]> git.proxmox.com Git - mirror_qemu.git/blob - hw/musicpal.c
Introduce VLANClientState::cleanup() (Mark McLoughlin)
[mirror_qemu.git] / hw / musicpal.c
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
22
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
25
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
28
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
31
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
34
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
37
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
40
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
43
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
46
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
49
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
52
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
55
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
58
59 #define MP_TIMER1_IRQ 4
60 /* ... */
61 #define MP_TIMER4_IRQ 7
62 #define MP_EHCI_IRQ 8
63 #define MP_ETH_IRQ 9
64 #define MP_UART1_IRQ 11
65 #define MP_UART2_IRQ 11
66 #define MP_GPIO_IRQ 12
67 #define MP_RTC_IRQ 28
68 #define MP_AUDIO_IRQ 30
69
70 static uint32_t gpio_in_state = 0xffffffff;
71 static uint32_t gpio_isr;
72 static uint32_t gpio_out_state;
73 static ram_addr_t sram_off;
74
75 typedef enum i2c_state {
76 STOPPED = 0,
77 INITIALIZING,
78 SENDING_BIT7,
79 SENDING_BIT6,
80 SENDING_BIT5,
81 SENDING_BIT4,
82 SENDING_BIT3,
83 SENDING_BIT2,
84 SENDING_BIT1,
85 SENDING_BIT0,
86 WAITING_FOR_ACK,
87 RECEIVING_BIT7,
88 RECEIVING_BIT6,
89 RECEIVING_BIT5,
90 RECEIVING_BIT4,
91 RECEIVING_BIT3,
92 RECEIVING_BIT2,
93 RECEIVING_BIT1,
94 RECEIVING_BIT0,
95 SENDING_ACK
96 } i2c_state;
97
98 typedef struct i2c_interface {
99 i2c_bus *bus;
100 i2c_state state;
101 int last_data;
102 int last_clock;
103 uint8_t buffer;
104 int current_addr;
105 } i2c_interface;
106
107 static void i2c_enter_stop(i2c_interface *i2c)
108 {
109 if (i2c->current_addr >= 0)
110 i2c_end_transfer(i2c->bus);
111 i2c->current_addr = -1;
112 i2c->state = STOPPED;
113 }
114
115 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
116 {
117 if (!i2c)
118 return;
119
120 switch (i2c->state) {
121 case STOPPED:
122 if (data == 0 && i2c->last_data == 1 && clock == 1)
123 i2c->state = INITIALIZING;
124 break;
125
126 case INITIALIZING:
127 if (clock == 0 && i2c->last_clock == 1 && data == 0)
128 i2c->state = SENDING_BIT7;
129 else
130 i2c_enter_stop(i2c);
131 break;
132
133 case SENDING_BIT7 ... SENDING_BIT0:
134 if (clock == 0 && i2c->last_clock == 1) {
135 i2c->buffer = (i2c->buffer << 1) | data;
136 i2c->state++; /* will end up in WAITING_FOR_ACK */
137 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
138 i2c_enter_stop(i2c);
139 break;
140
141 case WAITING_FOR_ACK:
142 if (clock == 0 && i2c->last_clock == 1) {
143 if (i2c->current_addr < 0) {
144 i2c->current_addr = i2c->buffer;
145 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
146 i2c->buffer & 1);
147 } else
148 i2c_send(i2c->bus, i2c->buffer);
149 if (i2c->current_addr & 1) {
150 i2c->state = RECEIVING_BIT7;
151 i2c->buffer = i2c_recv(i2c->bus);
152 } else
153 i2c->state = SENDING_BIT7;
154 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
155 i2c_enter_stop(i2c);
156 break;
157
158 case RECEIVING_BIT7 ... RECEIVING_BIT0:
159 if (clock == 0 && i2c->last_clock == 1) {
160 i2c->state++; /* will end up in SENDING_ACK */
161 i2c->buffer <<= 1;
162 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
163 i2c_enter_stop(i2c);
164 break;
165
166 case SENDING_ACK:
167 if (clock == 0 && i2c->last_clock == 1) {
168 i2c->state = RECEIVING_BIT7;
169 if (data == 0)
170 i2c->buffer = i2c_recv(i2c->bus);
171 else
172 i2c_nack(i2c->bus);
173 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
174 i2c_enter_stop(i2c);
175 break;
176 }
177
178 i2c->last_data = data;
179 i2c->last_clock = clock;
180 }
181
182 static int i2c_get_data(i2c_interface *i2c)
183 {
184 if (!i2c)
185 return 0;
186
187 switch (i2c->state) {
188 case RECEIVING_BIT7 ... RECEIVING_BIT0:
189 return (i2c->buffer >> 7);
190
191 case WAITING_FOR_ACK:
192 default:
193 return 0;
194 }
195 }
196
197 static i2c_interface *mixer_i2c;
198
199 #ifdef HAS_AUDIO
200
201 /* Audio register offsets */
202 #define MP_AUDIO_PLAYBACK_MODE 0x00
203 #define MP_AUDIO_CLOCK_DIV 0x18
204 #define MP_AUDIO_IRQ_STATUS 0x20
205 #define MP_AUDIO_IRQ_ENABLE 0x24
206 #define MP_AUDIO_TX_START_LO 0x28
207 #define MP_AUDIO_TX_THRESHOLD 0x2C
208 #define MP_AUDIO_TX_STATUS 0x38
209 #define MP_AUDIO_TX_START_HI 0x40
210
211 /* Status register and IRQ enable bits */
212 #define MP_AUDIO_TX_HALF (1 << 6)
213 #define MP_AUDIO_TX_FULL (1 << 7)
214
215 /* Playback mode bits */
216 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
217 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
218 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
219 #define MP_AUDIO_MONO (1 << 14)
220
221 /* Wolfson 8750 I2C address */
222 #define MP_WM_ADDR 0x34
223
224 static const char audio_name[] = "mv88w8618";
225
226 typedef struct musicpal_audio_state {
