]> git.proxmox.com Git - mirror_qemu.git/blob - hw/musicpal.c
Avoid arithmetics on void * in MusicPal audio code (Jan Kiszka).
[mirror_qemu.git] / hw / musicpal.c
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9 #include "hw.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
22
23 #define MP_ETH_BASE 0x80008000
24 #define MP_ETH_SIZE 0x00001000
25
26 #define MP_UART1_BASE 0x8000C840
27 #define MP_UART2_BASE 0x8000C940
28
29 #define MP_FLASHCFG_BASE 0x90006000
30 #define MP_FLASHCFG_SIZE 0x00001000
31
32 #define MP_AUDIO_BASE 0x90007000
33 #define MP_AUDIO_SIZE 0x00001000
34
35 #define MP_PIC_BASE 0x90008000
36 #define MP_PIC_SIZE 0x00001000
37
38 #define MP_PIT_BASE 0x90009000
39 #define MP_PIT_SIZE 0x00001000
40
41 #define MP_LCD_BASE 0x9000c000
42 #define MP_LCD_SIZE 0x00001000
43
44 #define MP_SRAM_BASE 0xC0000000
45 #define MP_SRAM_SIZE 0x00020000
46
47 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
48 #define MP_FLASH_SIZE_MAX 32*1024*1024
49
50 #define MP_TIMER1_IRQ 4
51 /* ... */
52 #define MP_TIMER4_IRQ 7
53 #define MP_EHCI_IRQ 8
54 #define MP_ETH_IRQ 9
55 #define MP_UART1_IRQ 11
56 #define MP_UART2_IRQ 11
57 #define MP_GPIO_IRQ 12
58 #define MP_RTC_IRQ 28
59 #define MP_AUDIO_IRQ 30
60
61 static uint32_t gpio_in_state = 0xffffffff;
62 static uint32_t gpio_out_state;
63 static ram_addr_t sram_off;
64
65 /* Address conversion helpers */
66 static void *target2host_addr(uint32_t addr)
67 {
68 if (addr < MP_SRAM_BASE) {
69 if (addr >= MP_RAM_DEFAULT_SIZE)
70 return NULL;
71 return (void *)(phys_ram_base + addr);
72 } else {
73 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74 return NULL;
75 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
76 }
77 }
78
79 static uint32_t host2target_addr(void *addr)
80 {
81 if (addr < ((void *)phys_ram_base) + sram_off)
82 return (unsigned long)addr - (unsigned long)phys_ram_base;
83 else
84 return (unsigned long)addr - (unsigned long)phys_ram_base -
85 sram_off + MP_SRAM_BASE;
86 }
87
88
89 typedef enum i2c_state {
90 STOPPED = 0,
91 INITIALIZING,
92 SENDING_BIT7,
93 SENDING_BIT6,
94 SENDING_BIT5,
95 SENDING_BIT4,
96 SENDING_BIT3,
97 SENDING_BIT2,
98 SENDING_BIT1,
99 SENDING_BIT0,
100 WAITING_FOR_ACK,
101 RECEIVING_BIT7,
102 RECEIVING_BIT6,
103 RECEIVING_BIT5,
104 RECEIVING_BIT4,
105 RECEIVING_BIT3,
106 RECEIVING_BIT2,
107 RECEIVING_BIT1,
108 RECEIVING_BIT0,
109 SENDING_ACK
110 } i2c_state;
111
112 typedef struct i2c_interface {
113 i2c_bus *bus;
114 i2c_state state;
115 int last_data;
116 int last_clock;
117 uint8_t buffer;
118 int current_addr;
119 } i2c_interface;
120
121 static void i2c_enter_stop(i2c_interface *i2c)
122 {
123 if (i2c->current_addr >= 0)
124 i2c_end_transfer(i2c->bus);
125 i2c->current_addr = -1;
126 i2c->state = STOPPED;
127 }
128
129 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
130 {
131 if (!i2c)
132 return;
133
134 switch (i2c->state) {
135 case STOPPED:
136 if (data == 0 && i2c->last_data == 1 && clock == 1)
137 i2c->state = INITIALIZING;
138 break;
139
140 case INITIALIZING:
141 if (clock == 0 && i2c->last_clock == 1 && data == 0)
142 i2c->state = SENDING_BIT7;
143 else
144 i2c_enter_stop(i2c);
145 break;
146
147 case SENDING_BIT7 ... SENDING_BIT0:
148 if (clock == 0 && i2c->last_clock == 1) {
149 i2c->buffer = (i2c->buffer << 1) | data;
150 i2c->state++; /* will end up in WAITING_FOR_ACK */
151 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152 i2c_enter_stop(i2c);
153 break;
154
155 case WAITING_FOR_ACK:
156 if (clock == 0 && i2c->last_clock == 1) {
157 if (i2c->current_addr < 0) {
158 i2c->current_addr = i2c->buffer;
159 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160 i2c->buffer & 1);
161 } else
162 i2c_send(i2c->bus, i2c->buffer);
163 if (i2c->current_addr & 1) {
164 i2c->state = RECEIVING_BIT7;
165 i2c->buffer = i2c_recv(i2c->bus);
166 } else
167 i2c->state = SENDING_BIT7;
168 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169 i2c_enter_stop(i2c);
170 break;
171
172 case RECEIVING_BIT7 ... RECEIVING_BIT0:
173 if (clock == 0 && i2c->last_clock == 1) {
174 i2c->state++; /* will end up in SENDING_ACK */
175 i2c->buffer <<= 1;
176 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177 i2c_enter_stop(i2c);
178 break;
179
180 case SENDING_ACK:
181 if (clock == 0 && i2c->last_clock == 1) {
182 i2c->state = RECEIVING_BIT7;
183 if (data == 0)
184 i2c->buffer = i2c_recv(i2c->bus);
185 else
186 i2c_nack(i2c->bus);
187 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188 i2c_enter_stop(i2c);
189 break;
190 }
191
192 i2c->last_data = data;
193 i2c->last_clock = clock;
194 }
195
196 static int i2c_get_data(i2c_interface *i2c)
197 {
198 if (!i2c)
199 return 0;
200
201 switch (i2c->state) {
202 case RECEIVING_BIT7 ... RECEIVING_BIT0:
203 return (i2c->buffer >> 7);
204
205 case WAITING_FOR_ACK:
206 default:
