch(ch);
295
296 wait:
297 /* Indicate that we're ready for a new DMA round */
298 ch->io.processing = false;
299
300 if ((ch->regs[DBDMA_STATUS] & RUN) &&
301 (ch->regs[DBDMA_STATUS] & ACTIVE))
302 channel_run(ch);
303 }
304
305 static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
306 uint16_t req_count, int is_last)
307 {
308 DBDMA_DPRINTFCH(ch, "start_output\n");
309
310 /* KEY_REGS, KEY_DEVICE and KEY_STREAM
311 * are not implemented in the mac-io chip
312 */
313
314 DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
315 if (!addr || key > KEY_STREAM3) {
316 kill_channel(ch);
317 return;
318 }
319
320 ch->io.addr = addr;
321 ch->io.len = req_count;
322 ch->io.is_last = is_last;
323 ch->io.dma_end = dbdma_end;
324 ch->io.is_dma_out = 1;
325 ch->io.processing = true;
326 if (ch->rw) {
327 ch->rw(&ch->io);
328 }
329 }
330
331 static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
332 uint16_t req_count, int is_last)
333 {
334 DBDMA_DPRINTFCH(ch, "start_input\n");
335
336 /* KEY_REGS, KEY_DEVICE and KEY_STREAM
337 * are not implemented in the mac-io chip
338 */
339
340 DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
341 if (!addr || key > KEY_STREAM3) {
342 kill_channel(ch);
343 return;
344 }
345
346 ch->io.addr = addr;
347 ch->io.len = req_count;
348 ch->io.is_last = is_last;
349 ch->io.dma_end = dbdma_end;
350 ch->io.is_dma_out = 0;
351 ch->io.processing = true;
352 if (ch->rw) {
353 ch->rw(&ch->io);
354 }
355 }
356
357 static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
358 uint16_t len)
359 {
360 dbdma_cmd *current = &ch->current;
361
362 DBDMA_DPRINTFCH(ch, "load_word %d bytes, addr=%08x\n", len, addr);
363
364 /* only implements KEY_SYSTEM */
365
366 if (key != KEY_SYSTEM) {
367 printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
368 kill_channel(ch);
369 return;
370 }
371
372 dma_memory_read(&address_space_memory, addr, &current->cmd_dep, len);
373
374 if (conditional_wait(ch))
375 goto wait;
376
377 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
378 dbdma_cmdptr_save(ch);
379 ch->regs[DBDMA_STATUS] &= ~FLUSH;
380
381 conditional_interrupt(ch);
382 next(ch);
383
384 wait:
385 DBDMA_kick(dbdma_from_ch(ch));
386 }
387
388 static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
389 uint16_t len)
390 {
391 dbdma_cmd *current = &ch->current;
392
393 DBDMA_DPRINTFCH(ch, "store_word %d bytes, addr=%08x pa=%x\n",
394 len, addr, le32_to_cpu(current->cmd_dep));
395
396 /* only implements KEY_SYSTEM */
397
398 if (key != KEY_SYSTEM) {
399 printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
400 kill_channel(ch);
401 return;
402 }
403
404 dma_memory_write(&address_space_memory, addr, &current->cmd_dep, len);
405
406 if (conditional_wait(ch))
407 goto wait;
408
409 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
410 dbdma_cmdptr_save(ch);
411 ch->regs[DBDMA_STATUS] &= ~FLUSH;
412
413 conditional_interrupt(ch);
414 next(ch);
415
416 wait:
417 DBDMA_kick(dbdma_from_ch(ch));
418 }
419
420 static void nop(DBDMA_channel *ch)
421 {
422 dbdma_cmd *current = &ch->current;
423
424 if (conditional_wait(ch))
425 goto wait;
426
427 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
428 dbdma_cmdptr_save(ch);
429
430 conditional_interrupt(ch);
431 conditional_branch(ch);
432
433 wait:
434 DBDMA_kick(dbdma_from_ch(ch));
435 }
436
437 static void stop(DBDMA_channel *ch)
438 {
439 ch->regs[DBDMA_STATUS] &= ~(ACTIVE);
440
441 /* the stop command does not increment command pointer */
442 }
443
444 static void channel_run(DBDMA_channel *ch)
445 {
446 dbdma_cmd *current = &ch->current;
447 uint16_t cmd, key;
