]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/mos6522.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-2.12-20180212' into staging
[mirror_qemu.git] / hw / misc / mos6522.c
1 /*
2 * QEMU MOS6522 VIA emulation
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2018 Mark Cave-Ayland
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26 #include "qemu/osdep.h"
27 #include "hw/hw.h"
28 #include "hw/input/adb.h"
29 #include "hw/misc/mos6522.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/cutils.h"
33 #include "qemu/log.h"
34 #include "trace.h"
35
36 /* XXX: implement all timer modes */
37
38 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
39 int64_t current_time);
40
41 static void mos6522_update_irq(MOS6522State *s)
42 {
43 if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) {
44 qemu_irq_raise(s->irq);
45 } else {
46 qemu_irq_lower(s->irq);
47 }
48 }
49
50 static uint64_t get_counter_value(MOS6522State *s, MOS6522Timer *ti)
51 {
52 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
53
54 if (ti->index == 0) {
55 return mdc->get_timer1_counter_value(s, ti);
56 } else {
57 return mdc->get_timer2_counter_value(s, ti);
58 }
59 }
60
61 static uint64_t get_load_time(MOS6522State *s, MOS6522Timer *ti)
62 {
63 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
64
65 if (ti->index == 0) {
66 return mdc->get_timer1_load_time(s, ti);
67 } else {
68 return mdc->get_timer2_load_time(s, ti);
69 }
70 }
71
72 static unsigned int get_counter(MOS6522State *s, MOS6522Timer *ti)
73 {
74 int64_t d;
75 unsigned int counter;
76
77 d = get_counter_value(s, ti);
78
79 if (ti->index == 0) {
80 /* the timer goes down from latch to -1 (period of latch + 2) */
81 if (d <= (ti->counter_value + 1)) {
82 counter = (ti->counter_value - d) & 0xffff;
83 } else {
84 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
85 counter = (ti->latch - counter) & 0xffff;
86 }
87 } else {
88 counter = (ti->counter_value - d) & 0xffff;
89 }
90 return counter;
91 }
92
93 static void set_counter(MOS6522State *s, MOS6522Timer *ti, unsigned int val)
94 {
95 trace_mos6522_set_counter(1 + ti->index, val);
96 ti->load_time = get_load_time(s, ti);
97 ti->counter_value = val;
98 mos6522_timer_update(s, ti, ti->load_time);
99 }
100
101 static int64_t get_next_irq_time(MOS6522State *s, MOS6522Timer *ti,
102 int64_t current_time)
103 {
104 int64_t d, next_time;
105 unsigned int counter;
106
107 /* current counter value */
108 d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
109 ti->frequency, NANOSECONDS_PER_SECOND);
110
111 /* the timer goes down from latch to -1 (period of latch + 2) */
112 if (d <= (ti->counter_value + 1)) {
113 counter = (ti->counter_value - d) & 0xffff;
114 } else {
115 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
116 counter = (ti->latch - counter) & 0xffff;
117 }
118
119 /* Note: we consider the irq is raised on 0 */
120 if (counter == 0xffff) {
121 next_time = d + ti->latch + 1;
122 } else if (counter == 0) {
123 next_time = d + ti->latch + 2;
124 } else {
125 next_time = d + counter;
126 }
127 trace_mos6522_get_next_irq_time(ti->latch, d, next_time - d);
128 next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, ti->frequency) +
129 ti->load_time;
