]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/mos6522.c
Merge remote-tracking branch 'remotes/dgibson/tags/ppc-for-3.0-20180618' into staging
[mirror_qemu.git] / hw / misc / mos6522.c
1 /*
2 * QEMU MOS6522 VIA emulation
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2018 Mark Cave-Ayland
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26 #include "qemu/osdep.h"
27 #include "hw/hw.h"
28 #include "hw/input/adb.h"
29 #include "hw/misc/mos6522.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "qemu/cutils.h"
33 #include "qemu/log.h"
34 #include "trace.h"
35
36 /* XXX: implement all timer modes */
37
38 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
39 int64_t current_time);
40
41 static void mos6522_update_irq(MOS6522State *s)
42 {
43 if (s->ifr & s->ier) {
44 qemu_irq_raise(s->irq);
45 } else {
46 qemu_irq_lower(s->irq);
47 }
48 }
49
50 static uint64_t get_counter_value(MOS6522State *s, MOS6522Timer *ti)
51 {
52 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
53
54 if (ti->index == 0) {
55 return mdc->get_timer1_counter_value(s, ti);
56 } else {
57 return mdc->get_timer2_counter_value(s, ti);
58 }
59 }
60
61 static uint64_t get_load_time(MOS6522State *s, MOS6522Timer *ti)
62 {
63 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
64
65 if (ti->index == 0) {
66 return mdc->get_timer1_load_time(s, ti);
67 } else {
68 return mdc->get_timer2_load_time(s, ti);
69 }
70 }
71
72 static unsigned int get_counter(MOS6522State *s, MOS6522Timer *ti)
73 {
74 int64_t d;
75 unsigned int counter;
76
77 d = get_counter_value(s, ti);
78
79 if (ti->index == 0) {
80 /* the timer goes down from latch to -1 (period of latch + 2) */
81 if (d <= (ti->counter_value + 1)) {
82 counter = (ti->counter_value - d) & 0xffff;
83 } else {
84 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
85 counter = (ti->latch - counter) & 0xffff;
86 }
87 } else {
88 counter = (ti->counter_value - d) & 0xffff;
89 }
90 return counter;
91 }
92
93 static void set_counter(MOS6522State *s, MOS6522Timer *ti, unsigned int val)
94 {
95 trace_mos6522_set_counter(1 + ti->index, val);
96 ti->load_time = get_load_time(s, ti);
97 ti->counter_value = val;
98 mos6522_timer_update(s, ti, ti->load_time);
99 }
100
101 static int64_t get_next_irq_time(MOS6522State *s, MOS6522Timer *ti,
102 int64_t current_time)
103 {
104 int64_t d, next_time;
105 unsigned int counter;
106
107 /* current counter value */
108 d = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
109 ti->frequency, NANOSECONDS_PER_SECOND);
110
111 /* the timer goes down from latch to -1 (period of latch + 2) */
112 if (d <= (ti->counter_value + 1)) {
113 counter = (ti->counter_value - d) & 0xffff;
114 } else {
115 counter = (d - (ti->counter_value + 1)) % (ti->latch + 2);
116 counter = (ti->latch - counter) & 0xffff;
117 }
118
119 /* Note: we consider the irq is raised on 0 */
120 if (counter == 0xffff) {
121 next_time = d + ti->latch + 1;
122 } else if (counter == 0) {
123 next_time = d + ti->latch + 2;
124 } else {
125 next_time = d + counter;
126 }
127 trace_mos6522_get_next_irq_time(ti->latch, d, next_time - d);