448 uint16_t req_count;
449 uint32_t phy_addr;
450
451 DBDMA_DPRINTFCH(ch, "channel_run\n");
452 dump_dbdma_cmd(ch, current);
453
454 /* clear WAKE flag at command fetch */
455
456 ch->regs[DBDMA_STATUS] &= ~WAKE;
457
458 cmd = le16_to_cpu(current->command) & COMMAND_MASK;
459
460 switch (cmd) {
461 case DBDMA_NOP:
462 nop(ch);
463 return;
464
465 case DBDMA_STOP:
466 stop(ch);
467 return;
468 }
469
470 key = le16_to_cpu(current->command) & 0x0700;
471 req_count = le16_to_cpu(current->req_count);
472 phy_addr = le32_to_cpu(current->phy_addr);
473
474 if (key == KEY_STREAM4) {
475 printf("command %x, invalid key 4\n", cmd);
476 kill_channel(ch);
477 return;
478 }
479
480 switch (cmd) {
481 case OUTPUT_MORE:
482 DBDMA_DPRINTFCH(ch, "* OUTPUT_MORE *\n");
483 start_output(ch, key, phy_addr, req_count, 0);
484 return;
485
486 case OUTPUT_LAST:
487 DBDMA_DPRINTFCH(ch, "* OUTPUT_LAST *\n");
488 start_output(ch, key, phy_addr, req_count, 1);
489 return;
490
491 case INPUT_MORE:
492 DBDMA_DPRINTFCH(ch, "* INPUT_MORE *\n");
493 start_input(ch, key, phy_addr, req_count, 0);
494 return;
495
496 case INPUT_LAST:
497 DBDMA_DPRINTFCH(ch, "* INPUT_LAST *\n");
498 start_input(ch, key, phy_addr, req_count, 1);
499 return;
500 }
501
502 if (key < KEY_REGS) {
503 printf("command %x, invalid key %x\n", cmd, key);
504 key = KEY_SYSTEM;
505 }
506
507 /* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
508 * and BRANCH is invalid
509 */
510
511 req_count = req_count & 0x0007;
512 if (req_count & 0x4) {
513 req_count = 4;
514 phy_addr &= ~3;
515 } else if (req_count & 0x2) {
516 req_count = 2;
517 phy_addr &= ~1;
518 } else
519 req_count = 1;
520
521 switch (cmd) {
522 case LOAD_WORD:
523 DBDMA_DPRINTFCH(ch, "* LOAD_WORD *\n");
524 load_word(ch, key, phy_addr, req_count);
525 return;
526
527 case STORE_WORD:
528 DBDMA_DPRINTFCH(ch, "* STORE_WORD *\n");
529 store_word(ch, key, phy_addr, req_count);
530 return;
531 }
532 }
533
534 static void DBDMA_run(DBDMAState *s)
535 {
536 int channel;
537
538 for (channel = 0; channel < DBDMA_CHANNELS; channel++) {
539 DBDMA_channel *ch = &s->channels[channel];
540 uint32_t status = ch->regs[DBDMA_STATUS];
541 if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) {
542 channel_run(ch);
543 }
544 }
545 }
546
547 static void DBDMA_run_bh(void *opaque)
548 {
549 DBDMAState *s = opaque;
550
551 DBDMA_DPRINTF("-> DBDMA_run_bh\n");
552 DBDMA_run(s);
553 DBDMA_DPRINTF("<- DBDMA_run_bh\n");
554 }
555
556 void DBDMA_kick(DBDMAState *dbdma)
557 {
558 qemu_bh_schedule(dbdma->bh);
559 }
560
561 void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
562 DBDMA_rw rw, DBDMA_flush flush,
563 void *opaque)
564 {
565 DBDMAState *s = dbdma;
566 DBDMA_channel *ch = &s->channels[nchan];
567
568 DBDMA_DPRINTFCH(ch, "DBDMA_register_channel 0x%x\n", nchan);
569
570 assert(rw);
571 assert(flush);
572
573 ch->irq = irq;
574 ch->rw = rw;
575 ch->flush = flush;
576 ch->io.opaque = opaque;
577 }
578
579 static void dbdma_control_write(DBDMA_channel *ch)
580 {
581 uint16_t mask, value;
582 uint32_t status;
583 bool do_flush = false;
584
585 mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff;
586 value = ch->regs[DBDMA_CONTROL] & 0xffff;
587
588 /* This is the status register which we'll update
589 * appropriately and store back
590 */
591 status = ch->regs[DBDMA_STATUS];
592
593 /* RUN and PAUSE are bits under SW control only
594 * FLUSH and WAKE are set by SW and cleared by HW
595 * DEAD, ACTIVE and BT are only under HW control
596 *
597 * We handle ACTIVE separately at the end of the
598 * logic to ensure all cases are covered.