207 return 0;
208 }
209 }
210
211 static i2c_interface *mixer_i2c;
212
213 #ifdef HAS_AUDIO
214
215 /* Audio register offsets */
216 #define MP_AUDIO_PLAYBACK_MODE 0x00
217 #define MP_AUDIO_CLOCK_DIV 0x18
218 #define MP_AUDIO_IRQ_STATUS 0x20
219 #define MP_AUDIO_IRQ_ENABLE 0x24
220 #define MP_AUDIO_TX_START_LO 0x28
221 #define MP_AUDIO_TX_THRESHOLD 0x2C
222 #define MP_AUDIO_TX_STATUS 0x38
223 #define MP_AUDIO_TX_START_HI 0x40
224
225 /* Status register and IRQ enable bits */
226 #define MP_AUDIO_TX_HALF (1 << 6)
227 #define MP_AUDIO_TX_FULL (1 << 7)
228
229 /* Playback mode bits */
230 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
231 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
232 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
233 #define MP_AUDIO_MONO (1 << 14)
234
235 /* Wolfson 8750 I2C address */
236 #define MP_WM_ADDR 0x34
237
238 const char audio_name[] = "mv88w8618";
239
240 typedef struct musicpal_audio_state {
241 uint32_t base;
242 qemu_irq irq;
243 uint32_t playback_mode;
244 uint32_t status;
245 uint32_t irq_enable;
246 unsigned long phys_buf;
247 int8_t *target_buffer;
248 unsigned int threshold;
249 unsigned int play_pos;
250 unsigned int last_free;
251 uint32_t clock_div;
252 i2c_slave *wm;
253 } musicpal_audio_state;
254
255 static void audio_callback(void *opaque, int free_out, int free_in)
256 {
257 musicpal_audio_state *s = opaque;
258 int16_t *codec_buffer;
259 int8_t *mem_buffer;
260 int pos, block_size;
261
262 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
263 return;
264
265 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
266 free_out <<= 1;
267
268 if (!(s->playback_mode & MP_AUDIO_MONO))
269 free_out <<= 1;
270
271 block_size = s->threshold/2;
272 if (free_out - s->last_free < block_size)
273 return;
274
275 mem_buffer = s->target_buffer + s->play_pos;
276 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
277 if (s->playback_mode & MP_AUDIO_MONO) {
278 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
279 for (pos = 0; pos < block_size; pos += 2) {
280 *codec_buffer++ = *(int16_t *)mem_buffer;
281 *codec_buffer++ = *(int16_t *)mem_buffer;
282 mem_buffer += 2;
283 }
284 } else
285 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
286 (uint32_t *)mem_buffer, block_size);
287 } else {
288 if (s->playback_mode & MP_AUDIO_MONO) {
289 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
290 for (pos = 0; pos < block_size; pos++) {
291 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
292 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
293 }
294 } else {
295 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
296 for (pos = 0; pos < block_size; pos += 2) {
297 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
298 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
299 }
300 }
301 }
302 wm8750_dac_commit(s->wm);
303
304 s->last_free = free_out - block_size;
305
306 if (s->play_pos == 0) {
307 s->status |= MP_AUDIO_TX_HALF;
308 s->play_pos = block_size;
309 } else {
310 s->status |= MP_AUDIO_TX_FULL;
311 s->play_pos = 0;
312 }
313
314 if (s->status & s->irq_enable)
315 qemu_irq_raise(s->irq);
316 }
317
318 static void musicpal_audio_clock_update(musicpal_audio_state *s)
319 {
320 int rate;
321
322 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
323 rate = 24576000 / 64; /* 24.576MHz */
324 else
325 rate = 11289600 / 64; /* 11.2896MHz */
326
327 rate /= ((s->clock_div >> 8) & 0xff) + 1;
328
329 wm8750_set_bclk_in(s->wm, rate);
330 }
331
332 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
333 {
334 musicpal_audio_state *s = opaque;
335
336 offset -= s->base;
337 switch (offset) {
338 case MP_AUDIO_PLAYBACK_MODE:
339 return s->playback_mode;
340
341 case MP_AUDIO_CLOCK_DIV:
342 return s->clock_div;
343
344 case MP_AUDIO_IRQ_STATUS:
345 return s->status;
346
347 case MP_AUDIO_IRQ_ENABLE:
348 return s->irq_enable;
349
350 case MP_AUDIO_TX_STATUS:
351 return s->play_pos >> 2;
352
353 default:
354 return 0;
355 }
356 }
357
358 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
359 uint32_t value)
360 {
361 musicpal_audio_state *s = opaque;
362
363 offset -= s->base;
364 switch (offset) {
365 case MP_AUDIO_PLAYBACK_MODE:
366 if (value & MP_AUDIO_PLAYBACK_EN &&
367 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
368 s->status = 0;
369 s->last_free = 0;
370 s->play_pos = 0;
371 }
372 s->playback_mode = value;
373 musicpal_audio_clock_update(s);
374 break;
375
376 case MP_AUDIO_CLOCK_DIV:
377 s->clock_div = value;
378 s->last_free = 0;
379 s->play_pos = 0;
380 musicpal_audio_clock_update(s);
381 break;
382
383 case MP_AUDIO_IRQ_STATUS:
384 s->status &= ~value;
385 break;
386
387 case MP_AUDIO_IRQ_ENABLE:
388 s->irq_enable = value;
389 if (s->status & s->irq_enable)
390 qemu_irq_raise(s->irq);
391 break;
392
393 case MP_AUDIO_TX_START_LO:
394 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
395 s->target_buffer = target2host_addr(s->phys_buf);
396 s->play_pos = 0;
397 s->last_free = 0;
398 break;
399
400 case MP_AUDIO_TX_THRESHOLD:
401 s->threshold = (value + 1) * 4;
402 break;
403
404 case MP_AUDIO_TX_START_HI:
405 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
406 s->target_buffer = target2host_addr(s->phys_buf);
407 s->play_pos = 0;
408 s->last_free = 0;
409 break;
410 }
411 }
412
413 static void musicpal_audio_reset(void *opaque)
414 {
415 musicpal_audio_state *s = opaque;
416
417 s->playback_mode = 0;
418 s->status = 0;
419 s->irq_enable = 0;
420 }
421
422 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
423 musicpal_audio_read,
424 musicpal_audio_read,
425 musicpal_audio_read
426 };
427
428 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
429 musicpal_audio_write,
430 musicpal_audio_write,
431 musicpal_audio_write
432 };
433
434 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
435 {
436 AudioState *audio;
437 musicpal_audio_state *s;
438 i2c_interface *i2c;
439 int iomemtype;
440
441 audio = AUD_init();
442 if (!audio) {
443 AUD_log(audio_name, "No audio state\n");
444 return NULL;
445 }
446
447 s = qemu_mallocz(sizeof(musicpal_audio_state));
448 if (!s)
449 return NULL;
450 s->base = base;
451 s->irq = irq;
452
453 i2c = qemu_mallocz(sizeof(i2c_interface));
454 if (!i2c)
455 return NULL;
456 i2c->bus = i2c_init_bus();
457 i2c->current_addr = -1;
458
459 s->wm = wm8750_init(i2c->bus, audio);
460 if (!s->wm)
461 return NULL;
462 i2c_set_slave_address(s->wm, MP_WM_ADDR);
463 wm8750_data_req_set(s->wm, audio_callback, s);
464
465 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
466 musicpal_audio_writefn, s);
467 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
468
469 qemu_register_reset(musicpal_audio_reset, s);
470
471 return i2c;
472 }
473 #else /* !HAS_AUDIO */
474 static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
475 {
476 return NULL;
477 }
478 #endif /* !HAS_AUDIO */
479
480 /* Ethernet register offsets */
481 #define MP_ETH_SMIR 0x010
482 #define MP_ETH_PCXR 0x408
483 #define MP_ETH_SDCMR 0x448
484 #define MP_ETH_ICR 0x450
485 #define MP_ETH_IMR 0x458
486 #define MP_ETH_FRDP0 0x480
487 #define MP_ETH_FRDP1 0x484
488 #define MP_ETH_FRDP2 0x488
489 #define MP_ETH_FRDP3 0x48C
490 #define MP_ETH_CRDP0 0x4A0
491 #define MP_ETH_CRDP1 0x4A4
492 #define MP_ETH_CRDP2 0x4A8
493 #define MP_ETH_CRDP3 0x4AC
494 #define MP_ETH_CTDP0 0x4E0
495 #define MP_ETH_CTDP1 0x4E4
496 #define MP_ETH_CTDP2 0x4E8
497 #define MP_ETH_CTDP3 0x4EC
498
499 /* MII PHY access */
500 #define MP_ETH_SMIR_DATA 0x0000FFFF
501 #define MP_ETH_SMIR_ADDR 0x03FF0000
502 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
503 #define MP_ETH_SMIR_RDVALID (1 << 27)
504
505 /* PHY registers */
506 #define MP_ETH_PHY1_BMSR 0x00210000
507 #define MP_ETH_PHY1_PHYSID1 0x00410000
508 #define MP_ETH_PHY1_PHYSID2 0x00610000
509
510 #define MP_PHY_BMSR_LINK 0x0004
511 #define MP_PHY_BMSR_AUTONEG 0x0008
512
513 #define MP_PHY_88E3015 0x01410E20
514
515 /* TX descriptor status */
516 #define MP_ETH_TX_OWN (1 << 31)
517
518 /* RX descriptor status */
519 #define MP_ETH_RX_OWN (1 << 31)
520
521 /* Interrupt cause/mask bits */
522 #define MP_ETH_IRQ_RX_BIT 0
523 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
524 #define MP_ETH_IRQ_TXHI_BIT 2
525 #define MP_ETH_IRQ_TXLO_BIT 3
526
527 /* Port config bits */
528 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
529
530 /* SDMA command bits */
531 #define MP_ETH_CMD_TXHI (1 << 23)
532 #define MP_ETH_CMD_TXLO (1 << 22)
533
534 typedef struct mv88w8618_tx_desc {
535 uint32_t cmdstat;
536 uint16_t res;
537 uint16_t bytes;
538 uint32_t buffer;
539 uint32_t next;
540 } mv88w8618_tx_desc;
541
542 typedef struct mv88w8618_rx_desc {
543 uint32_t cmdstat;
544 uint16_t bytes;
545 uint16_t buffer_size;
546 uint32_t buffer;
547 uint32_t next;
548 } mv88w8618_rx_desc;
549
550 typedef struct mv88w8618_eth_state {
551 uint32_t base;
552 qemu_irq irq;
553 uint32_t smir;
554 uint32_t icr;
555 uint32_t imr;
556 int vlan_header;
557 mv88w8618_tx_desc *tx_queue[2];
558 mv88w8618_rx_desc *rx_queue[4];
559 mv88w8618_rx_desc *frx_queue[4];
560 mv88w8618_rx_desc *cur_rx[4];
561 VLANClientState *vc;
562 } mv88w8618_eth_state;
563
564 static int eth_can_receive(void *opaque)
565 {
566 return 1;
567 }
568
569 static void eth_receive(void *opaque, const uint8_t *buf, int size)
570 {
571 mv88w8618_eth_state *s = opaque;
572 mv88w8618_rx_desc *desc;
573 int i;
574
575 for (i = 0; i < 4; i++) {
576 desc = s->cur_rx[i];
577 if (!desc)
578 continue;
579 do {
580 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
581 le16_to_cpu(desc->buffer_size) >= size) {
582 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
583 s->vlan_header),