227 qemu_irq irq;
228 uint32_t playback_mode;
229 uint32_t status;
230 uint32_t irq_enable;
231 unsigned long phys_buf;
232 uint32_t target_buffer;
233 unsigned int threshold;
234 unsigned int play_pos;
235 unsigned int last_free;
236 uint32_t clock_div;
237 i2c_slave *wm;
238 } musicpal_audio_state;
239
240 static void audio_callback(void *opaque, int free_out, int free_in)
241 {
242 musicpal_audio_state *s = opaque;
243 int16_t *codec_buffer;
244 int8_t buf[4096];
245 int8_t *mem_buffer;
246 int pos, block_size;
247
248 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
249 return;
250
251 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
252 free_out <<= 1;
253
254 if (!(s->playback_mode & MP_AUDIO_MONO))
255 free_out <<= 1;
256
257 block_size = s->threshold/2;
258 if (free_out - s->last_free < block_size)
259 return;
260
261 if (block_size > 4096)
262 return;
263
264 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
265 block_size);
266 mem_buffer = buf;
267 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
268 if (s->playback_mode & MP_AUDIO_MONO) {
269 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
270 for (pos = 0; pos < block_size; pos += 2) {
271 *codec_buffer++ = *(int16_t *)mem_buffer;
272 *codec_buffer++ = *(int16_t *)mem_buffer;
273 mem_buffer += 2;
274 }
275 } else
276 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
277 (uint32_t *)mem_buffer, block_size);
278 } else {
279 if (s->playback_mode & MP_AUDIO_MONO) {
280 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
281 for (pos = 0; pos < block_size; pos++) {
282 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
283 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
284 }
285 } else {
286 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
287 for (pos = 0; pos < block_size; pos += 2) {
288 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
289 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290 }
291 }
292 }
293 wm8750_dac_commit(s->wm);
294
295 s->last_free = free_out - block_size;
296
297 if (s->play_pos == 0) {
298 s->status |= MP_AUDIO_TX_HALF;
299 s->play_pos = block_size;
300 } else {
301 s->status |= MP_AUDIO_TX_FULL;
302 s->play_pos = 0;
303 }
304
305 if (s->status & s->irq_enable)
306 qemu_irq_raise(s->irq);
307 }
308
309 static void musicpal_audio_clock_update(musicpal_audio_state *s)
310 {
311 int rate;
312
313 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
314 rate = 24576000 / 64; /* 24.576MHz */
315 else
316 rate = 11289600 / 64; /* 11.2896MHz */
317
318 rate /= ((s->clock_div >> 8) & 0xff) + 1;
319
320 wm8750_set_bclk_in(s->wm, rate);
321 }
322
323 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
324 {
325 musicpal_audio_state *s = opaque;
326
327 switch (offset) {
328 case MP_AUDIO_PLAYBACK_MODE:
329 return s->playback_mode;
330
331 case MP_AUDIO_CLOCK_DIV:
332 return s->clock_div;
333
334 case MP_AUDIO_IRQ_STATUS:
335 return s->status;
336
337 case MP_AUDIO_IRQ_ENABLE:
338 return s->irq_enable;
339
340 case MP_AUDIO_TX_STATUS:
341 return s->play_pos >> 2;
342
343 default:
344 return 0;
345 }
346 }
347
348 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
349 uint32_t value)
350 {
351 musicpal_audio_state *s = opaque;
352
353 switch (offset) {
354 case MP_AUDIO_PLAYBACK_MODE:
355 if (value & MP_AUDIO_PLAYBACK_EN &&
356 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
357 s->status = 0;
358 s->last_free = 0;
359 s->play_pos = 0;
360 }
361 s->playback_mode = value;
362 musicpal_audio_clock_update(s);
363 break;
364
365 case MP_AUDIO_CLOCK_DIV:
366 s->clock_div = value;
367 s->last_free = 0;
368 s->play_pos = 0;
369 musicpal_audio_clock_update(s);
370 break;
371
372 case MP_AUDIO_IRQ_STATUS:
373 s->status &= ~value;
374 break;
375
376 case MP_AUDIO_IRQ_ENABLE:
377 s->irq_enable = value;
378 if (s->status & s->irq_enable)
379 qemu_irq_raise(s->irq);
380 break;
381
382 case MP_AUDIO_TX_START_LO:
383 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
384 s->target_buffer = s->phys_buf;
385 s->play_pos = 0;
386 s->last_free = 0;
387 break;
388
389 case MP_AUDIO_TX_THRESHOLD:
390 s->threshold = (value + 1) * 4;
391 break;
392
393 case MP_AUDIO_TX_START_HI:
394 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
395 s->target_buffer = s->phys_buf;
396 s->play_pos = 0;
397 s->last_free = 0;
398 break;
399 }
400 }
401
402 static void musicpal_audio_reset(void *opaque)
403 {
404 musicpal_audio_state *s = opaque;
405
406 s->playback_mode = 0;
407 s->status = 0;
408 s->irq_enable = 0;
409 }
410
411 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
412 musicpal_audio_read,
413 musicpal_audio_read,
414 musicpal_audio_read
415 };
416
417 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
418 musicpal_audio_write,
419 musicpal_audio_write,
420 musicpal_audio_write
421 };
422
423 static i2c_interface *musicpal_audio_init(qemu_irq irq)
424 {
425 AudioState *audio;
426 musicpal_audio_state *s;
427 i2c_interface *i2c;
428 int iomemtype;
429
430 audio = AUD_init();
431 if (!audio) {