599 */
600
601 /* Setting RUN will tentatively activate the channel
602 */
603 if ((mask & RUN) && (value & RUN)) {
604 status |= RUN;
605 DBDMA_DPRINTFCH(ch, " Setting RUN !\n");
606 }
607
608 /* Clearing RUN 1->0 will stop the channel */
609 if ((mask & RUN) && !(value & RUN)) {
610 /* This has the side effect of clearing the DEAD bit */
611 status &= ~(DEAD | RUN);
612 DBDMA_DPRINTFCH(ch, " Clearing RUN !\n");
613 }
614
615 /* Setting WAKE wakes up an idle channel if it's running
616 *
617 * Note: The doc doesn't say so but assume that only works
618 * on a channel whose RUN bit is set.
619 *
620 * We set WAKE in status, it's not terribly useful as it will
621 * be cleared on the next command fetch but it seems to mimmic
622 * the HW behaviour and is useful for the way we handle
623 * ACTIVE further down.
624 */
625 if ((mask & WAKE) && (value & WAKE) && (status & RUN)) {
626 status |= WAKE;
627 DBDMA_DPRINTFCH(ch, " Setting WAKE !\n");
628 }
629
630 /* PAUSE being set will deactivate (or prevent activation)
631 * of the channel. We just copy it over for now, ACTIVE will
632 * be re-evaluated later.
633 */
634 if (mask & PAUSE) {
635 status = (status & ~PAUSE) | (value & PAUSE);
636 DBDMA_DPRINTFCH(ch, " %sing PAUSE !\n",
637 (value & PAUSE) ? "sett" : "clear");
638 }
639
640 /* FLUSH is its own thing */
641 if ((mask & FLUSH) && (value & FLUSH)) {
642 DBDMA_DPRINTFCH(ch, " Setting FLUSH !\n");
643 /* We set flush directly in the status register, we do *NOT*
644 * set it in "status" so that it gets naturally cleared when
645 * we update the status register further down. That way it
646 * will be set only during the HW flush operation so it is
647 * visible to any completions happening during that time.
648 */
649 ch->regs[DBDMA_STATUS] |= FLUSH;
650 do_flush = true;
651 }
652
653 /* If either RUN or PAUSE is clear, so should ACTIVE be,
654 * otherwise, ACTIVE will be set if we modified RUN, PAUSE or
655 * set WAKE. That means that PAUSE was just cleared, RUN was
656 * just set or WAKE was just set.
657 */
658 if ((status & PAUSE) || !(status & RUN)) {
659 status &= ~ACTIVE;
660 DBDMA_DPRINTFCH(ch, " -> ACTIVE down !\n");
661
662 /* We stopped processing, we want the underlying HW command
663 * to complete *before* we clear the ACTIVE bit. Otherwise
664 * we can get into a situation where the command status will
665 * have RUN or ACTIVE not set which is going to confuse the
666 * MacOS driver.
667 */
668 do_flush = true;
669 } else if (mask & (RUN | PAUSE)) {
670 status |= ACTIVE;
671 DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
672 } else if ((mask & WAKE) && (value & WAKE)) {
673 status |= ACTIVE;
674 DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
675 }
676
677 DBDMA_DPRINTFCH(ch, " new status=0x%08x\n", status);
678
679 /* If we need to flush the underlying HW, do it now, this happens
680 * both on FLUSH commands and when stopping the channel for safety.