584 buf, size);
585 desc->bytes = cpu_to_le16(size + s->vlan_header);
586 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
587 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
588
589 s->icr |= MP_ETH_IRQ_RX;
590 if (s->icr & s->imr)
591 qemu_irq_raise(s->irq);
592 return;
593 }
594 desc = target2host_addr(le32_to_cpu(desc->next));
595 } while (desc != s->rx_queue[i]);
596 }
597 }
598
599 static void eth_send(mv88w8618_eth_state *s, int queue_index)
600 {
601 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
602
603 do {
604 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
605 qemu_send_packet(s->vc,
606 target2host_addr(le32_to_cpu(desc->buffer)),
607 le16_to_cpu(desc->bytes));
608 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
609 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
610 }
611 desc = target2host_addr(le32_to_cpu(desc->next));
612 } while (desc != s->tx_queue[queue_index]);
613 }
614
615 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
616 {
617 mv88w8618_eth_state *s = opaque;
618
619 offset -= s->base;
620 switch (offset) {
621 case MP_ETH_SMIR:
622 if (s->smir & MP_ETH_SMIR_OPCODE) {
623 switch (s->smir & MP_ETH_SMIR_ADDR) {
624 case MP_ETH_PHY1_BMSR:
625 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
626 MP_ETH_SMIR_RDVALID;
627 case MP_ETH_PHY1_PHYSID1:
628 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
629 case MP_ETH_PHY1_PHYSID2:
630 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
631 default:
632 return MP_ETH_SMIR_RDVALID;
633 }
634 }
635 return 0;
636
637 case MP_ETH_ICR:
638 return s->icr;
639
640 case MP_ETH_IMR:
641 return s->imr;
642
643 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
644 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
645
646 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
647 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
648
649 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
650 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
651
652 default:
653 return 0;
654 }
655 }
656
657 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
658 uint32_t value)
659 {
660 mv88w8618_eth_state *s = opaque;
661
662 offset -= s->base;
663 switch (offset) {
664 case MP_ETH_SMIR:
665 s->smir = value;
666 break;
667
668 case MP_ETH_PCXR:
669 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
670 break;
671
672 case MP_ETH_SDCMR:
673 if (value & MP_ETH_CMD_TXHI)
674 eth_send(s, 1);
675 if (value & MP_ETH_CMD_TXLO)
676 eth_send(s, 0);
677 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
678 qemu_irq_raise(s->irq);
679 break;
680
681 case MP_ETH_ICR:
682 s->icr &= value;
683 break;
684
685 case MP_ETH_IMR:
686 s->imr = value;
687 if (s->icr & s->imr)
688 qemu_irq_raise(s->irq);
689 break;
690
691 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
692 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
693 break;
694
695 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
696 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
697 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
698 break;
699
700 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
701 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
702 break;
703 }
704 }
705
706 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
707 mv88w8618_eth_read,
708 mv88w8618_eth_read,
709 mv88w8618_eth_read
710 };
711
712 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
713 mv88w8618_eth_write,
714 mv88w8618_eth_write,
715 mv88w8618_eth_write
716 };
717
718 static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
719 {
720 mv88w8618_eth_state *s;
721 int iomemtype;
722
723 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
724 if (!s)
725 return;
726 s->base = base;
727 s->irq = irq;
728 s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
729 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
730 mv88w8618_eth_writefn, s);
731 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
732 }
733
734 /* LCD register offsets */
735 #define MP_LCD_IRQCTRL 0x180
736 #define MP_LCD_IRQSTAT 0x184
737 #define MP_LCD_SPICTRL 0x1ac
738 #define MP_LCD_INST 0x1bc
739 #define MP_LCD_DATA 0x1c0
740
741 /* Mode magics */
742 #define MP_LCD_SPI_DATA 0x00100011
743 #define MP_LCD_SPI_CMD 0x00104011
744 #define MP_LCD_SPI_INVALID 0x00000000
745
746 /* Commmands */
747 #define MP_LCD_INST_SETPAGE0 0xB0
748 /* ... */
749 #define MP_LCD_INST_SETPAGE7 0xB7
750
751 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
752
753 typedef struct musicpal_lcd_state {
754 uint32_t base;
755 uint32_t mode;
756 uint32_t irqctrl;
757 int page;
758 int page_off;
759 DisplayState *ds;
760 uint8_t video_ram[128*64/8];
761 } musicpal_lcd_state;
762
763 static uint32_t lcd_brightness;
764
765 static uint8_t scale_lcd_color(uint8_t col)
766 {
767 int tmp = col;
768
