]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/tz-ppc.c
tz-ppc: add dummy read/write methods
[mirror_qemu.git] / hw / misc / tz-ppc.c
1 /*
2 * ARM TrustZone peripheral protection controller emulation
3 *
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qemu/module.h"
15 #include "qapi/error.h"
16 #include "trace.h"
17 #include "hw/sysbus.h"
18 #include "migration/vmstate.h"
19 #include "hw/registerfields.h"
20 #include "hw/irq.h"
21 #include "hw/misc/tz-ppc.h"
22 #include "hw/qdev-properties.h"
23
24 static void tz_ppc_update_irq(TZPPC *s)
25 {
26 bool level = s->irq_status && s->irq_enable;
27
28 trace_tz_ppc_update_irq(level);
29 qemu_set_irq(s->irq, level);
30 }
31
32 static void tz_ppc_cfg_nonsec(void *opaque, int n, int level)
33 {
34 TZPPC *s = TZ_PPC(opaque);
35
36 assert(n < TZ_NUM_PORTS);
37 trace_tz_ppc_cfg_nonsec(n, level);
38 s->cfg_nonsec[n] = level;
39 }
40
41 static void tz_ppc_cfg_ap(void *opaque, int n, int level)
42 {
43 TZPPC *s = TZ_PPC(opaque);
44
45 assert(n < TZ_NUM_PORTS);
46 trace_tz_ppc_cfg_ap(n, level);
47 s->cfg_ap[n] = level;
48 }
49
50 static void tz_ppc_cfg_sec_resp(void *opaque, int n, int level)
51 {
52 TZPPC *s = TZ_PPC(opaque);
53
54 trace_tz_ppc_cfg_sec_resp(level);
55 s->cfg_sec_resp = level;
56 }
57
58 static void tz_ppc_irq_enable(void *opaque, int n, int level)
59 {
60 TZPPC *s = TZ_PPC(opaque);
61
62 trace_tz_ppc_irq_enable(level);
63 s->irq_enable = level;
64 tz_ppc_update_irq(s);
65 }
66
67 static void tz_ppc_irq_clear(void *opaque, int n, int level)
68 {
69 TZPPC *s = TZ_PPC(opaque);
70
71 trace_tz_ppc_irq_clear(level);
72
73 s->irq_clear = level;
74 if (level) {
75 s->irq_status = false;
76 tz_ppc_update_irq(s);
77 }
78 }
79
80 static bool tz_ppc_check(TZPPC *s, int n, MemTxAttrs attrs)
81 {
82 /* Check whether to allow an access to port n; return true if
83 * the check passes, and false if the transaction must be blocked.
84 * If the latter, the caller must check cfg_sec_resp to determine
85 * whether to abort or RAZ/WI the transaction.
86 * The checks are:
87 * + nonsec_mask suppresses any check of the secure attribute
88 * + otherwise, block if cfg_nonsec is 1 and transaction is secure,
89 * or if cfg_nonsec is 0 and transaction is non-secure
90 * + block if transaction is usermode and cfg_ap is 0
91 */
92 if ((attrs.secure == s->cfg_nonsec[n] && !(s->nonsec_mask & (1 << n))) ||
93 (attrs.user && !s->cfg_ap[n])) {
94 /* Block the transaction. */
95 if (!s->irq_clear) {
96 /* Note that holding irq_clear high suppresses interrupts */
97 s->irq_status = true;
98 tz_ppc_update_irq(s);
99 }
100 return false;
101 }
102 return true;
103 }
104
105 static MemTxResult tz_ppc_read(void *opaque, hwaddr addr, uint64_t *pdata,
106 unsigned size, MemTxAttrs attrs)
107 {
108 TZPPCPort *p = opaque;
109 TZPPC *s = p->ppc;
110 int n = p - s->port;
111 AddressSpace *as = &p->downstream_as;
112 uint64_t data;
113 MemTxResult res;
114
115 if (!tz_ppc_check(s, n, attrs)) {
116 trace_tz_ppc_read_blocked(n, addr, attrs.secure, attrs.user);
117 if (s->cfg_sec_resp) {
118 return MEMTX_ERROR;
119 } else {
120 *pdata = 0;
121 return MEMTX_OK;
122 }
123 }
124
125 switch (size) {
126 case 1:
127 data = address_space_ldub(as, addr, attrs, &res);
128 break;
129 case 2:
130 data = address_space_lduw_le(as, addr, attrs, &res);
