]> git.proxmox.com Git - mirror_qemu.git/blob - hw/misc/zynq_slcr.c
Use DECLARE_*CHECKER* macros
[mirror_qemu.git] / hw / misc / zynq_slcr.c
1 /*
2 * Status and system control registers for Xilinx Zynq Platform
3 *
4 * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5 * Copyright (c) 2012 PetaLogix Pty Ltd.
6 * Based on hw/arm_sysctl.c, written by Paul Brook
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, see <http://www.gnu.org/licenses/>.
15 */
16
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
22 #include "qemu/log.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 #include "qom/object.h"
27
28 #ifndef ZYNQ_SLCR_ERR_DEBUG
29 #define ZYNQ_SLCR_ERR_DEBUG 0
30 #endif
31
32 #define DB_PRINT(...) do { \
33 if (ZYNQ_SLCR_ERR_DEBUG) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } \
37 } while (0)
38
39 #define XILINX_LOCK_KEY 0x767b
40 #define XILINX_UNLOCK_KEY 0xdf0d
41
42 REG32(SCL, 0x000)
43 REG32(LOCK, 0x004)
44 REG32(UNLOCK, 0x008)
45 REG32(LOCKSTA, 0x00c)
46
47 REG32(ARM_PLL_CTRL, 0x100)
48 REG32(DDR_PLL_CTRL, 0x104)
49 REG32(IO_PLL_CTRL, 0x108)
50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
51 FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
52 FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
53 FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
54 FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
55 FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
56 REG32(PLL_STATUS, 0x10c)
57 REG32(ARM_PLL_CFG, 0x110)
58 REG32(DDR_PLL_CFG, 0x114)
59 REG32(IO_PLL_CFG, 0x118)
60
61 REG32(ARM_CLK_CTRL, 0x120)
62 REG32(DDR_CLK_CTRL, 0x124)
63 REG32(DCI_CLK_CTRL, 0x128)
64 REG32(APER_CLK_CTRL, 0x12c)
65 REG32(USB0_CLK_CTRL, 0x130)
66 REG32(USB1_CLK_CTRL, 0x134)
67 REG32(GEM0_RCLK_CTRL, 0x138)
68 REG32(GEM1_RCLK_CTRL, 0x13c)
69 REG32(GEM0_CLK_CTRL, 0x140)
70 REG32(GEM1_CLK_CTRL, 0x144)
71 REG32(SMC_CLK_CTRL, 0x148)
72 REG32(LQSPI_CLK_CTRL, 0x14c)
73 REG32(SDIO_CLK_CTRL, 0x150)
74 REG32(UART_CLK_CTRL, 0x154)
75 FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
76 FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
77 FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
78 FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
79 REG32(SPI_CLK_CTRL, 0x158)
80 REG32(CAN_CLK_CTRL, 0x15c)
81 REG32(CAN_MIOCLK_CTRL, 0x160)
82 REG32(DBG_CLK_CTRL, 0x164)
83 REG32(PCAP_CLK_CTRL, 0x168)
84 REG32(TOPSW_CLK_CTRL, 0x16c)
85
86 #define FPGA_CTRL_REGS(n, start) \
87 REG32(FPGA ## n ## _CLK_CTRL, (start)) \
88 REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
89 REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
90 REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
91 FPGA_CTRL_REGS(0, 0x170)
92 FPGA_CTRL_REGS(1, 0x180)
93 FPGA_CTRL_REGS(2, 0x190)
94 FPGA_CTRL_REGS(3, 0x1a0)
95
96 REG32(BANDGAP_TRIP, 0x1b8)
97 REG32(PLL_PREDIVISOR, 0x1c0)
98 REG32(CLK_621_TRUE, 0x1c4)
99
100 REG32(PSS_RST_CTRL, 0x200)
101 FIELD(PSS_RST_CTRL, SOFT_RST, 0, 1)
102 REG32(DDR_RST_CTRL, 0x204)
103 REG32(TOPSW_RESET_CTRL, 0x208)
104 REG32(DMAC_RST_CTRL, 0x20c)
105 REG32(USB_RST_CTRL, 0x210)
106 REG32(GEM_RST_CTRL, 0x214)
107 REG32(SDIO_RST_CTRL, 0x218)
108 REG32(SPI_RST_CTRL, 0x21c)
109 REG32(CAN_RST_CTRL, 0x220)
110 REG32(I2C_RST_CTRL, 0x224)
111 REG32(UART_RST_CTRL, 0x228)
112 REG32(GPIO_RST_CTRL, 0x22c)
113 REG32(LQSPI_RST_CTRL, 0x230)
114 REG32(SMC_RST_CTRL, 0x234)
115 REG32(OCM_RST_CTRL, 0x238)
116 REG32(FPGA_RST_CTRL, 0x240)
117 REG32(A9_CPU_RST_CTRL, 0x244)
118
119 REG32(RS_AWDT_CTRL, 0x24c)
120 REG32(RST_REASON, 0x250)
121
122 REG32(REBOOT_STATUS, 0x258)