769 switch (lcd_brightness) {
770 case 0x00000007: /* 0 */
771 return 0;
772
773 case 0x00020000: /* 1 */
774 return (tmp * 1) / 7;
775
776 case 0x00020001: /* 2 */
777 return (tmp * 2) / 7;
778
779 case 0x00040000: /* 3 */
780 return (tmp * 3) / 7;
781
782 case 0x00010006: /* 4 */
783 return (tmp * 4) / 7;
784
785 case 0x00020005: /* 5 */
786 return (tmp * 5) / 7;
787
788 case 0x00040003: /* 6 */
789 return (tmp * 6) / 7;
790
791 case 0x00030004: /* 7 */
792 default:
793 return col;
794 }
795 }
796
797 #define SET_LCD_PIXEL(depth, type) \
798 static inline void glue(set_lcd_pixel, depth) \
799 (musicpal_lcd_state *s, int x, int y, type col) \
800 { \
801 int dx, dy; \
802 type *pixel = &((type *) s->ds->data)[(y * 128 * 3 + x) * 3]; \
803 \
804 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
805 for (dx = 0; dx < 3; dx++, pixel++) \
806 *pixel = col; \
807 }
808 SET_LCD_PIXEL(8, uint8_t)
809 SET_LCD_PIXEL(16, uint16_t)
810 SET_LCD_PIXEL(32, uint32_t)
811
812 #include "pixel_ops.h"
813
814 static void lcd_refresh(void *opaque)
815 {
816 musicpal_lcd_state *s = opaque;
817 int x, y, col;
818
819 switch (s->ds->depth) {
820 case 0:
821 return;
822 #define LCD_REFRESH(depth, func) \
823 case depth: \
824 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
825 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
826 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
827 for (x = 0; x < 128; x++) \
828 for (y = 0; y < 64; y++) \
829 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
830 glue(set_lcd_pixel, depth)(s, x, y, col); \
831 else \
832 glue(set_lcd_pixel, depth)(s, x, y, 0); \
833 break;
834 LCD_REFRESH(8, rgb_to_pixel8)
835 LCD_REFRESH(16, rgb_to_pixel16)
836 LCD_REFRESH(32, (s->ds->bgr ? rgb_to_pixel32bgr : rgb_to_pixel32))
837 default:
838 cpu_abort(cpu_single_env, "unsupported colour depth %i\n",
839 s->ds->depth);
840 }
841
842 dpy_update(s->ds, 0, 0, 128*3, 64*3);
843 }
844
845 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
846 {
847 musicpal_lcd_state *s = opaque;
848
849 offset -= s->base;
850 switch (offset) {
851 case MP_LCD_IRQCTRL:
852 return s->irqctrl;
853
854 default:
855 return 0;
856 }
857 }
858
859 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
860 uint32_t value)
861 {
862 musicpal_lcd_state *s = opaque;
863
864 offset -= s->base;
865 switch (offset) {
866 case MP_LCD_IRQCTRL:
867 s->irqctrl = value;
868 break;
869
870 case MP_LCD_SPICTRL:
871 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
872 s->mode = value;
873 else
874 s->mode = MP_LCD_SPI_INVALID;
875 break;
876
877 case MP_LCD_INST:
878 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
879 s->page = value - MP_LCD_INST_SETPAGE0;
880 s->page_off = 0;
881 }
882 break;
883
884 case MP_LCD_DATA:
885 if (s->mode == MP_LCD_SPI_CMD) {
886 if (value >= MP_LCD_INST_SETPAGE0 &&
887 value <= MP_LCD_INST_SETPAGE7) {
888 s->page = value - MP_LCD_INST_SETPAGE0;
889 s->page_off = 0;
890 }
891 } else if (s->mode == MP_LCD_SPI_DATA) {
892 s->video_ram[s->page*128 + s->page_off] = value;
893 s->page_off = (s->page_off + 1) & 127;
894 }
895 break;
896 }
897 }
898
899 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
900 musicpal_lcd_read,
901 musicpal_lcd_read,
902 musicpal_lcd_read
903 };
904
905 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
906 musicpal_lcd_write,
907 musicpal_lcd_write,
908 musicpal_lcd_write
909 };
910
911 static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
912 {
913 musicpal_lcd_state *s;
914 int iomemtype;
915
916 s = qemu_mallocz(sizeof(musicpal_lcd_state));
917 if (!s)
918 return;
919 s->base = base;
920 s->ds = ds;
921 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
922 musicpal_lcd_writefn, s);
923 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
924
925 graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
926 dpy_resize(ds, 128*3, 64*3);
927 }
928
929 /* PIC register offsets */
930 #define MP_PIC_STATUS 0x00
931 #define MP_PIC_ENABLE_SET 0x08
932 #define MP_PIC_ENABLE_CLR 0x0C
933
934 typedef struct mv88w8618_pic_state
935 {
936 uint32_t base;
937 uint32_t level;
938 uint32_t enabled;
939 qemu_irq parent_irq;
940 } mv88w8618_pic_state;
941
942 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
943 {
944 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
945 }
946
947 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
948 {
949 mv88w8618_pic_state *s = opaque;
950
951 if (level)
952 s->level |= 1 << irq;
953 else
954 s->level &= ~(1 << irq);
955 mv88w8618_pic_update(s);
956 }
957
958 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
959 {
960 mv88w8618_pic_state *s = opaque;
961
962 offset -= s->base;
963 switch (offset) {
964 case MP_PIC_STATUS:
965 return s->level & s->enabled;
966
967 default:
968 return 0;
969 }
970 }
971