131 break;
132 case 4:
133 data = address_space_ldl_le(as, addr, attrs, &res);
134 break;
135 case 8:
136 data = address_space_ldq_le(as, addr, attrs, &res);
137 break;
138 default:
139 g_assert_not_reached();
140 }
141 *pdata = data;
142 return res;
143 }
144
145 static MemTxResult tz_ppc_write(void *opaque, hwaddr addr, uint64_t val,
146 unsigned size, MemTxAttrs attrs)
147 {
148 TZPPCPort *p = opaque;
149 TZPPC *s = p->ppc;
150 AddressSpace *as = &p->downstream_as;
151 int n = p - s->port;
152 MemTxResult res;
153
154 if (!tz_ppc_check(s, n, attrs)) {
155 trace_tz_ppc_write_blocked(n, addr, attrs.secure, attrs.user);
156 if (s->cfg_sec_resp) {
157 return MEMTX_ERROR;
158 } else {
159 return MEMTX_OK;
160 }
161 }
162
163 switch (size) {
164 case 1:
165 address_space_stb(as, addr, val, attrs, &res);
166 break;
167 case 2:
168 address_space_stw_le(as, addr, val, attrs, &res);
169 break;
170 case 4:
171 address_space_stl_le(as, addr, val, attrs, &res);
172 break;
173 case 8:
174 address_space_stq_le(as, addr, val, attrs, &res);
175 break;
176 default:
177 g_assert_not_reached();
178 }
179 return res;
180 }
181
182 static const MemoryRegionOps tz_ppc_ops = {
183 .read_with_attrs = tz_ppc_read,
184 .write_with_attrs = tz_ppc_write,
185 .endianness = DEVICE_LITTLE_ENDIAN,
186 };
187
188 static bool tz_ppc_dummy_accepts(void *opaque, hwaddr addr,
189 unsigned size, bool is_write,
190 MemTxAttrs attrs)
191 {
192 /*
193 * Board code should never map the upstream end of an unused port,
194 * so we should never try to make a memory access to it.
195 */
196 g_assert_not_reached();
197 }
198
199 static uint64_t tz_ppc_dummy_read(void *opaque, hwaddr addr, unsigned size)
200 {
201 g_assert_not_reached();
202 }
203
204 static void tz_ppc_dummy_write(void *opaque, hwaddr addr,
205 uint64_t data, unsigned size)
206 {
207 g_assert_not_reached();
208 }
209
210 static const MemoryRegionOps tz_ppc_dummy_ops = {
211 /* define r/w methods to avoid assert failure in memory_region_init_io */
212 .read = tz_ppc_dummy_read,
213 .write = tz_ppc_dummy_write,
214 .valid.accepts = tz_ppc_dummy_accepts,
215 };
216
217 static void tz_ppc_reset(DeviceState *dev)
218 {
219 TZPPC *s = TZ_PPC(dev);
220
221 trace_tz_ppc_reset();
222 s->cfg_sec_resp = false;
223 memset(s->cfg_nonsec, 0, sizeof(s->cfg_nonsec));
224 memset(s->cfg_ap, 0, sizeof(s->cfg_ap));
225 }
226
227 static void tz_ppc_init(Object *obj)
228 {
229 DeviceState *dev = DEVICE(obj);
230 TZPPC *s = TZ_PPC(obj);
231
232 qdev_init_gpio_in_named(dev, tz_ppc_cfg_nonsec, "cfg_nonsec", TZ_NUM_PORTS);
233 qdev_init_gpio_in_named(dev, tz_ppc_cfg_ap, "cfg_ap", TZ_NUM_PORTS);
234 qdev_init_gpio_in_named(dev, tz_ppc_cfg_sec_resp, "cfg_sec_resp", 1);
235 qdev_init_gpio_in_named(dev, tz_ppc_irq_enable, "irq_enable", 1);
236 qdev_init_gpio_in_named(dev, tz_ppc_irq_clear, "irq_clear", 1);
237 qdev_init_gpio_out_named(dev, &s->irq, "irq", 1);
238 }
239
240 static void tz_ppc_realize(DeviceState *dev, Error **errp)
241 {
242 Object *obj = OBJECT(dev);
243 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
244 TZPPC *s = TZ_PPC(dev);
245 int i;
246 int max_port = 0;
247
248 /* We can't create the upstream end of the port until realize,
249 * as we don't know the size of the MR used as the downstream until then.