130 if (next_time <= current_time) {
131 next_time = current_time + 1;
132 }
133 return next_time;
134 }
135
136 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
137 int64_t current_time)
138 {
139 if (!ti->timer) {
140 return;
141 }
142 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
143 timer_del(ti->timer);
144 } else {
145 ti->next_irq_time = get_next_irq_time(s, ti, current_time);
146 timer_mod(ti->timer, ti->next_irq_time);
147 }
148 }
149
150 static void mos6522_timer1(void *opaque)
151 {
152 MOS6522State *s = opaque;
153 MOS6522Timer *ti = &s->timers[0];
154
155 mos6522_timer_update(s, ti, ti->next_irq_time);
156 s->ifr |= T1_INT;
157 mos6522_update_irq(s);
158 }
159
160 static void mos6522_timer2(void *opaque)
161 {
162 MOS6522State *s = opaque;
163 MOS6522Timer *ti = &s->timers[1];
164
165 mos6522_timer_update(s, ti, ti->next_irq_time);
166 s->ifr |= T2_INT;
167 mos6522_update_irq(s);
168 }
169
170 static void mos6522_set_sr_int(MOS6522State *s)
171 {
172 trace_mos6522_set_sr_int();
173 s->ifr |= SR_INT;
174 mos6522_update_irq(s);
175 }
176
177 static uint64_t mos6522_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
178 {
179 uint64_t d;
180
181 d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
182 ti->frequency, NANOSECONDS_PER_SECOND);
183
184 return d;
185 }
186
187 static uint64_t mos6522_get_load_time(MOS6522State *s, MOS6522Timer *ti)
188 {
189 uint64_t load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
190
191 return load_time;
192 }
193
194 static void mos6522_portA_write(MOS6522State *s)
195 {
196 qemu_log_mask(LOG_UNIMP, "portA_write unimplemented");
197 }
198
199 static void mos6522_portB_write(MOS6522State *s)
200 {
201 qemu_log_mask(LOG_UNIMP, "portB_write unimplemented");
202 }
203
204 uint64_t mos6522_read(void *opaque, hwaddr addr, unsigned size)
205 {
206 MOS6522State *s = opaque;
207 uint32_t val;
208
209 switch (addr) {
210 case VIA_REG_B:
211 val = s->b;
212 break;
213 case VIA_REG_A:
214 val = s->a;
215 break;
216 case VIA_REG_DIRB:
217 val = s->dirb;
218 break;
219 case VIA_REG_DIRA:
220 val = s->dira;
221 break;
222 case VIA_REG_T1CL:
223 val = get_counter(s, &s->timers[0]) & 0xff;
224 s->ifr &= ~T1_INT;
225 mos6522_update_irq(s);
226 break;
227 case VIA_REG_T1CH:
228 val = get_counter(s, &s->timers[0]) >> 8;
229 mos6522_update_irq(s);
230 break;
231 case VIA_REG_T1LL:
232 val = s->timers[0].latch & 0xff;
233 break;
234 case VIA_REG_T1LH:
235 /* XXX: check this */
236 val = (s->timers[0].latch >> 8) & 0xff;
237 break;
238 case VIA_REG_T2CL:
239 val = get_counter(s, &s->timers[1]) & 0xff;
240 s->ifr &= ~T2_INT;
241 mos6522_update_irq(s);
242 break;
243 case VIA_REG_T2CH:
244 val = get_counter(s, &s->timers[1]) >> 8;
245 break;
246 case VIA_REG_SR:
247 val = s->sr;
248 s->ifr &= ~(SR_INT | CB1_INT | CB2_INT);
249 mos6522_update_irq(s);
250 break;
251 case VIA_REG_ACR:
252 val = s->acr;
253 break;
254 case VIA_REG_PCR:
255 val = s->pcr;
256 break;
257 case VIA_REG_IFR:
258 val = s->ifr;
259 if (s->ifr & s->ier) {
260 val |= 0x80;
261 }
262 break;
263 case VIA_REG_IER:
264 val = s->ier | 0x80;
265 break;
266 default:
267 case VIA_REG_ANH:
268 val = s->anh;
269 break;
270 }
271
272 if (addr != VIA_REG_IFR || val != 0) {