972 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
973 uint32_t value)
974 {
975 mv88w8618_pic_state *s = opaque;
976
977 offset -= s->base;
978 switch (offset) {
979 case MP_PIC_ENABLE_SET:
980 s->enabled |= value;
981 break;
982
983 case MP_PIC_ENABLE_CLR:
984 s->enabled &= ~value;
985 s->level &= ~value;
986 break;
987 }
988 mv88w8618_pic_update(s);
989 }
990
991 static void mv88w8618_pic_reset(void *opaque)
992 {
993 mv88w8618_pic_state *s = opaque;
994
995 s->level = 0;
996 s->enabled = 0;
997 }
998
999 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1000 mv88w8618_pic_read,
1001 mv88w8618_pic_read,
1002 mv88w8618_pic_read
1003 };
1004
1005 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1006 mv88w8618_pic_write,
1007 mv88w8618_pic_write,
1008 mv88w8618_pic_write
1009 };
1010
1011 static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1012 {
1013 mv88w8618_pic_state *s;
1014 int iomemtype;
1015 qemu_irq *qi;
1016
1017 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1018 if (!s)
1019 return NULL;
1020 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1021 s->base = base;
1022 s->parent_irq = parent_irq;
1023 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1024 mv88w8618_pic_writefn, s);
1025 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1026
1027 qemu_register_reset(mv88w8618_pic_reset, s);
1028
1029 return qi;
1030 }
1031
1032 /* PIT register offsets */
1033 #define MP_PIT_TIMER1_LENGTH 0x00
1034 /* ... */
1035 #define MP_PIT_TIMER4_LENGTH 0x0C
1036 #define MP_PIT_CONTROL 0x10
1037 #define MP_PIT_TIMER1_VALUE 0x14
1038 /* ... */
1039 #define MP_PIT_TIMER4_VALUE 0x20
1040 #define MP_BOARD_RESET 0x34
1041
1042 /* Magic board reset value (probably some watchdog behind it) */
1043 #define MP_BOARD_RESET_MAGIC 0x10000
1044
1045 typedef struct mv88w8618_timer_state {
1046 ptimer_state *timer;
1047 uint32_t limit;
1048 int freq;
1049 qemu_irq irq;
1050 } mv88w8618_timer_state;
1051
1052 typedef struct mv88w8618_pit_state {
1053 void *timer[4];
1054 uint32_t control;
1055 uint32_t base;
1056 } mv88w8618_pit_state;
1057
1058 static void mv88w8618_timer_tick(void *opaque)
1059 {
1060 mv88w8618_timer_state *s = opaque;
1061
1062 qemu_irq_raise(s->irq);
1063 }
1064
1065 static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1066 {
1067 mv88w8618_timer_state *s;
1068 QEMUBH *bh;
1069
1070 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1071 s->irq = irq;
1072 s->freq = freq;
1073
1074 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1075 s->timer = ptimer_init(bh);
1076
1077 return s;
1078 }
1079
1080 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1081 {
1082 mv88w8618_pit_state *s = opaque;
1083 mv88w8618_timer_state *t;
1084
1085 offset -= s->base;
1086 switch (offset) {
1087 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1088 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1089 return ptimer_get_count(t->timer);
1090
1091 default:
1092 return 0;
1093 }
1094 }
1095
1096 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1097 uint32_t value)
1098 {
1099 mv88w8618_pit_state *s = opaque;
1100 mv88w8618_timer_state *t;
1101 int i;
1102
1103 offset -= s->base;
1104 switch (offset) {
1105 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1106 t = s->timer[offset >> 2];
1107 t->limit = value;
1108 ptimer_set_limit(t->timer, t->limit, 1);
1109 break;
1110
1111 case MP_PIT_CONTROL:
1112 for (i = 0; i < 4; i++) {
1113 if (value & 0xf) {
1114 t = s->timer[i];
1115 ptimer_set_limit(t->timer, t->limit, 0);
1116 ptimer_set_freq(t->timer, t->freq);
1117 ptimer_run(t->timer, 0);
1118 }
1119 value >>= 4;
1120 }
1121 break;
1122
1123 case MP_BOARD_RESET:
1124 if (value == MP_BOARD_RESET_MAGIC)
1125 qemu_system_reset_request();
1126 break;
1127 }
1128 }
1129
1130 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1131 mv88w8618_pit_read,
1132 mv88w8618_pit_read,
1133 mv88w8618_pit_read
1134 };
1135
1136 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1137 mv88w8618_pit_write,
1138 mv88w8618_pit_write,
1139 mv88w8618_pit_write
1140 };
1141
1142 static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1143 {
1144 int iomemtype;
1145 mv88w8618_pit_state *s;
1146
1147 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1148 if (!s)
1149 return;
1150
1151 s->base = base;
1152 /* Letting them all run at 1 MHz is likely just a pragmatic
1153 * simplification. */
1154 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1155 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1156 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1157 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1158
1159 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1160 mv88w8618_pit_writefn, s);
1161 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1162 }
1163
1164 /* Flash config register offsets */