123 REG32(BOOT_MODE, 0x25c)
124
125 REG32(APU_CTRL, 0x300)
126 REG32(WDT_CLK_SEL, 0x304)
127
128 REG32(TZ_DMA_NS, 0x440)
129 REG32(TZ_DMA_IRQ_NS, 0x444)
130 REG32(TZ_DMA_PERIPH_NS, 0x448)
131
132 REG32(PSS_IDCODE, 0x530)
133
134 REG32(DDR_URGENT, 0x600)
135 REG32(DDR_CAL_START, 0x60c)
136 REG32(DDR_REF_START, 0x614)
137 REG32(DDR_CMD_STA, 0x618)
138 REG32(DDR_URGENT_SEL, 0x61c)
139 REG32(DDR_DFI_STATUS, 0x620)
140
141 REG32(MIO, 0x700)
142 #define MIO_LENGTH 54
143
144 REG32(MIO_LOOPBACK, 0x804)
145 REG32(MIO_MST_TRI0, 0x808)
146 REG32(MIO_MST_TRI1, 0x80c)
147
148 REG32(SD0_WP_CD_SEL, 0x830)
149 REG32(SD1_WP_CD_SEL, 0x834)
150
151 REG32(LVL_SHFTR_EN, 0x900)
152 REG32(OCM_CFG, 0x910)
153
154 REG32(CPU_RAM, 0xa00)
155
156 REG32(IOU, 0xa30)
157
158 REG32(DMAC_RAM, 0xa50)
159
160 REG32(AFI0, 0xa60)
161 REG32(AFI1, 0xa6c)
162 REG32(AFI2, 0xa78)
163 REG32(AFI3, 0xa84)
164 #define AFI_LENGTH 3
165
166 REG32(OCM, 0xa90)
167
168 REG32(DEVCI_RAM, 0xaa0)
169
170 REG32(CSG_RAM, 0xab0)
171
172 REG32(GPIOB_CTRL, 0xb00)
173 REG32(GPIOB_CFG_CMOS18, 0xb04)
174 REG32(GPIOB_CFG_CMOS25, 0xb08)
175 REG32(GPIOB_CFG_CMOS33, 0xb0c)
176 REG32(GPIOB_CFG_HSTL, 0xb14)
177 REG32(GPIOB_DRVR_BIAS_CTRL, 0xb18)
178
179 REG32(DDRIOB, 0xb40)
180 #define DDRIOB_LENGTH 14
181
182 #define ZYNQ_SLCR_MMIO_SIZE 0x1000
183 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
184
185 #define TYPE_ZYNQ_SLCR "xilinx,zynq_slcr"
186 typedef struct ZynqSLCRState ZynqSLCRState;
187 DECLARE_INSTANCE_CHECKER(ZynqSLCRState, ZYNQ_SLCR,
188 TYPE_ZYNQ_SLCR)
189
190 struct ZynqSLCRState {
191 SysBusDevice parent_obj;
192
193 MemoryRegion iomem;
194
195 uint32_t regs[ZYNQ_SLCR_NUM_REGS];
196
197 Clock *ps_clk;
198 Clock *uart0_ref_clk;
199 Clock *uart1_ref_clk;
200 };
201
202 /*
203 * return the output frequency of ARM/DDR/IO pll
204 * using input frequency and PLL_CTRL register
205 */
206 static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
207 {
208 uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
209 R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
210
211 /* first, check if pll is bypassed */
212 if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
213 return input;
214 }
215
216 /* is pll disabled ? */
217 if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
218 R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
219 return 0;
220 }
221
222 /* frequency multiplier -> period division */
223 return input / mult;
224 }
225
226 /*
227 * return the output period of a clock given:
228 * + the periods in an array corresponding to input mux selector
229 * + the register xxx_CLK_CTRL value
230 * + enable bit index in ctrl register
231 *
232 * This function makes the assumption that the ctrl_reg value is organized as
233 * follows:
234 * + bits[13:8] clock frequency divisor
235 * + bits[5:4] clock mux selector (index in array)
236 * + bits[index] clock enable
237 */
238 static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
239 uint32_t ctrl_reg,
240 unsigned index)
241 {
242 uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
243 uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
244
245 /* first, check if clock is disabled */
246 if (((ctrl_reg >> index) & 1u) == 0) {
247 return 0;
248 }
249
250 /*
251 * according to the Zynq technical ref. manual UG585 v1.12.2 in
252 * Clocks chapter, section 25.10.1 page 705:
253 * "The 6-bit divider provides a divide range of 1 to 63"
254 * We follow here what is implemented in linux kernel and consider
255 * the 0 value as a bypass (no division).