273 trace_mos6522_read(addr, val);
274 }
275
276 return val;
277 }
278
279 void mos6522_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
280 {
281 MOS6522State *s = opaque;
282 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
283
284 trace_mos6522_write(addr, val);
285
286 switch (addr) {
287 case VIA_REG_B:
288 s->b = (s->b & ~s->dirb) | (val & s->dirb);
289 mdc->portB_write(s);
290 break;
291 case VIA_REG_A:
292 s->a = (s->a & ~s->dira) | (val & s->dira);
293 mdc->portA_write(s);
294 break;
295 case VIA_REG_DIRB:
296 s->dirb = val;
297 break;
298 case VIA_REG_DIRA:
299 s->dira = val;
300 break;
301 case VIA_REG_T1CL:
302 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
303 mos6522_timer_update(s, &s->timers[0],
304 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
305 break;
306 case VIA_REG_T1CH:
307 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
308 s->ifr &= ~T1_INT;
309 set_counter(s, &s->timers[0], s->timers[0].latch);
310 break;
311 case VIA_REG_T1LL:
312 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
313 mos6522_timer_update(s, &s->timers[0],
314 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
315 break;
316 case VIA_REG_T1LH:
317 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
318 s->ifr &= ~T1_INT;
319 mos6522_timer_update(s, &s->timers[0],
320 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
321 break;
322 case VIA_REG_T2CL:
323 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
324 break;
325 case VIA_REG_T2CH:
326 /* To ensure T2 generates an interrupt on zero crossing with the
327 common timer code, write the value directly from the latch to
328 the counter */
329 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
330 s->ifr &= ~T2_INT;
331 set_counter(s, &s->timers[1], s->timers[1].latch);
332 break;
333 case VIA_REG_SR:
334 s->sr = val;
335 break;
336 case VIA_REG_ACR:
337 s->acr = val;
338 mos6522_timer_update(s, &s->timers[0],
339 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
340 break;
341 case VIA_REG_PCR:
342 s->pcr = val;
343 break;
344 case VIA_REG_IFR:
345 /* reset bits */
346 s->ifr &= ~val;
347 mos6522_update_irq(s);
348 break;
349 case VIA_REG_IER:
350 if (val & IER_SET) {
351 /* set bits */
352 s->ier |= val & 0x7f;
353 } else {
354 /* reset bits */
355 s->ier &= ~val;
356 }
357 mos6522_update_irq(s);
358 break;
359 default:
360 case VIA_REG_ANH:
361 s->anh = val;
362 break;
363 }
364 }
365
366 static const MemoryRegionOps mos6522_ops = {
367 .read = mos6522_read,
368 .write = mos6522_write,
369 .endianness = DEVICE_NATIVE_ENDIAN,
370 .valid = {
371 .min_access_size = 1,
372 .max_access_size = 1,
373 },
374 };
375
376 static bool mos6522_timer_exist(void *opaque, int version_id)
377 {
378 MOS6522Timer *s = opaque;
379
380 return s->timer != NULL;
381 }
382
383 static const VMStateDescription vmstate_mos6522_timer = {
384 .name = "mos6522_timer",
385 .version_id = 0,
386 .minimum_version_id = 0,
387 .fields = (VMStateField[]) {
388 VMSTATE_UINT16(latch, MOS6522Timer),
389 VMSTATE_UINT16(counter_value, MOS6522Timer),
390 VMSTATE_INT64(load_time, MOS6522Timer),
391 VMSTATE_INT64(next_irq_time, MOS6522Timer),
392 VMSTATE_TIMER_PTR_TEST(timer, MOS6522Timer, mos6522_timer_exist),