1165 #define MP_FLASHCFG_CFGR0 0x04
1166
1167 typedef struct mv88w8618_flashcfg_state {
1168 uint32_t base;
1169 uint32_t cfgr0;
1170 } mv88w8618_flashcfg_state;
1171
1172 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1173 target_phys_addr_t offset)
1174 {
1175 mv88w8618_flashcfg_state *s = opaque;
1176
1177 offset -= s->base;
1178 switch (offset) {
1179 case MP_FLASHCFG_CFGR0:
1180 return s->cfgr0;
1181
1182 default:
1183 return 0;
1184 }
1185 }
1186
1187 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1188 uint32_t value)
1189 {
1190 mv88w8618_flashcfg_state *s = opaque;
1191
1192 offset -= s->base;
1193 switch (offset) {
1194 case MP_FLASHCFG_CFGR0:
1195 s->cfgr0 = value;
1196 break;
1197 }
1198 }
1199
1200 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1201 mv88w8618_flashcfg_read,
1202 mv88w8618_flashcfg_read,
1203 mv88w8618_flashcfg_read
1204 };
1205
1206 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1207 mv88w8618_flashcfg_write,
1208 mv88w8618_flashcfg_write,
1209 mv88w8618_flashcfg_write
1210 };
1211
1212 static void mv88w8618_flashcfg_init(uint32_t base)
1213 {
1214 int iomemtype;
1215 mv88w8618_flashcfg_state *s;
1216
1217 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1218 if (!s)
1219 return;
1220
1221 s->base = base;
1222 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1223 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1224 mv88w8618_flashcfg_writefn, s);
1225 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1226 }
1227
1228 /* Various registers in the 0x80000000 domain */
1229 #define MP_BOARD_REVISION 0x2018
1230
1231 #define MP_WLAN_MAGIC1 0xc11c
1232 #define MP_WLAN_MAGIC2 0xc124
1233
1234 #define MP_GPIO_OE_LO 0xd008
1235 #define MP_GPIO_OUT_LO 0xd00c
1236 #define MP_GPIO_IN_LO 0xd010
1237 #define MP_GPIO_ISR_LO 0xd020
1238 #define MP_GPIO_OE_HI 0xd508
1239 #define MP_GPIO_OUT_HI 0xd50c
1240 #define MP_GPIO_IN_HI 0xd510
1241 #define MP_GPIO_ISR_HI 0xd520
1242
1243 /* GPIO bits & masks */
1244 #define MP_GPIO_WHEEL_VOL (1 << 8)
1245 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1246 #define MP_GPIO_WHEEL_NAV (1 << 10)
1247 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1248 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1249 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1250 #define MP_GPIO_BTN_MENU (1 << 20)
1251 #define MP_GPIO_BTN_VOLUME (1 << 21)
1252 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1253 #define MP_GPIO_I2C_DATA_BIT 29
1254 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1255 #define MP_GPIO_I2C_CLOCK_BIT 30
1256
1257 /* LCD brightness bits in GPIO_OE_HI */
1258 #define MP_OE_LCD_BRIGHTNESS 0x0007
1259
1260 static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1261 {
1262 offset -= 0x80000000;
1263 switch (offset) {
1264 case MP_BOARD_REVISION:
1265 return 0x0031;
1266
1267 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1268 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1269
1270 case MP_GPIO_OUT_LO:
1271 return gpio_out_state & 0xFFFF;
1272 case MP_GPIO_OUT_HI:
1273 return gpio_out_state >> 16;
1274
1275 case MP_GPIO_IN_LO:
1276 return gpio_in_state & 0xFFFF;
1277 case MP_GPIO_IN_HI:
1278 /* Update received I2C data */
1279 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1280 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1281 return gpio_in_state >> 16;
1282
1283 /* This is a simplification of reality */
1284 case MP_GPIO_ISR_LO:
1285 return ~gpio_in_state & 0xFFFF;
1286 case MP_GPIO_ISR_HI:
1287 return ~gpio_in_state >> 16;
1288
1289 /* Workaround to allow loading the binary-only wlandrv.ko crap
1290 * from the original Freecom firmware. */
1291 case MP_WLAN_MAGIC1:
1292 return ~3;
1293 case MP_WLAN_MAGIC2:
1294 return -1;
1295
1296 default:
1297 return 0;
1298 }
1299 }
1300
1301 static void musicpal_write(void *opaque, target_phys_addr_t offset,
1302 uint32_t value)
1303 {
1304 offset -= 0x80000000;
1305 switch (offset) {
1306 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1307 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1308 (value & MP_OE_LCD_BRIGHTNESS);
1309 break;
1310
1311 case MP_GPIO_OUT_LO:
1312 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1313 break;
1314 case MP_GPIO_OUT_HI:
1315 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1316 lcd_brightness = (lcd_brightness & 0xFFFF) |
1317 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1318 i2c_state_update(mixer_i2c,
1319 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1320 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1321 break;
1322
1323 }
1324 }
1325
1326 /* Keyboard codes & masks */
1327 #define KEY_PRESSED 0x80
1328 #define KEY_CODE 0x7f
1329
1330 #define KEYCODE_TAB 0x0f
1331 #define KEYCODE_ENTER 0x1c
1332 #define KEYCODE_F 0x21
1333 #define KEYCODE_M 0x32
1334
1335 #define KEYCODE_EXTENDED 0xe0