432 AUD_log(audio_name, "No audio state\n");
433 return NULL;
434 }
435
436 s = qemu_mallocz(sizeof(musicpal_audio_state));
437 s->irq = irq;
438
439 i2c = qemu_mallocz(sizeof(i2c_interface));
440 i2c->bus = i2c_init_bus();
441 i2c->current_addr = -1;
442
443 s->wm = wm8750_init(i2c->bus, audio);
444 if (!s->wm)
445 return NULL;
446 i2c_set_slave_address(s->wm, MP_WM_ADDR);
447 wm8750_data_req_set(s->wm, audio_callback, s);
448
449 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
450 musicpal_audio_writefn, s);
451 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
452
453 qemu_register_reset(musicpal_audio_reset, s);
454
455 return i2c;
456 }
457 #else /* !HAS_AUDIO */
458 static i2c_interface *musicpal_audio_init(qemu_irq irq)
459 {
460 return NULL;
461 }
462 #endif /* !HAS_AUDIO */
463
464 /* Ethernet register offsets */
465 #define MP_ETH_SMIR 0x010
466 #define MP_ETH_PCXR 0x408
467 #define MP_ETH_SDCMR 0x448
468 #define MP_ETH_ICR 0x450
469 #define MP_ETH_IMR 0x458
470 #define MP_ETH_FRDP0 0x480
471 #define MP_ETH_FRDP1 0x484
472 #define MP_ETH_FRDP2 0x488
473 #define MP_ETH_FRDP3 0x48C
474 #define MP_ETH_CRDP0 0x4A0
475 #define MP_ETH_CRDP1 0x4A4
476 #define MP_ETH_CRDP2 0x4A8
477 #define MP_ETH_CRDP3 0x4AC
478 #define MP_ETH_CTDP0 0x4E0
479 #define MP_ETH_CTDP1 0x4E4
480 #define MP_ETH_CTDP2 0x4E8
481 #define MP_ETH_CTDP3 0x4EC
482
483 /* MII PHY access */
484 #define MP_ETH_SMIR_DATA 0x0000FFFF
485 #define MP_ETH_SMIR_ADDR 0x03FF0000
486 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
487 #define MP_ETH_SMIR_RDVALID (1 << 27)
488
489 /* PHY registers */
490 #define MP_ETH_PHY1_BMSR 0x00210000
491 #define MP_ETH_PHY1_PHYSID1 0x00410000
492 #define MP_ETH_PHY1_PHYSID2 0x00610000
493
494 #define MP_PHY_BMSR_LINK 0x0004
495 #define MP_PHY_BMSR_AUTONEG 0x0008
496
497 #define MP_PHY_88E3015 0x01410E20
498
499 /* TX descriptor status */
500 #define MP_ETH_TX_OWN (1 << 31)
501
502 /* RX descriptor status */
503 #define MP_ETH_RX_OWN (1 << 31)
504
505 /* Interrupt cause/mask bits */
506 #define MP_ETH_IRQ_RX_BIT 0
507 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
508 #define MP_ETH_IRQ_TXHI_BIT 2
509 #define MP_ETH_IRQ_TXLO_BIT 3
510
511 /* Port config bits */
512 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
513
514 /* SDMA command bits */
515 #define MP_ETH_CMD_TXHI (1 << 23)
516 #define MP_ETH_CMD_TXLO (1 << 22)
517
518 typedef struct mv88w8618_tx_desc {
519 uint32_t cmdstat;
520 uint16_t res;
521 uint16_t bytes;
522 uint32_t buffer;
523 uint32_t next;
524 } mv88w8618_tx_desc;
525
526 typedef struct mv88w8618_rx_desc {
527 uint32_t cmdstat;
528 uint16_t bytes;
529 uint16_t buffer_size;
530 uint32_t buffer;
531 uint32_t next;
532 } mv88w8618_rx_desc;
533
534 typedef struct mv88w8618_eth_state {
535 qemu_irq irq;
536 uint32_t smir;
537 uint32_t icr;
538 uint32_t imr;
539 int mmio_index;
540 int vlan_header;
541 uint32_t tx_queue[2];
542 uint32_t rx_queue[4];
543 uint32_t frx_queue[4];
544 uint32_t cur_rx[4];
545 VLANClientState *vc;
546 } mv88w8618_eth_state;
547
548 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
549 {
550 cpu_to_le32s(&desc->cmdstat);
551 cpu_to_le16s(&desc->bytes);
552 cpu_to_le16s(&desc->buffer_size);
553 cpu_to_le32s(&desc->buffer);
554 cpu_to_le32s(&desc->next);
555 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
556 }
557
558 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
559 {
560 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
561 le32_to_cpus(&desc->cmdstat);
562 le16_to_cpus(&desc->bytes);
563 le16_to_cpus(&desc->buffer_size);
564 le32_to_cpus(&desc->buffer);
565 le32_to_cpus(&desc->next);
566 }
567
568 static int eth_can_receive(void *opaque)
569 {
570 return 1;
571 }
572
573 static void eth_receive(void *opaque, const uint8_t *buf, int size)
574 {
575 mv88w8618_eth_state *s = opaque;
576 uint32_t desc_addr;
577 mv88w8618_rx_desc desc;
578 int i;
579
580 for (i = 0; i < 4; i++) {
581 desc_addr = s->cur_rx[i];
582 if (!desc_addr)
583 continue;
584 do {
585 eth_rx_desc_get(desc_addr, &desc);
586 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
587 cpu_physical_memory_write(desc.buffer + s->vlan_header,
588 buf, size);
589 desc.bytes = size + s->vlan_header;
590 desc.cmdstat &= ~MP_ETH_RX_OWN;
591 s->cur_rx[i] = desc.next;
592
593 s->icr |= MP_ETH_IRQ_RX;
594 if (s->icr & s->imr)
595 qemu_irq_raise(s->irq);
596 eth_rx_desc_put(desc_addr, &desc);
597 return;
598 }
599 desc_addr = desc.next;
600 } while (desc_addr != s->rx_queue[i]);
601 }
602 }
603
604 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
605 {
606 cpu_to_le32s(&desc->cmdstat);
607 cpu_to_le16s(&desc->res);
608 cpu_to_le16s(&desc->bytes);
609 cpu_to_le32s(&desc->buffer);
610 cpu_to_le32s(&desc->next);
611 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
612 }
613
614 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
615 {
616 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
617 le32_to_cpus(&desc->cmdstat);
618 le16_to_cpus(&desc->res);
619 le16_to_cpus(&desc->bytes);
620 le32_to_cpus(&desc->buffer);