681 */
682 if (do_flush && ch->flush) {
683 ch->flush(&ch->io);
684 }
685
686 /* Finally update the status register image */
687 ch->regs[DBDMA_STATUS] = status;
688
689 /* If active, make sure the BH gets to run */
690 if (status & ACTIVE) {
691 DBDMA_kick(dbdma_from_ch(ch));
692 }
693 }
694
695 static void dbdma_write(void *opaque, hwaddr addr,
696 uint64_t value, unsigned size)
697 {
698 int channel = addr >> DBDMA_CHANNEL_SHIFT;
699 DBDMAState *s = opaque;
700 DBDMA_channel *ch = &s->channels[channel];
701 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
702
703 DBDMA_DPRINTFCH(ch, "writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n",
704 addr, value);
705 DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
706 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
707
708 /* cmdptr cannot be modified if channel is ACTIVE */
709
710 if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) {
711 return;
712 }
713
714 ch->regs[reg] = value;
715
716 switch(reg) {
717 case DBDMA_CONTROL:
718 dbdma_control_write(ch);
719 break;
720 case DBDMA_CMDPTR_LO:
721 /* 16-byte aligned */
722 ch->regs[DBDMA_CMDPTR_LO] &= ~0xf;
723 dbdma_cmdptr_load(ch);
724 break;
725 case DBDMA_STATUS:
726 case DBDMA_INTR_SEL:
727 case DBDMA_BRANCH_SEL:
728 case DBDMA_WAIT_SEL:
729 /* nothing to do */
730 break;
731 case DBDMA_XFER_MODE:
732 case DBDMA_CMDPTR_HI:
733 case DBDMA_DATA2PTR_HI:
734 case DBDMA_DATA2PTR_LO:
735 case DBDMA_ADDRESS_HI:
736 case DBDMA_BRANCH_ADDR_HI:
737 case DBDMA_RES1:
738 case DBDMA_RES2:
739 case DBDMA_RES3:
740 case DBDMA_RES4:
741 /* unused */
742 break;
743 }
744 }
745
746 static uint64_t dbdma_read(void *opaque, hwaddr addr,
747 unsigned size)
748 {
749 uint32_t value;
750 int channel = addr >> DBDMA_CHANNEL_SHIFT;
751 DBDMAState *s = opaque;
752 DBDMA_channel *ch = &s->channels[channel];
753 int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
754
755 value = ch->regs[reg];
756
757 switch(reg) {
758 case DBDMA_CONTROL:
759 value = ch->regs[DBDMA_STATUS];
760 break;
761 case DBDMA_STATUS:
762 case DBDMA_CMDPTR_LO:
763 case DBDMA_INTR_SEL:
764 case DBDMA_BRANCH_SEL:
765 case DBDMA_WAIT_SEL:
766 /* nothing to do */
767 break;
768 case DBDMA_XFER_MODE:
769 case DBDMA_CMDPTR_HI:
770 case DBDMA_DATA2PTR_HI:
771 case DBDMA_DATA2PTR_LO:
772 case DBDMA_ADDRESS_HI:
773 case DBDMA_BRANCH_ADDR_HI:
774 /* unused */
775 value = 0;
776 break;
777 case DBDMA_RES1:
778 case DBDMA_RES2:
779 case DBDMA_RES3:
780 case DBDMA_RES4:
781 /* reserved */
782 break;
783 }
784
785 DBDMA_DPRINTFCH(ch, "readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
786 DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
787 (uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
788
789 return value;
790 }
791
792 static const MemoryRegionOps dbdma_ops = {
793 .read = dbdma_read,
794 .write = dbdma_write,
795 .endianness = DEVICE_LITTLE_ENDIAN,
796 .valid = {
797 .min_access_size = 4,
798 .max_access_size = 4,
799 },
800 };
801
802 static const VMStateDescription vmstate_dbdma_io = {
803 .name = "dbdma_io",
804 .version_id = 0,
805 .minimum_version_id = 0,
806 .fields = (VMStateField[]) {
807 VMSTATE_UINT64(addr, struct DBDMA_io),
808 VMSTATE_INT32(len, struct DBDMA_io),
809 VMSTATE_INT32(is_last, struct DBDMA_io),
810 VMSTATE_INT32(is_dma_out, struct DBDMA_io),
811 VMSTATE_BOOL(processing, struct DBDMA_io),
812 VMSTATE_END_OF_LIST()
813 }
814 };
815
816 static const VMStateDescription vmstate_dbdma_cmd = {