1336 #define KEYCODE_UP 0x48
1337 #define KEYCODE_DOWN 0x50
1338 #define KEYCODE_LEFT 0x4b
1339 #define KEYCODE_RIGHT 0x4d
1340
1341 static void musicpal_key_event(void *opaque, int keycode)
1342 {
1343 qemu_irq irq = opaque;
1344 uint32_t event = 0;
1345 static int kbd_extended;
1346
1347 if (keycode == KEYCODE_EXTENDED) {
1348 kbd_extended = 1;
1349 return;
1350 }
1351
1352 if (kbd_extended)
1353 switch (keycode & KEY_CODE) {
1354 case KEYCODE_UP:
1355 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1356 break;
1357
1358 case KEYCODE_DOWN:
1359 event = MP_GPIO_WHEEL_NAV;
1360 break;
1361
1362 case KEYCODE_LEFT:
1363 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1364 break;
1365
1366 case KEYCODE_RIGHT:
1367 event = MP_GPIO_WHEEL_VOL;
1368 break;
1369 }
1370 else
1371 switch (keycode & KEY_CODE) {
1372 case KEYCODE_F:
1373 event = MP_GPIO_BTN_FAVORITS;
1374 break;
1375
1376 case KEYCODE_TAB:
1377 event = MP_GPIO_BTN_VOLUME;
1378 break;
1379
1380 case KEYCODE_ENTER:
1381 event = MP_GPIO_BTN_NAVIGATION;
1382 break;
1383
1384 case KEYCODE_M:
1385 event = MP_GPIO_BTN_MENU;
1386 break;
1387 }
1388
1389 if (keycode & KEY_PRESSED)
1390 gpio_in_state |= event;
1391 else if (gpio_in_state & event) {
1392 gpio_in_state &= ~event;
1393 qemu_irq_raise(irq);
1394 }
1395
1396 kbd_extended = 0;
1397 }
1398
1399 static CPUReadMemoryFunc *musicpal_readfn[] = {
1400 musicpal_read,
1401 musicpal_read,
1402 musicpal_read,
1403 };
1404
1405 static CPUWriteMemoryFunc *musicpal_writefn[] = {
1406 musicpal_write,
1407 musicpal_write,
1408 musicpal_write,
1409 };
1410
1411 static struct arm_boot_info musicpal_binfo = {
1412 .loader_start = 0x0,
1413 .board_id = 0x20e,
1414 };
1415
1416 static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1417 const char *boot_device, DisplayState *ds,
1418 const char *kernel_filename, const char *kernel_cmdline,
1419 const char *initrd_filename, const char *cpu_model)
1420 {
1421 CPUState *env;
1422 qemu_irq *pic;
1423 int index;
1424 int iomemtype;
1425 unsigned long flash_size;
1426
1427 if (!cpu_model)
1428 cpu_model = "arm926";
1429
1430 env = cpu_init(cpu_model);
1431 if (!env) {
1432 fprintf(stderr, "Unable to find CPU definition\n");
1433 exit(1);
1434 }
1435 pic = arm_pic_init_cpu(env);
1436
1437 /* For now we use a fixed - the original - RAM size */
1438 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1439 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1440
1441 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1442 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1443
1444 /* Catch various stuff not handled by separate subsystems */
1445 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1446 musicpal_writefn, env);
1447 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1448
1449 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1450 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1451
1452 if (serial_hds[0])
1453 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1454 serial_hds[0], 1);
1455 if (serial_hds[1])
1456 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1457 serial_hds[1], 1);
1458
1459 /* Register flash */
1460 index = drive_get_index(IF_PFLASH, 0, 0);
1461 if (index != -1) {
1462 flash_size = bdrv_getlength(drives_table[index].bdrv);
1463 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1464 flash_size != 32*1024*1024) {
1465 fprintf(stderr, "Invalid flash image size\n");
1466 exit(1);
1467 }
1468
1469 /*
1470 * The original U-Boot accesses the flash at 0xFE000000 instead of
1471 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1472 * image is smaller than 32 MB.
1473 */
1474 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1475 drives_table[index].bdrv, 0x10000,
1476 (flash_size + 0xffff) >> 16,
1477 MP_FLASH_SIZE_MAX / flash_size,
1478 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1479 0x5555, 0x2AAA);
1480 }
1481 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1482
1483 musicpal_lcd_init(ds, MP_LCD_BASE);
1484
1485 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1486
1487 /*
1488 * Wait a bit to catch menu button during U-Boot start-up
1489 * (to trigger emergency update).
1490 */
1491 sleep(1);
1492
1493 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1494
1495 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1496
1497 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1498 musicpal_binfo.kernel_filename = kernel_filename;
1499 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1500 musicpal_binfo.initrd_filename = initrd_filename;
1501 arm_load_kernel(env, &musicpal_binfo);
1502 }
1503
1504 QEMUMachine musicpal_machine = {
1505 "musicpal",
1506 "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1507 musicpal_init,
1508 MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1509 };