256 */
257 /* frequency divisor -> period multiplication */
258 return periods[srcsel] * (divisor ? divisor : 1u);
259 }
260
261 /*
262 * macro helper around zynq_slcr_compute_clock to avoid repeating
263 * the register name.
264 */
265 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
266 zynq_slcr_compute_clock((plls), (state)->regs[reg], \
267 reg ## _ ## enable_field ## _SHIFT)
268
269 /**
270 * Compute and set the ouputs clocks periods.
271 * But do not propagate them further. Connected clocks
272 * will not receive any updates (See zynq_slcr_compute_clocks())
273 */
274 static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
275 {
276 uint64_t ps_clk = clock_get(s->ps_clk);
277
278 /* consider outputs clocks are disabled while in reset */
279 if (device_is_in_reset(DEVICE(s))) {
280 ps_clk = 0;
281 }
282
283 uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
284 uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
285 uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
286
287 uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
288
289 /* compute uartX reference clocks */
290 clock_set(s->uart0_ref_clk,
291 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
292 clock_set(s->uart1_ref_clk,
293 ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
294 }
295
296 /**
297 * Propagate the outputs clocks.
298 * zynq_slcr_compute_clocks() should have been called before
299 * to configure them.
300 */
301 static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
302 {
303 clock_propagate(s->uart0_ref_clk);
304 clock_propagate(s->uart1_ref_clk);
305 }
306
307 static void zynq_slcr_ps_clk_callback(void *opaque)
308 {
309 ZynqSLCRState *s = (ZynqSLCRState *) opaque;
310 zynq_slcr_compute_clocks(s);
311 zynq_slcr_propagate_clocks(s);
312 }
313
314 static void zynq_slcr_reset_init(Object *obj, ResetType type)
315 {
316 ZynqSLCRState *s = ZYNQ_SLCR(obj);
317 int i;
318
319 DB_PRINT("RESET\n");
320
321 s->regs[R_LOCKSTA] = 1;
322 /* 0x100 - 0x11C */
323 s->regs[R_ARM_PLL_CTRL] = 0x0001A008;
324 s->regs[R_DDR_PLL_CTRL] = 0x0001A008;
325 s->regs[R_IO_PLL_CTRL] = 0x0001A008;
326 s->regs[R_PLL_STATUS] = 0x0000003F;
327 s->regs[R_ARM_PLL_CFG] = 0x00014000;
328 s->regs[R_DDR_PLL_CFG] = 0x00014000;
329 s->regs[R_IO_PLL_CFG] = 0x00014000;
330
331 /* 0x120 - 0x16C */
332 s->regs[R_ARM_CLK_CTRL] = 0x1F000400;
333 s->regs[R_DDR_CLK_CTRL] = 0x18400003;
334 s->regs[R_DCI_CLK_CTRL] = 0x01E03201;
335 s->regs[R_APER_CLK_CTRL] = 0x01FFCCCD;
336 s->regs[R_USB0_CLK_CTRL] = s->regs[R_USB1_CLK_CTRL] = 0x00101941;
337 s->regs[R_GEM0_RCLK_CTRL] = s->regs[R_GEM1_RCLK_CTRL] = 0x00000001;
338 s->regs[R_GEM0_CLK_CTRL] = s->regs[R_GEM1_CLK_CTRL] = 0x00003C01;
339 s->regs[R_SMC_CLK_CTRL] = 0x00003C01;
340 s->regs[R_LQSPI_CLK_CTRL] = 0x00002821;
341 s->regs[R_SDIO_CLK_CTRL] = 0x00001E03;
