]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/mos6522.c
i386: Add x-force-features option for testing
[mirror_qemu.git] / hw / misc / mos6522.c
1 /*
2 * QEMU MOS6522 VIA emulation
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2018 Mark Cave-Ayland
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27 #include "qemu/osdep.h"
28 #include "hw/hw.h"
29 #include "hw/input/adb.h"
30 #include "hw/misc/mos6522.h"
31 #include "qemu/timer.h"
32 #include "sysemu/sysemu.h"
33 #include "qemu/cutils.h"
34 #include "qemu/log.h"
35 #include "qemu/module.h"
36 #include "trace.h"
37
38 /* XXX: implement all timer modes */
39
40 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
41 int64_t current_time);
42
43 static void mos6522_update_irq(MOS6522State *s)
44 {
45 if (s->ifr & s->ier) {
46 qemu_irq_raise(s->irq);
47 } else {
48 qemu_irq_lower(s->irq);
49 }
50 }
51
52 static uint64_t get_counter_value(MOS6522State *s, MOS6522Timer *ti)
53 {
54 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
55
56 if (ti->index == 0) {
57 return mdc->get_timer1_counter_value(s, ti);
58 } else {
59 return mdc->get_timer2_counter_value(s, ti);
60 }
61 }
62
63 static uint64_t get_load_time(MOS6522State *s, MOS6522Timer *ti)
64 {
65 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
66
67 if (ti->index == 0) {
68 return mdc->get_timer1_load_time(s, ti);
69 } else {
70 return mdc->get_timer2_load_time(s, ti);
71 }
72 }
73
74 static unsigned int get_counter(MOS6522State *s, MOS6522Timer *ti)
75 {
76 int64_t d;
77 unsigned int counter;
78
79 d = get_counter_value(s, ti);
80
81 if (ti->index == 0) {
82 /* the timer goes down from latch to -1 (period of latch + 2) */
83 if (d <= (ti->counter_value + 1)) {
84 counter = (ti->counter_value - d) & 0xffff;
85 } else {
86 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
87 counter = (ti->latch - counter) & 0xffff;
88 }
89 } else {
90 counter = (ti->counter_value - d) & 0xffff;
91 }
92 return counter;
93 }
94
95 static void set_counter(MOS6522State *s, MOS6522Timer *ti, unsigned int val)
96 {
97 trace_mos6522_set_counter(1 + ti->index, val);
98 ti->load_time = get_load_time(s, ti);
99 ti->counter_value = val;
100 mos6522_timer_update(s, ti, ti->load_time);
101 }
102
103 static int64_t get_next_irq_time(MOS6522State *s, MOS6522Timer *ti,
104 int64_t current_time)
105 {
106 int64_t d, next_time;
107 unsigned int counter;
108
109 /* current counter value */
110 d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
111 ti->frequency, NANOSECONDS_PER_SECOND);
112
113 /* the timer goes down from latch to -1 (period of latch + 2) */
114 if (d <= (ti->counter_value + 1)) {
115 counter = (ti->counter_value - d) & 0xffff;
116 } else {
117 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
118 counter = (ti->latch - counter) & 0xffff;
119 }
120
121 /* Note: we consider the irq is raised on 0 */
122 if (counter == 0xffff) {
123 next_time = d + ti->latch + 1;
124 } else if (counter == 0) {
125 next_time = d + ti->latch + 2;
126 } else {
127 next_time = d + counter;
128 }
129 trace_mos6522_get_next_irq_time(ti->latch, d, next_time - d);
130 next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, ti->frequency) +
131 ti->load_time;
132 if (next_time <= current_time) {
133 next_time = current_time + 1;
134 }
135 return next_time;
136 }
137
138 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
139 int64_t current_time)
140 {
141 if (!ti->timer) {
142 return;
143 }
144 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
145 timer_del(ti->timer);
146 } else {
147 ti->next_irq_time = get_next_irq_time(s, ti, current_time);
148 timer_mod(ti->timer, ti->next_irq_time);
149 }
150 }
151
152 static void mos6522_timer1(void *opaque)
153 {
154 MOS6522State *s = opaque;
155 MOS6522Timer *ti = &s->timers[0];
156
157 mos6522_timer_update(s, ti, ti->next_irq_time);
158 s->ifr |= T1_INT;
159 mos6522_update_irq(s);
160 }
161
162 static void mos6522_timer2(void *opaque)
163 {
164 MOS6522State *s = opaque;
165 MOS6522Timer *ti = &s->timers[1];
166
167 mos6522_timer_update(s, ti, ti->next_irq_time);
168 s->ifr |= T2_INT;
169 mos6522_update_irq(s);
170 }
171
172 static void mos6522_set_sr_int(MOS6522State *s)