128 next_time = muldiv64(next_time, NANOSECONDS_PER_SECOND, ti->frequency) +
129 ti->load_time;
130 if (next_time <= current_time) {
131 next_time = current_time + 1;
132 }
133 return next_time;
134 }
135
136 static void mos6522_timer_update(MOS6522State *s, MOS6522Timer *ti,
137 int64_t current_time)
138 {
139 if (!ti->timer) {
140 return;
141 }
142 if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) {
143 timer_del(ti->timer);
144 } else {
145 ti->next_irq_time = get_next_irq_time(s, ti, current_time);
146 timer_mod(ti->timer, ti->next_irq_time);
147 }
148 }
149
150 static void mos6522_timer1(void *opaque)
151 {
152 MOS6522State *s = opaque;
153 MOS6522Timer *ti = &s->timers[0];
154
155 mos6522_timer_update(s, ti, ti->next_irq_time);
156 s->ifr |= T1_INT;
157 mos6522_update_irq(s);
158 }
159
160 static void mos6522_timer2(void *opaque)
161 {
162 MOS6522State *s = opaque;
163 MOS6522Timer *ti = &s->timers[1];
164
165 mos6522_timer_update(s, ti, ti->next_irq_time);
166 s->ifr |= T2_INT;
167 mos6522_update_irq(s);
168 }
169
170 static void mos6522_set_sr_int(MOS6522State *s)
171 {
172 trace_mos6522_set_sr_int();
173 s->ifr |= SR_INT;
174 mos6522_update_irq(s);
175 }
176
177 static uint64_t mos6522_get_counter_value(MOS6522State *s, MOS6522Timer *ti)
178 {
179 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - ti->load_time,
180 ti->frequency, NANOSECONDS_PER_SECOND);
181 }
182
183 static uint64_t mos6522_get_load_time(MOS6522State *s, MOS6522Timer *ti)
184 {
185 uint64_t load_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
186
187 return load_time;
188 }
189
190 static void mos6522_portA_write(MOS6522State *s)
191 {
192 qemu_log_mask(LOG_UNIMP, "portA_write unimplemented\n");
193 }
194
195 static void mos6522_portB_write(MOS6522State *s)
196 {
197 qemu_log_mask(LOG_UNIMP, "portB_write unimplemented\n");
198 }
199
200 uint64_t mos6522_read(void *opaque, hwaddr addr, unsigned size)
201 {
202 MOS6522State *s = opaque;
203 uint32_t val;
204
205 switch (addr) {
206 case VIA_REG_B:
207 val = s->b;
208 break;
209 case VIA_REG_A:
210 val = s->a;
211 break;
212 case VIA_REG_DIRB:
213 val = s->dirb;
214 break;
215 case VIA_REG_DIRA:
216 val = s->dira;
217 break;
218 case VIA_REG_T1CL:
219 val = get_counter(s, &s->timers[0]) & 0xff;
220 s->ifr &= ~T1_INT;
221 mos6522_update_irq(s);
222 break;
223 case VIA_REG_T1CH:
224 val = get_counter(s, &s->timers[0]) >> 8;
225 mos6522_update_irq(s);
226 break;
227 case VIA_REG_T1LL:
228 val = s->timers[0].latch & 0xff;
229 break;
230 case VIA_REG_T1LH:
231 /* XXX: check this */
232 val = (s->timers[0].latch >> 8) & 0xff;
233 break;
234 case VIA_REG_T2CL:
235 val = get_counter(s, &s->timers[1]) & 0xff;
236 s->ifr &= ~T2_INT;
237 mos6522_update_irq(s);
238 break;
239 case VIA_REG_T2CH:
240 val = get_counter(s, &s->timers[1]) >> 8;
241 break;
242 case VIA_REG_SR:
243 val = s->sr;
244 s->ifr &= ~SR_INT;
245 mos6522_update_irq(s);
246 break;
247 case VIA_REG_ACR:
248 val = s->acr;
249 break;
250 case VIA_REG_PCR:
251 val = s->pcr;
252 break;
253 case VIA_REG_IFR:
254 val = s->ifr;
255 if (s->ifr & s->ier) {
256 val |= 0x80;
257 }
258 break;
259 case VIA_REG_IER:
260 val = s->ier | 0x80;