342 s->regs[R_UART_CLK_CTRL] = 0x00003F03;
343 s->regs[R_SPI_CLK_CTRL] = 0x00003F03;
344 s->regs[R_CAN_CLK_CTRL] = 0x00501903;
345 s->regs[R_DBG_CLK_CTRL] = 0x00000F03;
346 s->regs[R_PCAP_CLK_CTRL] = 0x00000F01;
347
348 /* 0x170 - 0x1AC */
349 s->regs[R_FPGA0_CLK_CTRL] = s->regs[R_FPGA1_CLK_CTRL]
350 = s->regs[R_FPGA2_CLK_CTRL]
351 = s->regs[R_FPGA3_CLK_CTRL] = 0x00101800;
352 s->regs[R_FPGA0_THR_STA] = s->regs[R_FPGA1_THR_STA]
353 = s->regs[R_FPGA2_THR_STA]
354 = s->regs[R_FPGA3_THR_STA] = 0x00010000;
355
356 /* 0x1B0 - 0x1D8 */
357 s->regs[R_BANDGAP_TRIP] = 0x0000001F;
358 s->regs[R_PLL_PREDIVISOR] = 0x00000001;
359 s->regs[R_CLK_621_TRUE] = 0x00000001;
360
361 /* 0x200 - 0x25C */
362 s->regs[R_FPGA_RST_CTRL] = 0x01F33F0F;
363 s->regs[R_RST_REASON] = 0x00000040;
364
365 s->regs[R_BOOT_MODE] = 0x00000001;
366
367 /* 0x700 - 0x7D4 */
368 for (i = 0; i < 54; i++) {
369 s->regs[R_MIO + i] = 0x00001601;
370 }
371 for (i = 2; i <= 8; i++) {
372 s->regs[R_MIO + i] = 0x00000601;
373 }
374
375 s->regs[R_MIO_MST_TRI0] = s->regs[R_MIO_MST_TRI1] = 0xFFFFFFFF;
376
377 s->regs[R_CPU_RAM + 0] = s->regs[R_CPU_RAM + 1] = s->regs[R_CPU_RAM + 3]
378 = s->regs[R_CPU_RAM + 4] = s->regs[R_CPU_RAM + 7]
379 = 0x00010101;
380 s->regs[R_CPU_RAM + 2] = s->regs[R_CPU_RAM + 5] = 0x01010101;
381 s->regs[R_CPU_RAM + 6] = 0x00000001;
382
383 s->regs[R_IOU + 0] = s->regs[R_IOU + 1] = s->regs[R_IOU + 2]
384 = s->regs[R_IOU + 3] = 0x09090909;
385 s->regs[R_IOU + 4] = s->regs[R_IOU + 5] = 0x00090909;
386 s->regs[R_IOU + 6] = 0x00000909;
387
388 s->regs[R_DMAC_RAM] = 0x00000009;
389
390 s->regs[R_AFI0 + 0] = s->regs[R_AFI0 + 1] = 0x09090909;
391 s->regs[R_AFI1 + 0] = s->regs[R_AFI1 + 1] = 0x09090909;
392 s->regs[R_AFI2 + 0] = s->regs[R_AFI2 + 1] = 0x09090909;
393 s->regs[R_AFI3 + 0] = s->regs[R_AFI3 + 1] = 0x09090909;
394 s->regs[R_AFI0 + 2] = s->regs[R_AFI1 + 2] = s->regs[R_AFI2 + 2]
395 = s->regs[R_AFI3 + 2] = 0x00000909;
396
397 s->regs[R_OCM + 0] = 0x01010101;
398 s->regs[R_OCM + 1] = s->regs[R_OCM + 2] = 0x09090909;
399
400 s->regs[R_DEVCI_RAM] = 0x00000909;
401 s->regs[R_CSG_RAM] = 0x00000001;
402
403 s->regs[R_DDRIOB + 0] = s->regs[R_DDRIOB + 1] = s->regs[R_DDRIOB + 2]
404 = s->regs[R_DDRIOB + 3] = 0x00000e00;
405 s->regs[R_DDRIOB + 4] = s->regs[R_DDRIOB + 5] = s->regs[R_DDRIOB + 6]
406 = 0x00000e00;
407 s->regs[R_DDRIOB + 12] = 0x00000021;
408 }
409
410 static void zynq_slcr_reset_hold(Object *obj)
411 {
412 ZynqSLCRState *s = ZYNQ_SLCR(obj);
413
414 /* will disable all output clocks */
415 zynq_slcr_compute_clocks(s);
416 zynq_slcr_propagate_clocks(s);
417 }
418
419 static void zynq_slcr_reset_exit(Object *obj)
420 {
421 ZynqSLCRState *s = ZYNQ_SLCR(obj);
422
423 /* will compute output clocks according to ps_clk and registers */
424 zynq_slcr_compute_clocks(s);
425 zynq_slcr_propagate_clocks(s);
426 }
427