621 le32_to_cpus(&desc->next);
622 }
623
624 static void eth_send(mv88w8618_eth_state *s, int queue_index)
625 {
626 uint32_t desc_addr = s->tx_queue[queue_index];
627 mv88w8618_tx_desc desc;
628 uint8_t buf[2048];
629 int len;
630
631
632 do {
633 eth_tx_desc_get(desc_addr, &desc);
634 if (desc.cmdstat & MP_ETH_TX_OWN) {
635 len = desc.bytes;
636 if (len < 2048) {
637 cpu_physical_memory_read(desc.buffer, buf, len);
638 qemu_send_packet(s->vc, buf, len);
639 }
640 desc.cmdstat &= ~MP_ETH_TX_OWN;
641 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
642 eth_tx_desc_put(desc_addr, &desc);
643 }
644 desc_addr = desc.next;
645 } while (desc_addr != s->tx_queue[queue_index]);
646 }
647
648 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
649 {
650 mv88w8618_eth_state *s = opaque;
651
652 switch (offset) {
653 case MP_ETH_SMIR:
654 if (s->smir & MP_ETH_SMIR_OPCODE) {
655 switch (s->smir & MP_ETH_SMIR_ADDR) {
656 case MP_ETH_PHY1_BMSR:
657 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
658 MP_ETH_SMIR_RDVALID;
659 case MP_ETH_PHY1_PHYSID1:
660 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
661 case MP_ETH_PHY1_PHYSID2:
662 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
663 default:
664 return MP_ETH_SMIR_RDVALID;
665 }
666 }
667 return 0;
668
669 case MP_ETH_ICR:
670 return s->icr;
671
672 case MP_ETH_IMR:
673 return s->imr;
674
675 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
676 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
677
678 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
679 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
680
681 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
682 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
683
684 default:
685 return 0;
686 }
687 }
688
689 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
690 uint32_t value)
691 {
692 mv88w8618_eth_state *s = opaque;
693
694 switch (offset) {
695 case MP_ETH_SMIR:
696 s->smir = value;
697 break;
698
699 case MP_ETH_PCXR:
700 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
701 break;
702
703 case MP_ETH_SDCMR:
704 if (value & MP_ETH_CMD_TXHI)
705 eth_send(s, 1);
706 if (value & MP_ETH_CMD_TXLO)
707 eth_send(s, 0);
708 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
709 qemu_irq_raise(s->irq);
710 break;
711
712 case MP_ETH_ICR:
713 s->icr &= value;
714 break;
715
716 case MP_ETH_IMR:
717 s->imr = value;
718 if (s->icr & s->imr)
719 qemu_irq_raise(s->irq);
720 break;
721
722 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
723 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
724 break;
725
726 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
727 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
728 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
729 break;
730
731 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
732 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
733 break;
734 }
735 }
736
737 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
738 mv88w8618_eth_read,
739 mv88w8618_eth_read,
740 mv88w8618_eth_read
741 };
742
743 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
744 mv88w8618_eth_write,
745 mv88w8618_eth_write,
746 mv88w8618_eth_write
747 };
748
749 static void eth_cleanup(VLANClientState *vc)
750 {
751 mv88w8618_eth_state *s = vc->opaque;
752
753 cpu_unregister_io_memory(s->mmio_index);
754
755 qemu_free(s);
756 }
757
758 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
759 {
760 mv88w8618_eth_state *s;
761
762 qemu_check_nic_model(nd, "mv88w8618");
763
764 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
765 s->irq = irq;
766 s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
767 eth_receive, eth_can_receive,
768 eth_cleanup, s);
769 s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
770 mv88w8618_eth_writefn, s);
771 cpu_register_physical_memory(base, MP_ETH_SIZE, s->mmio_index);
772 }
773
774 /* LCD register offsets */
775 #define MP_LCD_IRQCTRL 0x180
776 #define MP_LCD_IRQSTAT 0x184
777 #define MP_LCD_SPICTRL 0x1ac
778 #define MP_LCD_INST 0x1bc
779 #define MP_LCD_DATA 0x1c0
780
781 /* Mode magics */
782 #define MP_LCD_SPI_DATA 0x00100011
783 #define MP_LCD_SPI_CMD 0x00104011
784 #define MP_LCD_SPI_INVALID 0x00000000
785
786 /* Commmands */
787 #define MP_LCD_INST_SETPAGE0 0xB0
788 /* ... */
789 #define MP_LCD_INST_SETPAGE7 0xB7
790
791 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
792
793 typedef struct musicpal_lcd_state {
794 uint32_t mode;
795 uint32_t irqctrl;
796 int page;
797 int page_off;
798 DisplayState *ds;
799 uint8_t video_ram[128*64/8];
800 } musicpal_lcd_state;
801
802 static uint32_t lcd_brightness;
803
804 static uint8_t scale_lcd_color(uint8_t col)
805 {
806 int tmp = col;
807
808 switch (lcd_brightness) {
809 case 0x00000007: /* 0 */
810 return 0;
811
812 case 0x00020000: /* 1 */
813 return (tmp * 1) / 7;
814
815 case 0x00020001: /* 2 */
816 return (tmp * 2) / 7;
817
818 case 0x00040000: /* 3 */
819 return (tmp * 3) / 7;
820
821 case 0x00010006: /* 4 */
822 return (tmp * 4) / 7;
823
824 case 0x00020005: /* 5 */