250 */
251 for (i = 0; i < TZ_NUM_PORTS; i++) {
252 if (s->port[i].downstream) {
253 max_port = i;
254 }
255 }
256
257 for (i = 0; i <= max_port; i++) {
258 TZPPCPort *port = &s->port[i];
259 char *name;
260 uint64_t size;
261
262 if (!port->downstream) {
263 /*
264 * Create dummy sysbus MMIO region so the sysbus region
265 * numbering doesn't get out of sync with the port numbers.
266 * The size is entirely arbitrary.
267 */
268 name = g_strdup_printf("tz-ppc-dummy-port[%d]", i);
269 memory_region_init_io(&port->upstream, obj, &tz_ppc_dummy_ops,
270 port, name, 0x10000);
271 sysbus_init_mmio(sbd, &port->upstream);
272 g_free(name);
273 continue;
274 }
275
276 name = g_strdup_printf("tz-ppc-port[%d]", i);
277
278 port->ppc = s;
279 address_space_init(&port->downstream_as, port->downstream, name);
280
281 size = memory_region_size(port->downstream);
282 memory_region_init_io(&port->upstream, obj, &tz_ppc_ops,
283 port, name, size);
284 sysbus_init_mmio(sbd, &port->upstream);
285 g_free(name);
286 }
287 }
288
289 static const VMStateDescription tz_ppc_vmstate = {
290 .name = "tz-ppc",
291 .version_id = 1,
292 .minimum_version_id = 1,
293 .fields = (VMStateField[]) {
294 VMSTATE_BOOL_ARRAY(cfg_nonsec, TZPPC, 16),
295 VMSTATE_BOOL_ARRAY(cfg_ap, TZPPC, 16),
296 VMSTATE_BOOL(cfg_sec_resp, TZPPC),
297 VMSTATE_BOOL(irq_enable, TZPPC),
298 VMSTATE_BOOL(irq_clear, TZPPC),
299 VMSTATE_BOOL(irq_status, TZPPC),
300 VMSTATE_END_OF_LIST()
301 }
302 };
303
304 #define DEFINE_PORT(N) \
305 DEFINE_PROP_LINK("port[" #N "]", TZPPC, port[N].downstream, \
306 TYPE_MEMORY_REGION, MemoryRegion *)
307
308 static Property tz_ppc_properties[] = {
309 DEFINE_PROP_UINT32("NONSEC_MASK", TZPPC, nonsec_mask, 0),
310 DEFINE_PORT(0),
311 DEFINE_PORT(1),
312 DEFINE_PORT(2),
313 DEFINE_PORT(3),
314 DEFINE_PORT(4),
315 DEFINE_PORT(5),
316 DEFINE_PORT(6),
317 DEFINE_PORT(7),
318 DEFINE_PORT(8),
319 DEFINE_PORT(9),
320 DEFINE_PORT(10),
321 DEFINE_PORT(11),
322 DEFINE_PORT(12),
323 DEFINE_PORT(13),
324 DEFINE_PORT(14),
325 DEFINE_PORT(15),
326 DEFINE_PROP_END_OF_LIST(),
327 };
328
329 static void tz_ppc_class_init(ObjectClass *klass, void *data)
330 {
331 DeviceClass *dc = DEVICE_CLASS(klass);
332
333 dc->realize = tz_ppc_realize;
334 dc->vmsd = &tz_ppc_vmstate;
335 dc->reset = tz_ppc_reset;
336 device_class_set_props(dc, tz_ppc_properties);
337 }
338
339 static const TypeInfo tz_ppc_info = {
340 .name = TYPE_TZ_PPC,
341 .parent = TYPE_SYS_BUS_DEVICE,
342 .instance_size = sizeof(TZPPC),
343 .instance_init = tz_ppc_init,
344 .class_init = tz_ppc_class_init,
345 };
346
347 static void tz_ppc_register_types(void)
348 {
349 type_register_static(&tz_ppc_info);
350 }
351
352 type_init(tz_ppc_register_types);