261 break;
262 default:
263 case VIA_REG_ANH:
264 val = s->anh;
265 break;
266 }
267
268 if (addr != VIA_REG_IFR || val != 0) {
269 trace_mos6522_read(addr, val);
270 }
271
272 return val;
273 }
274
275 void mos6522_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
276 {
277 MOS6522State *s = opaque;
278 MOS6522DeviceClass *mdc = MOS6522_DEVICE_GET_CLASS(s);
279
280 trace_mos6522_write(addr, val);
281
282 switch (addr) {
283 case VIA_REG_B:
284 s->b = (s->b & ~s->dirb) | (val & s->dirb);
285 mdc->portB_write(s);
286 break;
287 case VIA_REG_A:
288 s->a = (s->a & ~s->dira) | (val & s->dira);
289 mdc->portA_write(s);
290 break;
291 case VIA_REG_DIRB:
292 s->dirb = val;
293 break;
294 case VIA_REG_DIRA:
295 s->dira = val;
296 break;
297 case VIA_REG_T1CL:
298 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
299 mos6522_timer_update(s, &s->timers[0],
300 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
301 break;
302 case VIA_REG_T1CH:
303 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
304 s->ifr &= ~T1_INT;
305 set_counter(s, &s->timers[0], s->timers[0].latch);
306 break;
307 case VIA_REG_T1LL:
308 s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
309 mos6522_timer_update(s, &s->timers[0],
310 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
311 break;
312 case VIA_REG_T1LH:
313 s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
314 s->ifr &= ~T1_INT;
315 mos6522_timer_update(s, &s->timers[0],
316 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
317 break;
318 case VIA_REG_T2CL:
319 s->timers[1].latch = (s->timers[1].latch & 0xff00) | val;
320 break;
321 case VIA_REG_T2CH:
322 /* To ensure T2 generates an interrupt on zero crossing with the
323 common timer code, write the value directly from the latch to
324 the counter */
325 s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8);
326 s->ifr &= ~T2_INT;
327 set_counter(s, &s->timers[1], s->timers[1].latch);
328 break;
329 case VIA_REG_SR:
330 s->sr = val;
331 break;
332 case VIA_REG_ACR:
333 s->acr = val;
334 mos6522_timer_update(s, &s->timers[0],
335 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
336 break;
337 case VIA_REG_PCR:
338 s->pcr = val;
339 break;
340 case VIA_REG_IFR:
341 /* reset bits */
342 s->ifr &= ~val;
343 mos6522_update_irq(s);
344 break;
345 case VIA_REG_IER:
346 if (val & IER_SET) {
347 /* set bits */
348 s->ier |= val & 0x7f;
349 } else {
350 /* reset bits */
351 s->ier &= ~val;
352 }
353 mos6522_update_irq(s);
354 break;
355 default:
356 case VIA_REG_ANH:
357 s->anh = val;
358 break;
359 }
360 }
361
362 static const MemoryRegionOps mos6522_ops = {
363 .read = mos6522_read,
364 .write = mos6522_write,
365 .endianness = DEVICE_NATIVE_ENDIAN,
366 .valid = {
367 .min_access_size = 1,
368 .max_access_size = 1,
369 },
370 };
371
372 static const VMStateDescription vmstate_mos6522_timer = {
373 .name = "mos6522_timer",
374 .version_id = 0,
375 .minimum_version_id = 0,
376 .fields = (VMStateField[]) {
377 VMSTATE_UINT16(latch, MOS6522Timer),
378 VMSTATE_UINT16(counter_value, MOS6522Timer),
379 VMSTATE_INT64(load_time, MOS6522Timer),
380 VMSTATE_INT64(next_irq_time, MOS6522Timer),