173 {
174 trace_mos6522_set_sr_int();
175 s->ifr |= SR_INT;
176 mos6522_update_irq(s);
177 }
178
179 static uint64_t mos6522_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
180 {
181 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
182 ti->frequency, NANOSECONDS_PER_SECOND);
183 }
184
185 static uint64_t mos6522_get_load_time(MOS6522State *s, MOS6522Timer *ti)
186 {
187 uint64_t load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
188
189 return load_time;
190 }
191
192 static void mos6522_portA_write(MOS6522State *s)
193 {
194 qemu_log_mask(LOG_UNIMP, "portA_write unimplemented\n");
195 }
196
197 static void mos6522_portB_write(MOS6522State *s)
198 {
199 qemu_log_mask(LOG_UNIMP, "portB_write unimplemented\n");
200 }
201
202 uint64_t mos6522_read(void *opaque, hwaddr addr, unsigned size)
203 {
204 MOS6522State *s = opaque;
205 uint32_t val;
206
207 switch (addr) {
208 case VIA_REG_B:
209 val = s->b;
210 break;
211 case VIA_REG_A:
212 val = s->a;
213 break;
214 case VIA_REG_DIRB:
215 val = s->dirb;
216 break;
217 case VIA_REG_DIRA:
218 val = s->dira;
219 break;
220 case VIA_REG_T1CL:
221 val = get_counter(s, &s->timers[0]) & 0xff;
222 s->ifr &= ~T1_INT;
223 mos6522_update_irq(s);
224 break;
225 case VIA_REG_T1CH:
226 val = get_counter(s, &s->timers[0]) >> 8;
227 mos6522_update_irq(s);
228 break;
229 case VIA_REG_T1LL:
230 val = s->timers[0].latch & 0xff;
231 break;
232 case VIA_REG_T1LH:
233 /* XXX: check this */
234 val = (s->timers[0].latch >> 8) & 0xff;
235 break;
236 case VIA_REG_T2CL:
237 val = get_counter(s, &s->timers[1]) & 0xff;
238 s->ifr &= ~T2_INT;
239 mos6522_update_irq(s);
240 break;
241 case VIA_REG_T2CH:
242 val = get_counter(s, &s->timers[1]) >> 8;
243 break;
244 case VIA_REG_SR:
245 val = s->sr;
246 s->ifr &= ~SR_INT;
247 mos6522_update_irq(s);
248 break;
249 case VIA_REG_ACR:
250 val = s->acr;
251 break;
252 case VIA_REG_PCR:
253 val = s->pcr;
254 break;
255 case VIA_REG_IFR:
256 val = s->ifr;
257 if (s->ifr & s->ier) {
258 val |= 0x80;
259 }
260 break;
261 case VIA_REG_IER:
262 val = s->ier | 0x80;
263 break;
264 default:
265 case VIA_REG_ANH:
266 val = s->anh;
267 break;
268 }
269
270 if (addr != VIA_REG_IFR || val != 0) {
271 trace_mos6522_read(addr, val);
272 }
273
274 return val;
275 }
276
277 void mos6522_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
278 {
279 MOS6522State *s = opaque;
280 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
281
282 trace_mos6522_write(addr, val);
283
284 switch (addr) {
285 case VIA_REG_B:
286 s->b = (s->b & ~s->dirb) | (val & s->dirb);
287 mdc->portB_write(s);
288 break;
289 case VIA_REG_A:
290 s->a = (s->a & ~s->dira) | (val & s->dira);
291 mdc->portA_write(s);
292 break;
293 case VIA_REG_DIRB:
294 s->dirb = val;
295 break;
296 case VIA_REG_DIRA:
297 s->dira = val;
298 break;
299 case VIA_REG_T1CL:
300 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
301 mos6522_timer_update(s, &s->timers[0],
302 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
303 break;
304 case VIA_REG_T1CH:
305 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
306 s->ifr &= ~T1_INT;
307 set_counter(s, &s->timers[0], s->timers[0].latch);
308 break;
309 case VIA_REG_T1LL:
310 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
311 mos6522_timer_update(s, &s->timers[0],
312 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
313 break;
314 case VIA_REG_T1LH:
315 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
316 s->ifr &= ~T1_INT;
317 mos6522_timer_update(s, &s->timers[0],
318 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
319 break;
320 case VIA_REG_T2CL:
321 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
322 break;
323 case VIA_REG_T2CH:
324 /* To ensure T2 generates an interrupt on zero crossing with the
325 common timer code, write the value directly from the latch to
326 the counter */
327 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
328 s->ifr &= ~T2_INT;
329 set_counter(s, &s->timers[1], s->timers[1].latch);
330 break;
331 case VIA_REG_SR:
332 s->sr = val;
333 break;
334 case VIA_REG_ACR:
335 s->acr = val;
336 mos6522_timer_update(s, &s->timers[0],