393 VMSTATE_END_OF_LIST()
394 }
395 };
396
397 static const VMStateDescription vmstate_mos6522 = {
398 .name = "mos6522",
399 .version_id = 0,
400 .minimum_version_id = 0,
401 .fields = (VMStateField[]) {
402 VMSTATE_UINT8(a, MOS6522State),
403 VMSTATE_UINT8(b, MOS6522State),
404 VMSTATE_UINT8(dira, MOS6522State),
405 VMSTATE_UINT8(dirb, MOS6522State),
406 VMSTATE_UINT8(sr, MOS6522State),
407 VMSTATE_UINT8(acr, MOS6522State),
408 VMSTATE_UINT8(pcr, MOS6522State),
409 VMSTATE_UINT8(ifr, MOS6522State),
410 VMSTATE_UINT8(ier, MOS6522State),
411 VMSTATE_UINT8(anh, MOS6522State),
412 VMSTATE_STRUCT_ARRAY(timers, MOS6522State, 2, 1,
413 vmstate_mos6522_timer, MOS6522Timer),
414 VMSTATE_END_OF_LIST()
415 }
416 };
417
418 static void mos6522_reset(DeviceState *dev)
419 {
420 MOS6522State *s = MOS6522(dev);
421
422 s->b = 0;
423 s->a = 0;
424 s->dirb = 0xff;
425 s->dira = 0;
426 s->sr = 0;
427 s->acr = 0;
428 s->pcr = 0;
429 s->ifr = 0;
430 s->ier = 0;
431 /* s->ier = T1_INT | SR_INT; */
432 s->anh = 0;
433
434 s->timers[0].latch = 0xffff;
435 set_counter(s, &s->timers[0], 0xffff);
436
437 s->timers[1].latch = 0xffff;
438 }
439
440 static void mos6522_realize(DeviceState *dev, Error **errp)
441 {
442 MOS6522State *s = MOS6522(dev);
443
444 s->timers[0].frequency = s->frequency;
445 s->timers[1].frequency = s->frequency;
446 }
447
448 static void mos6522_init(Object *obj)
449 {
450 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
451 MOS6522State *s = MOS6522(obj);
452 int i;
453
454 memory_region_init_io(&s->mem, obj, &mos6522_ops, s, "mos6522", 0x10);
455 sysbus_init_mmio(sbd, &s->mem);
456 sysbus_init_irq(sbd, &s->irq);
457
458 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
459 s->timers[i].index = i;
460 }
461
462 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer1, s);
463 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer2, s);
464 }
465
466 static Property mos6522_properties[] = {
467 DEFINE_PROP_UINT64("frequency", MOS6522State, frequency, 0),
468 DEFINE_PROP_END_OF_LIST()
469 };
470
471 static void mos6522_class_init(ObjectClass *oc, void *data)
472 {
473 DeviceClass *dc = DEVICE_CLASS(oc);
474 MOS6522DeviceClass *mdc = MOS6522_DEVICE_CLASS(oc);
475
476 dc->realize = mos6522_realize;
477 dc->reset = mos6522_reset;
478 dc->vmsd = &vmstate_mos6522;
479 dc->props = mos6522_properties;
480 mdc->parent_realize = dc->realize;
481 mdc->set_sr_int = mos6522_set_sr_int;
482 mdc->portB_write = mos6522_portB_write;
483 mdc->portA_write = mos6522_portA_write;
484 mdc->get_timer1_counter_value = mos6522_get_counter_value;
485 mdc->get_timer2_counter_value = mos6522_get_counter_value;
486 mdc->get_timer1_load_time = mos6522_get_load_time;
487 mdc->get_timer2_load_time = mos6522_get_load_time;
488 }
489
490 static const TypeInfo mos6522_type_info = {
491 .name = TYPE_MOS6522,
492 .parent = TYPE_SYS_BUS_DEVICE,
493 .instance_size = sizeof(MOS6522State),
494 .instance_init = mos6522_init,
495 .abstract = true,
496 .class_size = sizeof(MOS6522DeviceClass),
497 .class_init = mos6522_class_init,
498 };
499
500 static void mos6522_register_types(void)
501 {
502 type_register_static(&mos6522_type_info);
503 }
504
505 type_init(mos6522_register_types)