825 return (tmp * 5) / 7;
826
827 case 0x00040003: /* 6 */
828 return (tmp * 6) / 7;
829
830 case 0x00030004: /* 7 */
831 default:
832 return col;
833 }
834 }
835
836 #define SET_LCD_PIXEL(depth, type) \
837 static inline void glue(set_lcd_pixel, depth) \
838 (musicpal_lcd_state *s, int x, int y, type col) \
839 { \
840 int dx, dy; \
841 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
842 \
843 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
844 for (dx = 0; dx < 3; dx++, pixel++) \
845 *pixel = col; \
846 }
847 SET_LCD_PIXEL(8, uint8_t)
848 SET_LCD_PIXEL(16, uint16_t)
849 SET_LCD_PIXEL(32, uint32_t)
850
851 #include "pixel_ops.h"
852
853 static void lcd_refresh(void *opaque)
854 {
855 musicpal_lcd_state *s = opaque;
856 int x, y, col;
857
858 switch (ds_get_bits_per_pixel(s->ds)) {
859 case 0:
860 return;
861 #define LCD_REFRESH(depth, func) \
862 case depth: \
863 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
864 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
865 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
866 for (x = 0; x < 128; x++) \
867 for (y = 0; y < 64; y++) \
868 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
869 glue(set_lcd_pixel, depth)(s, x, y, col); \
870 else \
871 glue(set_lcd_pixel, depth)(s, x, y, 0); \
872 break;
873 LCD_REFRESH(8, rgb_to_pixel8)
874 LCD_REFRESH(16, rgb_to_pixel16)
875 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
876 rgb_to_pixel32bgr : rgb_to_pixel32))
877 default:
878 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
879 ds_get_bits_per_pixel(s->ds));
880 }
881
882 dpy_update(s->ds, 0, 0, 128*3, 64*3);
883 }
884
885 static void lcd_invalidate(void *opaque)
886 {
887 }
888
889 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
890 {
891 musicpal_lcd_state *s = opaque;
892
893 switch (offset) {
894 case MP_LCD_IRQCTRL:
895 return s->irqctrl;
896
897 default:
898 return 0;
899 }
900 }
901
902 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
903 uint32_t value)
904 {
905 musicpal_lcd_state *s = opaque;
906
907 switch (offset) {
908 case MP_LCD_IRQCTRL:
909 s->irqctrl = value;
910 break;
911
912 case MP_LCD_SPICTRL:
913 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
914 s->mode = value;
915 else
916 s->mode = MP_LCD_SPI_INVALID;
917 break;
918
919 case MP_LCD_INST:
920 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
921 s->page = value - MP_LCD_INST_SETPAGE0;
922 s->page_off = 0;
923 }
924 break;
925
926 case MP_LCD_DATA:
927 if (s->mode == MP_LCD_SPI_CMD) {
928 if (value >= MP_LCD_INST_SETPAGE0 &&
929 value <= MP_LCD_INST_SETPAGE7) {
930 s->page = value - MP_LCD_INST_SETPAGE0;
931 s->page_off = 0;
932 }
933 } else if (s->mode == MP_LCD_SPI_DATA) {
934 s->video_ram[s->page*128 + s->page_off] = value;
935 s->page_off = (s->page_off + 1) & 127;
936 }
937 break;
938 }
939 }
940
941 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
942 musicpal_lcd_read,
943 musicpal_lcd_read,
944 musicpal_lcd_read
945 };
946
947 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
948 musicpal_lcd_write,
949 musicpal_lcd_write,
950 musicpal_lcd_write
951 };
952
953 static void musicpal_lcd_init(void)
954 {
955 musicpal_lcd_state *s;
956 int iomemtype;
957
958 s = qemu_mallocz(sizeof(musicpal_lcd_state));
959 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
960 musicpal_lcd_writefn, s);
961 cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
962
963 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
964 NULL, NULL, s);
965 qemu_console_resize(s->ds, 128*3, 64*3);
966 }
967
968 /* PIC register offsets */
969 #define MP_PIC_STATUS 0x00
970 #define MP_PIC_ENABLE_SET 0x08
971 #define MP_PIC_ENABLE_CLR 0x0C
972
973 typedef struct mv88w8618_pic_state
974 {
975 uint32_t level;
976 uint32_t enabled;
977 qemu_irq parent_irq;
978 } mv88w8618_pic_state;
979
980 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
981 {
982 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
983 }
984
985 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
986 {
987 mv88w8618_pic_state *s = opaque;
988
989 if (level)
990 s->level |= 1 << irq;
991 else
992 s->level &= ~(1 << irq);
993 mv88w8618_pic_update(s);
994 }
995
996 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
997 {
998 mv88w8618_pic_state *s = opaque;
999
1000 switch (offset) {
1001 case MP_PIC_STATUS:
1002 return s->level & s->enabled;
1003
1004 default:
1005 return 0;
1006 }
1007 }
1008
1009 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1010 uint32_t value)
1011 {
1012 mv88w8618_pic_state *s = opaque;
1013
1014 switch (offset) {
1015 case MP_PIC_ENABLE_SET:
1016 s->enabled |= value;
1017 break;
1018
1019 case MP_PIC_ENABLE_CLR:
1020 s->enabled &= ~value;
1021 s->level &= ~value;
1022 break;
1023 }
1024 mv88w8618_pic_update(s);
1025 }
1026
1027 static void mv88w8618_pic_reset(void *opaque)
1028 {
1029 mv88w8618_pic_state *s = opaque;
1030
1031 s->level = 0;
1032 s->enabled = 0;
1033 }
1034
1035 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1036 mv88w8618_pic_read,
1037 mv88w8618_pic_read,