428 static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
429 {
430 switch (offset) {
431 case R_LOCK:
432 case R_UNLOCK:
433 case R_DDR_CAL_START:
434 case R_DDR_REF_START:
435 return !rnw; /* Write only */
436 case R_LOCKSTA:
437 case R_FPGA0_THR_STA:
438 case R_FPGA1_THR_STA:
439 case R_FPGA2_THR_STA:
440 case R_FPGA3_THR_STA:
441 case R_BOOT_MODE:
442 case R_PSS_IDCODE:
443 case R_DDR_CMD_STA:
444 case R_DDR_DFI_STATUS:
445 case R_PLL_STATUS:
446 return rnw;/* read only */
447 case R_SCL:
448 case R_ARM_PLL_CTRL ... R_IO_PLL_CTRL:
449 case R_ARM_PLL_CFG ... R_IO_PLL_CFG:
450 case R_ARM_CLK_CTRL ... R_TOPSW_CLK_CTRL:
451 case R_FPGA0_CLK_CTRL ... R_FPGA0_THR_CNT:
452 case R_FPGA1_CLK_CTRL ... R_FPGA1_THR_CNT:
453 case R_FPGA2_CLK_CTRL ... R_FPGA2_THR_CNT:
454 case R_FPGA3_CLK_CTRL ... R_FPGA3_THR_CNT:
455 case R_BANDGAP_TRIP:
456 case R_PLL_PREDIVISOR:
457 case R_CLK_621_TRUE:
458 case R_PSS_RST_CTRL ... R_A9_CPU_RST_CTRL:
459 case R_RS_AWDT_CTRL:
460 case R_RST_REASON:
461 case R_REBOOT_STATUS:
462 case R_APU_CTRL:
463 case R_WDT_CLK_SEL:
464 case R_TZ_DMA_NS ... R_TZ_DMA_PERIPH_NS:
465 case R_DDR_URGENT:
466 case R_DDR_URGENT_SEL:
467 case R_MIO ... R_MIO + MIO_LENGTH - 1:
468 case R_MIO_LOOPBACK ... R_MIO_MST_TRI1:
469 case R_SD0_WP_CD_SEL:
470 case R_SD1_WP_CD_SEL:
471 case R_LVL_SHFTR_EN:
472 case R_OCM_CFG:
473 case R_CPU_RAM:
474 case R_IOU:
475 case R_DMAC_RAM:
476 case R_AFI0 ... R_AFI3 + AFI_LENGTH - 1:
477 case R_OCM:
478 case R_DEVCI_RAM:
479 case R_CSG_RAM:
480 case R_GPIOB_CTRL ... R_GPIOB_CFG_CMOS33:
481 case R_GPIOB_CFG_HSTL:
482 case R_GPIOB_DRVR_BIAS_CTRL:
483 case R_DDRIOB ... R_DDRIOB + DDRIOB_LENGTH - 1:
484 return true;
485 default:
486 return false;
487 }
488 }
489
490 static uint64_t zynq_slcr_read(void *opaque, hwaddr offset,
491 unsigned size)
492 {
493 ZynqSLCRState *s = opaque;
494 offset /= 4;
495 uint32_t ret = s->regs[offset];
496
497 if (!zynq_slcr_check_offset(offset, true)) {
498 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid read access to "
499 " addr %" HWADDR_PRIx "\n", offset * 4);
500 }
501
502 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx32 "\n", offset * 4, ret);
503 return ret;
504 }
505
506 static void zynq_slcr_write(void *opaque, hwaddr offset,
507 uint64_t val, unsigned size)
508 {
509 ZynqSLCRState *s = (ZynqSLCRState *)opaque;
510 offset /= 4;
511
512 DB_PRINT("addr: %08" HWADDR_PRIx " data: %08" PRIx64 "\n", offset * 4, val);
513
514 if (!zynq_slcr_check_offset(offset, false)) {
515 qemu_log_mask(LOG_GUEST_ERROR, "zynq_slcr: Invalid write access to "
516 "addr %" HWADDR_PRIx "\n", offset * 4);
517 return;
518 }
519
520 switch (offset) {
521 case R_SCL:
522 s->regs[R_SCL] = val & 0x1;
523 return;
524 case R_LOCK:
525 if ((val & 0xFFFF) == XILINX_LOCK_KEY) {
526 DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