381 VMSTATE_TIMER_PTR(timer, MOS6522Timer),
382 VMSTATE_END_OF_LIST()
383 }
384 };
385
386 const VMStateDescription vmstate_mos6522 = {
387 .name = "mos6522",
388 .version_id = 0,
389 .minimum_version_id = 0,
390 .fields = (VMStateField[]) {
391 VMSTATE_UINT8(a, MOS6522State),
392 VMSTATE_UINT8(b, MOS6522State),
393 VMSTATE_UINT8(dira, MOS6522State),
394 VMSTATE_UINT8(dirb, MOS6522State),
395 VMSTATE_UINT8(sr, MOS6522State),
396 VMSTATE_UINT8(acr, MOS6522State),
397 VMSTATE_UINT8(pcr, MOS6522State),
398 VMSTATE_UINT8(ifr, MOS6522State),
399 VMSTATE_UINT8(ier, MOS6522State),
400 VMSTATE_UINT8(anh, MOS6522State),
401 VMSTATE_STRUCT_ARRAY(timers, MOS6522State, 2, 0,
402 vmstate_mos6522_timer, MOS6522Timer),
403 VMSTATE_END_OF_LIST()
404 }
405 };
406
407 static void mos6522_reset(DeviceState *dev)
408 {
409 MOS6522State *s = MOS6522(dev);
410
411 s->b = 0;
412 s->a = 0;
413 s->dirb = 0xff;
414 s->dira = 0;
415 s->sr = 0;
416 s->acr = 0;
417 s->pcr = 0;
418 s->ifr = 0;
419 s->ier = 0;
420 /* s->ier = T1_INT | SR_INT; */
421 s->anh = 0;
422
423 s->timers[0].frequency = s->frequency;
424 s->timers[0].latch = 0xffff;
425 set_counter(s, &s->timers[0], 0xffff);
426
427 s->timers[1].frequency = s->frequency;
428 s->timers[1].latch = 0xffff;
429 }
430
431 static void mos6522_init(Object *obj)
432 {
433 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
434 MOS6522State *s = MOS6522(obj);
435 int i;
436
437 memory_region_init_io(&s->mem, obj, &mos6522_ops, s, "mos6522", 0x10);
438 sysbus_init_mmio(sbd, &s->mem);
439 sysbus_init_irq(sbd, &s->irq);
440
441 for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
442 s->timers[i].index = i;
443 }
444
445 s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer1, s);
446 s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, mos6522_timer2, s);
447 }
448
449 static Property mos6522_properties[] = {
450 DEFINE_PROP_UINT64("frequency", MOS6522State, frequency, 0),
451 DEFINE_PROP_END_OF_LIST()
452 };
453
454 static void mos6522_class_init(ObjectClass *oc, void *data)
455 {
456 DeviceClass *dc = DEVICE_CLASS(oc);
457 MOS6522DeviceClass *mdc = MOS6522_DEVICE_CLASS(oc);
458
459 dc->reset = mos6522_reset;
460 dc->vmsd = &vmstate_mos6522;
461 dc->props = mos6522_properties;
462 mdc->parent_reset = dc->reset;
463 mdc->set_sr_int = mos6522_set_sr_int;
464 mdc->portB_write = mos6522_portB_write;
465 mdc->portA_write = mos6522_portA_write;
466 mdc->update_irq = mos6522_update_irq;
467 mdc->get_timer1_counter_value = mos6522_get_counter_value;
468 mdc->get_timer2_counter_value = mos6522_get_counter_value;
469 mdc->get_timer1_load_time = mos6522_get_load_time;
470 mdc->get_timer2_load_time = mos6522_get_load_time;
471 }
472
473 static const TypeInfo mos6522_type_info = {
474 .name = TYPE_MOS6522,
475 .parent = TYPE_SYS_BUS_DEVICE,
476 .instance_size = sizeof(MOS6522State),
477 .instance_init = mos6522_init,
478 .abstract = true,
479 .class_size = sizeof(MOS6522DeviceClass),
480 .class_init = mos6522_class_init,
481 };
482
483 static void mos6522_register_types(void)
484 {
485 type_register_static(&mos6522_type_info);
486 }
487
488 type_init(mos6522_register_types)