1038 mv88w8618_pic_read
1039 };
1040
1041 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1042 mv88w8618_pic_write,
1043 mv88w8618_pic_write,
1044 mv88w8618_pic_write
1045 };
1046
1047 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1048 {
1049 mv88w8618_pic_state *s;
1050 int iomemtype;
1051 qemu_irq *qi;
1052
1053 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1054 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1055 s->parent_irq = parent_irq;
1056 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1057 mv88w8618_pic_writefn, s);
1058 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1059
1060 qemu_register_reset(mv88w8618_pic_reset, s);
1061
1062 return qi;
1063 }
1064
1065 /* PIT register offsets */
1066 #define MP_PIT_TIMER1_LENGTH 0x00
1067 /* ... */
1068 #define MP_PIT_TIMER4_LENGTH 0x0C
1069 #define MP_PIT_CONTROL 0x10
1070 #define MP_PIT_TIMER1_VALUE 0x14
1071 /* ... */
1072 #define MP_PIT_TIMER4_VALUE 0x20
1073 #define MP_BOARD_RESET 0x34
1074
1075 /* Magic board reset value (probably some watchdog behind it) */
1076 #define MP_BOARD_RESET_MAGIC 0x10000
1077
1078 typedef struct mv88w8618_timer_state {
1079 ptimer_state *timer;
1080 uint32_t limit;
1081 int freq;
1082 qemu_irq irq;
1083 } mv88w8618_timer_state;
1084
1085 typedef struct mv88w8618_pit_state {
1086 void *timer[4];
1087 uint32_t control;
1088 } mv88w8618_pit_state;
1089
1090 static void mv88w8618_timer_tick(void *opaque)
1091 {
1092 mv88w8618_timer_state *s = opaque;
1093
1094 qemu_irq_raise(s->irq);
1095 }
1096
1097 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1098 {
1099 mv88w8618_timer_state *s;
1100 QEMUBH *bh;
1101
1102 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1103 s->irq = irq;
1104 s->freq = freq;
1105
1106 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1107 s->timer = ptimer_init(bh);
1108
1109 return s;
1110 }
1111
1112 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1113 {
1114 mv88w8618_pit_state *s = opaque;
1115 mv88w8618_timer_state *t;
1116
1117 switch (offset) {
1118 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1119 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1120 return ptimer_get_count(t->timer);
1121
1122 default:
1123 return 0;
1124 }
1125 }
1126
1127 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1128 uint32_t value)
1129 {
1130 mv88w8618_pit_state *s = opaque;
1131 mv88w8618_timer_state *t;
1132 int i;
1133
1134 switch (offset) {
1135 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1136 t = s->timer[offset >> 2];
1137 t->limit = value;
1138 ptimer_set_limit(t->timer, t->limit, 1);
1139 break;
1140
1141 case MP_PIT_CONTROL:
1142 for (i = 0; i < 4; i++) {
1143 if (value & 0xf) {
1144 t = s->timer[i];
1145 ptimer_set_limit(t->timer, t->limit, 0);
1146 ptimer_set_freq(t->timer, t->freq);
1147 ptimer_run(t->timer, 0);
1148 }
1149 value >>= 4;
1150 }
1151 break;
1152
1153 case MP_BOARD_RESET:
1154 if (value == MP_BOARD_RESET_MAGIC)
1155 qemu_system_reset_request();
1156 break;
1157 }
1158 }
1159
1160 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1161 mv88w8618_pit_read,
1162 mv88w8618_pit_read,
1163 mv88w8618_pit_read
1164 };
1165
1166 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1167 mv88w8618_pit_write,
1168 mv88w8618_pit_write,
1169 mv88w8618_pit_write
1170 };
1171
1172 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1173 {
1174 int iomemtype;
1175 mv88w8618_pit_state *s;
1176
1177 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1178
1179 /* Letting them all run at 1 MHz is likely just a pragmatic
1180 * simplification. */
1181 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1182 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1183 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1184 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1185
1186 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1187 mv88w8618_pit_writefn, s);
1188 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1189 }
1190
1191 /* Flash config register offsets */
1192 #define MP_FLASHCFG_CFGR0 0x04
1193
1194 typedef struct mv88w8618_flashcfg_state {
1195 uint32_t cfgr0;
1196 } mv88w8618_flashcfg_state;
1197
1198 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1199 target_phys_addr_t offset)
1200 {
1201 mv88w8618_flashcfg_state *s = opaque;
1202
1203 switch (offset) {
1204 case MP_FLASHCFG_CFGR0:
1205 return s->cfgr0;
1206
1207 default:
1208 return 0;
1209 }
1210 }
1211
1212 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1213 uint32_t value)
1214 {
1215 mv88w8618_flashcfg_state *s = opaque;
1216
1217 switch (offset) {
1218 case MP_FLASHCFG_CFGR0:
1219 s->cfgr0 = value;
1220 break;
1221 }
1222 }
1223
1224 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1225 mv88w8618_flashcfg_read,
1226 mv88w8618_flashcfg_read,
1227 mv88w8618_flashcfg_read
1228 };
1229
1230 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1231 mv88w8618_flashcfg_write,
1232 mv88w8618_flashcfg_write,
1233 mv88w8618_flashcfg_write
1234 };
1235
1236 static void mv88w8618_flashcfg_init(uint32_t base)