817 .name = "dbdma_cmd",
818 .version_id = 0,
819 .minimum_version_id = 0,
820 .fields = (VMStateField[]) {
821 VMSTATE_UINT16(req_count, dbdma_cmd),
822 VMSTATE_UINT16(command, dbdma_cmd),
823 VMSTATE_UINT32(phy_addr, dbdma_cmd),
824 VMSTATE_UINT32(cmd_dep, dbdma_cmd),
825 VMSTATE_UINT16(res_count, dbdma_cmd),
826 VMSTATE_UINT16(xfer_status, dbdma_cmd),
827 VMSTATE_END_OF_LIST()
828 }
829 };
830
831 static const VMStateDescription vmstate_dbdma_channel = {
832 .name = "dbdma_channel",
833 .version_id = 1,
834 .minimum_version_id = 1,
835 .fields = (VMStateField[]) {
836 VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS),
837 VMSTATE_STRUCT(io, struct DBDMA_channel, 0, vmstate_dbdma_io, DBDMA_io),
838 VMSTATE_STRUCT(current, struct DBDMA_channel, 0, vmstate_dbdma_cmd,
839 dbdma_cmd),
840 VMSTATE_END_OF_LIST()
841 }
842 };
843
844 static const VMStateDescription vmstate_dbdma = {
845 .name = "dbdma",
846 .version_id = 3,
847 .minimum_version_id = 3,
848 .fields = (VMStateField[]) {
849 VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1,
850 vmstate_dbdma_channel, DBDMA_channel),
851 VMSTATE_END_OF_LIST()
852 }
853 };
854
855 static void mac_dbdma_reset(DeviceState *d)
856 {
857 DBDMAState *s = MAC_DBDMA(d);
858 int i;
859
860 for (i = 0; i < DBDMA_CHANNELS; i++) {
861 memset(s->channels[i].regs, 0, DBDMA_SIZE);
862 }
863 }
864
865 static void dbdma_unassigned_rw(DBDMA_io *io)
866 {
867 DBDMA_channel *ch = io->channel;
868 dbdma_cmd *current = &ch->current;
869 uint16_t cmd;
870 qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
871 __func__, ch->channel);
872 ch->io.processing = false;
873
874 cmd = le16_to_cpu(current->command) & COMMAND_MASK;
875 if (cmd == OUTPUT_MORE || cmd == OUTPUT_LAST ||
876 cmd == INPUT_MORE || cmd == INPUT_LAST) {
877 current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
878 current->res_count = cpu_to_le16(io->len);
879 dbdma_cmdptr_save(ch);
880 }
881 }
882
883 static void dbdma_unassigned_flush(DBDMA_io *io)
884 {
885 DBDMA_channel *ch = io->channel;
886 qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
887 __func__, ch->channel);
888 }
889
890 static void mac_dbdma_init(Object *obj)
891 {
892 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
893 DBDMAState *s = MAC_DBDMA(obj);
894 int i;
895
896 for (i = 0; i < DBDMA_CHANNELS; i++) {
897 DBDMA_channel *ch = &s->channels[i];
898
899 ch->rw = dbdma_unassigned_rw;
900 ch->flush = dbdma_unassigned_flush;
901 ch->channel = i;
902 ch->io.channel = ch;
903 }
904
905 memory_region_init_io(&s->mem, obj, &dbdma_ops, s, "dbdma", 0x1000);
906 sysbus_init_mmio(sbd, &s->mem);
907 }
908
909 static void mac_dbdma_realize(DeviceState *dev, Error **errp)
910 {
911 DBDMAState *s = MAC_DBDMA(dev);
912
913 s->bh = qemu_bh_new(DBDMA_run_bh, s);
914 }
915
916 static void mac_dbdma_class_init(ObjectClass *oc, void *data)
917 {
918 DeviceClass *dc = DEVICE_CLASS(oc);
919
920 dc->realize = mac_dbdma_realize;
921 dc->reset = mac_dbdma_reset;
922 dc->vmsd = &vmstate_dbdma;
923 }
924
925 static const TypeInfo mac_dbdma_type_info = {
926 .name = TYPE_MAC_DBDMA,
927 .parent = TYPE_SYS_BUS_DEVICE,
928 .instance_size = sizeof(DBDMAState),
929 .instance_init = mac_dbdma_init,
930 .class_init = mac_dbdma_class_init
931 };
932
933 static void mac_dbdma_register_types(void)
934 {
935 type_register_static(&mac_dbdma_type_info);
936 }
937
938 type_init(mac_dbdma_register_types)