337 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
338 break;
339 case VIA_REG_PCR:
340 s->pcr = val;
341 break;
342 case VIA_REG_IFR:
343 /* reset bits */
344 s->ifr &= ~val;
345 mos6522_update_irq(s);
346 break;
347 case VIA_REG_IER:
348 if (val & IER_SET) {
349 /* set bits */
350 s->ier |= val & 0x7f;
351 } else {
352 /* reset bits */
353 s->ier &= ~val;
354 }
355 mos6522_update_irq(s);
356 break;
357 default:
358 case VIA_REG_ANH:
359 s->anh = val;
360 break;
361 }
362 }
363
364 static const MemoryRegionOps mos6522_ops = {
365 .read = mos6522_read,
366 .write = mos6522_write,
367 .endianness = DEVICE_NATIVE_ENDIAN,
368 .valid = {
369 .min_access_size = 1,
370 .max_access_size = 1,
371 },
372 };
373
374 static const VMStateDescription vmstate_mos6522_timer = {
375 .name = "mos6522_timer",
376 .version_id = 0,
377 .minimum_version_id = 0,
378 .fields = (VMStateField[]) {
379 VMSTATE_UINT16(latch, MOS6522Timer),
380 VMSTATE_UINT16(counter_value, MOS6522Timer),
381 VMSTATE_INT64(load_time, MOS6522Timer),
382 VMSTATE_INT64(next_irq_time, MOS6522Timer),
383 VMSTATE_TIMER_PTR(timer, MOS6522Timer),
384 VMSTATE_END_OF_LIST()
385 }
386 };
387
388 const VMStateDescription vmstate_mos6522 = {
389 .name = "mos6522",
390 .version_id = 0,
391 .minimum_version_id = 0,
392 .fields = (VMStateField[]) {
393 VMSTATE_UINT8(a, MOS6522State),
394 VMSTATE_UINT8(b, MOS6522State),
395 VMSTATE_UINT8(dira, MOS6522State),
396 VMSTATE_UINT8(dirb, MOS6522State),
397 VMSTATE_UINT8(sr, MOS6522State),
398 VMSTATE_UINT8(acr, MOS6522State),
399 VMSTATE_UINT8(pcr, MOS6522State),
400 VMSTATE_UINT8(ifr, MOS6522State),
401 VMSTATE_UINT8(ier, MOS6522State),
402 VMSTATE_UINT8(anh, MOS6522State),
403 VMSTATE_STRUCT_ARRAY(timers, MOS6522State, 2, 0,
404 vmstate_mos6522_timer, MOS6522Timer),
405 VMSTATE_END_OF_LIST()
406 }
407 };
408
409 static void mos6522_reset(DeviceState *dev)
410 {
411 MOS6522State *s = MOS6522(dev);
412
413 s->b = 0;
414 s->a = 0;
415 s->dirb = 0xff;
416 s->dira = 0;
417 s->sr = 0;
418 s->acr = 0;
419 s->pcr = 0;
420 s->ifr = 0;
421 s->ier = 0;
422 /* s->ier = T1_INT | SR_INT; */
423 s->anh = 0;
424
425 s->timers[0].frequency = s->frequency;
426 s->timers[0].latch = 0xffff;
427 set_counter(s, &s->timers[0], 0xffff);
428
429 s->timers[1].frequency = s->frequency;
430 s->timers[1].latch = 0xffff;
431 }
432
433 static void mos6522_init(Object *obj)
434 {
435 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
436 MOS6522State *s = MOS6522(obj);
437 int i;
438
439 memory_region_init_io(&s->mem, obj, &mos6522_ops, s, "mos6522", 0x10);
440 sysbus_init_mmio(sbd, &s->mem);
441 sysbus_init_irq(sbd, &s->irq);
442
443 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
444 s->timers[i].index = i;
445 }
446
447 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer1, s);
448 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer2, s);
449 }
450
451 static Property mos6522_properties[] = {
452 DEFINE_PROP_UINT64("frequency", MOS6522State, frequency, 0),
453 DEFINE_PROP_END_OF_LIST()
454 };
455
456 static void mos6522_class_init(ObjectClass *oc, void *data)
457 {
458 DeviceClass *dc = DEVICE_CLASS(oc);
459 MOS6522DeviceClass *mdc = MOS6522_DEVICE_CLASS(oc);
460
461 dc->reset = mos6522_reset;
462 dc->vmsd = &vmstate_mos6522;
463 dc->props = mos6522_properties;
464 mdc->parent_reset = dc->reset;
465 mdc->set_sr_int = mos6522_set_sr_int;
466 mdc->portB_write = mos6522_portB_write;
467 mdc->portA_write = mos6522_portA_write;
468 mdc->update_irq = mos6522_update_irq;
469 mdc->get_timer1_counter_value = mos6522_get_counter_value;
470 mdc->get_timer2_counter_value = mos6522_get_counter_value;
471 mdc->get_timer1_load_time = mos6522_get_load_time;
472 mdc->get_timer2_load_time = mos6522_get_load_time;
473 }
474
475 static const TypeInfo mos6522_type_info = {
476 .name = TYPE_MOS6522,
477 .parent = TYPE_SYS_BUS_DEVICE,
478 .instance_size = sizeof(MOS6522State),
479 .instance_init = mos6522_init,
480 .abstract = true,
481 .class_size = sizeof(MOS6522DeviceClass),
482 .class_init = mos6522_class_init,
483 };
484
485 static void mos6522_register_types(void)
486 {
487 type_register_static(&mos6522_type_info);
488 }
489
490 type_init(mos6522_register_types)