1237 {
1238 int iomemtype;
1239 mv88w8618_flashcfg_state *s;
1240
1241 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1242
1243 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1244 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1245 mv88w8618_flashcfg_writefn, s);
1246 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1247 }
1248
1249 /* Misc register offsets */
1250 #define MP_MISC_BOARD_REVISION 0x18
1251
1252 #define MP_BOARD_REVISION 0x31
1253
1254 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1255 {
1256 switch (offset) {
1257 case MP_MISC_BOARD_REVISION:
1258 return MP_BOARD_REVISION;
1259
1260 default:
1261 return 0;
1262 }
1263 }
1264
1265 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1266 uint32_t value)
1267 {
1268 }
1269
1270 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1271 musicpal_misc_read,
1272 musicpal_misc_read,
1273 musicpal_misc_read,
1274 };
1275
1276 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1277 musicpal_misc_write,
1278 musicpal_misc_write,
1279 musicpal_misc_write,
1280 };
1281
1282 static void musicpal_misc_init(void)
1283 {
1284 int iomemtype;
1285
1286 iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1287 musicpal_misc_writefn, NULL);
1288 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1289 }
1290
1291 /* WLAN register offsets */
1292 #define MP_WLAN_MAGIC1 0x11c
1293 #define MP_WLAN_MAGIC2 0x124
1294
1295 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1296 {
1297 switch (offset) {
1298 /* Workaround to allow loading the binary-only wlandrv.ko crap
1299 * from the original Freecom firmware. */
1300 case MP_WLAN_MAGIC1:
1301 return ~3;
1302 case MP_WLAN_MAGIC2:
1303 return -1;
1304
1305 default:
1306 return 0;
1307 }
1308 }
1309
1310 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1311 uint32_t value)
1312 {
1313 }
1314
1315 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1316 mv88w8618_wlan_read,
1317 mv88w8618_wlan_read,
1318 mv88w8618_wlan_read,
1319 };
1320
1321 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1322 mv88w8618_wlan_write,
1323 mv88w8618_wlan_write,
1324 mv88w8618_wlan_write,
1325 };
1326
1327 static void mv88w8618_wlan_init(uint32_t base)
1328 {
1329 int iomemtype;
1330
1331 iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1332 mv88w8618_wlan_writefn, NULL);
1333 cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1334 }
1335
1336 /* GPIO register offsets */
1337 #define MP_GPIO_OE_LO 0x008
1338 #define MP_GPIO_OUT_LO 0x00c
1339 #define MP_GPIO_IN_LO 0x010
1340 #define MP_GPIO_ISR_LO 0x020
1341 #define MP_GPIO_OE_HI 0x508
1342 #define MP_GPIO_OUT_HI 0x50c
1343 #define MP_GPIO_IN_HI 0x510
1344 #define MP_GPIO_ISR_HI 0x520
1345
1346 /* GPIO bits & masks */
1347 #define MP_GPIO_WHEEL_VOL (1 << 8)
1348 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1349 #define MP_GPIO_WHEEL_NAV (1 << 10)
1350 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1351 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1352 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1353 #define MP_GPIO_BTN_MENU (1 << 20)
1354 #define MP_GPIO_BTN_VOLUME (1 << 21)
1355 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1356 #define MP_GPIO_I2C_DATA_BIT 29
1357 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1358 #define MP_GPIO_I2C_CLOCK_BIT 30
1359
1360 /* LCD brightness bits in GPIO_OE_HI */
1361 #define MP_OE_LCD_BRIGHTNESS 0x0007
1362
1363 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1364 {
1365 switch (offset) {
1366 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1367 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1368
1369 case MP_GPIO_OUT_LO:
1370 return gpio_out_state & 0xFFFF;
1371 case MP_GPIO_OUT_HI:
1372 return gpio_out_state >> 16;
1373
1374 case MP_GPIO_IN_LO:
1375 return gpio_in_state & 0xFFFF;
1376 case MP_GPIO_IN_HI:
1377 /* Update received I2C data */
1378 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1379 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1380 return gpio_in_state >> 16;
1381
1382 case MP_GPIO_ISR_LO:
1383 return gpio_isr & 0xFFFF;
1384 case MP_GPIO_ISR_HI:
1385 return gpio_isr >> 16;
1386
1387 default:
1388 return 0;
1389 }
1390 }
1391
1392 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1393 uint32_t value)
1394 {
1395 switch (offset) {
1396 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1397 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1398 (value & MP_OE_LCD_BRIGHTNESS);
1399 break;
1400
1401 case MP_GPIO_OUT_LO:
1402 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1403 break;
1404 case MP_GPIO_OUT_HI:
1405 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1406 lcd_brightness = (lcd_brightness & 0xFFFF) |
1407 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1408 i2c_state_update(mixer_i2c,
1409 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1410 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1411 break;
1412
1413 }
1414 }
1415
1416 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1417 musicpal_gpio_read,