527 (unsigned)val & 0xFFFF);
528 s->regs[R_LOCKSTA] = 1;
529 } else {
530 DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
531 (int)offset, (unsigned)val & 0xFFFF);
532 }
533 return;
534 case R_UNLOCK:
535 if ((val & 0xFFFF) == XILINX_UNLOCK_KEY) {
536 DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset,
537 (unsigned)val & 0xFFFF);
538 s->regs[R_LOCKSTA] = 0;
539 } else {
540 DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
541 (int)offset, (unsigned)val & 0xFFFF);
542 }
543 return;
544 }
545
546 if (s->regs[R_LOCKSTA]) {
547 qemu_log_mask(LOG_GUEST_ERROR,
548 "SCLR registers are locked. Unlock them first\n");
549 return;
550 }
551 s->regs[offset] = val;
552
553 switch (offset) {
554 case R_PSS_RST_CTRL:
555 if (FIELD_EX32(val, PSS_RST_CTRL, SOFT_RST)) {
556 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
557 }
558 break;
559 case R_IO_PLL_CTRL:
560 case R_ARM_PLL_CTRL:
561 case R_DDR_PLL_CTRL:
562 case R_UART_CLK_CTRL:
563 zynq_slcr_compute_clocks(s);
564 zynq_slcr_propagate_clocks(s);
565 break;
566 }
567 }
568
569 static const MemoryRegionOps slcr_ops = {
570 .read = zynq_slcr_read,
571 .write = zynq_slcr_write,
572 .endianness = DEVICE_NATIVE_ENDIAN,
573 };
574
575 static const ClockPortInitArray zynq_slcr_clocks = {
576 QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
577 QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
578 QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
579 QDEV_CLOCK_END
580 };
581
582 static void zynq_slcr_init(Object *obj)
583 {
584 ZynqSLCRState *s = ZYNQ_SLCR(obj);
585
586 memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
587 ZYNQ_SLCR_MMIO_SIZE);
588 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
589
590 qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
591 }
592
593 static const VMStateDescription vmstate_zynq_slcr = {
594 .name = "zynq_slcr",
595 .version_id = 3,
596 .minimum_version_id = 2,
597 .fields = (VMStateField[]) {
598 VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
599 VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
600 VMSTATE_END_OF_LIST()
601 }
602 };
603
604 static void zynq_slcr_class_init(ObjectClass *klass, void *data)
605 {
606 DeviceClass *dc = DEVICE_CLASS(klass);
607 ResettableClass *rc = RESETTABLE_CLASS(klass);
608
609 dc->vmsd = &vmstate_zynq_slcr;
610 rc->phases.enter = zynq_slcr_reset_init;
611 rc->phases.hold = zynq_slcr_reset_hold;
612 rc->phases.exit = zynq_slcr_reset_exit;
613 }
614
615 static const TypeInfo zynq_slcr_info = {
616 .class_init = zynq_slcr_class_init,
617 .name = TYPE_ZYNQ_SLCR,
618 .parent = TYPE_SYS_BUS_DEVICE,
619 .instance_size = sizeof(ZynqSLCRState),
620 .instance_init = zynq_slcr_init,
621 };
622
623 static void zynq_slcr_register_types(void)
624 {
625 type_register_static(&zynq_slcr_info);
626 }
627
628 type_init(zynq_slcr_register_types)