1418 musicpal_gpio_read,
1419 musicpal_gpio_read,
1420 };
1421
1422 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1423 musicpal_gpio_write,
1424 musicpal_gpio_write,
1425 musicpal_gpio_write,
1426 };
1427
1428 static void musicpal_gpio_init(void)
1429 {
1430 int iomemtype;
1431
1432 iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1433 musicpal_gpio_writefn, NULL);
1434 cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1435 }
1436
1437 /* Keyboard codes & masks */
1438 #define KEY_RELEASED 0x80
1439 #define KEY_CODE 0x7f
1440
1441 #define KEYCODE_TAB 0x0f
1442 #define KEYCODE_ENTER 0x1c
1443 #define KEYCODE_F 0x21
1444 #define KEYCODE_M 0x32
1445
1446 #define KEYCODE_EXTENDED 0xe0
1447 #define KEYCODE_UP 0x48
1448 #define KEYCODE_DOWN 0x50
1449 #define KEYCODE_LEFT 0x4b
1450 #define KEYCODE_RIGHT 0x4d
1451
1452 static void musicpal_key_event(void *opaque, int keycode)
1453 {
1454 qemu_irq irq = opaque;
1455 uint32_t event = 0;
1456 static int kbd_extended;
1457
1458 if (keycode == KEYCODE_EXTENDED) {
1459 kbd_extended = 1;
1460 return;
1461 }
1462
1463 if (kbd_extended)
1464 switch (keycode & KEY_CODE) {
1465 case KEYCODE_UP:
1466 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1467 break;
1468
1469 case KEYCODE_DOWN:
1470 event = MP_GPIO_WHEEL_NAV;
1471 break;
1472
1473 case KEYCODE_LEFT:
1474 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1475 break;
1476
1477 case KEYCODE_RIGHT:
1478 event = MP_GPIO_WHEEL_VOL;
1479 break;
1480 }
1481 else {
1482 switch (keycode & KEY_CODE) {
1483 case KEYCODE_F:
1484 event = MP_GPIO_BTN_FAVORITS;
1485 break;
1486
1487 case KEYCODE_TAB:
1488 event = MP_GPIO_BTN_VOLUME;
1489 break;
1490
1491 case KEYCODE_ENTER:
1492 event = MP_GPIO_BTN_NAVIGATION;
1493 break;
1494
1495 case KEYCODE_M:
1496 event = MP_GPIO_BTN_MENU;
1497 break;
1498 }
1499 /* Do not repeat already pressed buttons */
1500 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1501 event = 0;
1502 }
1503
1504 if (event) {
1505 if (keycode & KEY_RELEASED) {
1506 gpio_in_state |= event;
1507 } else {
1508 gpio_in_state &= ~event;
1509 gpio_isr = event;
1510 qemu_irq_raise(irq);
1511 }
1512 }
1513
1514 kbd_extended = 0;
1515 }
1516
1517 static struct arm_boot_info musicpal_binfo = {
1518 .loader_start = 0x0,
1519 .board_id = 0x20e,
1520 };
1521
1522 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1523 const char *boot_device,
1524 const char *kernel_filename, const char *kernel_cmdline,
1525 const char *initrd_filename, const char *cpu_model)
1526 {
1527 CPUState *env;
1528 qemu_irq *pic;
1529 int index;
1530 unsigned long flash_size;
1531
1532 if (!cpu_model)
1533 cpu_model = "arm926";
1534
1535 env = cpu_init(cpu_model);
1536 if (!env) {
1537 fprintf(stderr, "Unable to find CPU definition\n");
1538 exit(1);
1539 }
1540 pic = arm_pic_init_cpu(env);
1541
1542 /* For now we use a fixed - the original - RAM size */
1543 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1544 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1545
1546 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1547 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1548
1549 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1550 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1551
1552 if (serial_hds[0])
1553 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1554 serial_hds[0], 1);
1555 if (serial_hds[1])
1556 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1557 serial_hds[1], 1);
1558
1559 /* Register flash */
1560 index = drive_get_index(IF_PFLASH, 0, 0);
1561 if (index != -1) {
1562 flash_size = bdrv_getlength(drives_table[index].bdrv);
1563 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1564 flash_size != 32*1024*1024) {
1565 fprintf(stderr, "Invalid flash image size\n");
1566 exit(1);
1567 }
1568
1569 /*
1570 * The original U-Boot accesses the flash at 0xFE000000 instead of
1571 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1572 * image is smaller than 32 MB.
1573 */
1574 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1575 drives_table[index].bdrv, 0x10000,
1576 (flash_size + 0xffff) >> 16,
1577 MP_FLASH_SIZE_MAX / flash_size,
1578 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1579 0x5555, 0x2AAA);
1580 }
1581 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1582
1583 musicpal_lcd_init();
1584
1585 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1586
1587 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1588
1589 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1590
1591 mv88w8618_wlan_init(MP_WLAN_BASE);
1592
1593 musicpal_misc_init();
1594 musicpal_gpio_init();
1595
1596 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1597 musicpal_binfo.kernel_filename = kernel_filename;
1598 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1599 musicpal_binfo.initrd_filename = initrd_filename;
1600 arm_load_kernel(env, &musicpal_binfo);
1601 }
1602
1603 QEMUMachine musicpal_machine = {
1604 .name = "musicpal",
1605 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1606 .init = musicpal_init,
1607 };