]> git.proxmox.com Git - mirror_qemu.git/blob - hw/nand.c
NAND Flash memory emulation and ECC calculation helpers for use by NAND controllers.
[mirror_qemu.git] / hw / nand.c
1 /*
2 * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash
3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
4 * Samsung Electronic.
5 *
6 * Copyright (c) 2006 Openedhand Ltd.
7 * Written by Andrzej Zaborowski <balrog@zabor.org>
8 *
9 * This code is licensed under the GNU GPL v2.
10 */
11
12 #ifndef NAND_IO
13
14 # include "vl.h"
15
16 # define NAND_CMD_READ0 0x00
17 # define NAND_CMD_READ1 0x01
18 # define NAND_CMD_READ2 0x50
19 # define NAND_CMD_LPREAD2 0x30
20 # define NAND_CMD_NOSERIALREAD2 0x35
21 # define NAND_CMD_RANDOMREAD1 0x05
22 # define NAND_CMD_RANDOMREAD2 0xe0
23 # define NAND_CMD_READID 0x90
24 # define NAND_CMD_RESET 0xff
25 # define NAND_CMD_PAGEPROGRAM1 0x80
26 # define NAND_CMD_PAGEPROGRAM2 0x10
27 # define NAND_CMD_CACHEPROGRAM2 0x15
28 # define NAND_CMD_BLOCKERASE1 0x60
29 # define NAND_CMD_BLOCKERASE2 0xd0
30 # define NAND_CMD_READSTATUS 0x70
31 # define NAND_CMD_COPYBACKPRG1 0x85
32
33 # define NAND_IOSTATUS_ERROR (1 << 0)
34 # define NAND_IOSTATUS_PLANE0 (1 << 1)
35 # define NAND_IOSTATUS_PLANE1 (1 << 2)
36 # define NAND_IOSTATUS_PLANE2 (1 << 3)
37 # define NAND_IOSTATUS_PLANE3 (1 << 4)
38 # define NAND_IOSTATUS_BUSY (1 << 6)
39 # define NAND_IOSTATUS_UNPROTCT (1 << 7)
40
41 # define MAX_PAGE 0x800
42 # define MAX_OOB 0x40
43
44 struct nand_flash_s {
45 uint8_t manf_id, chip_id;
46 int size, pages;
47 int page_shift, oob_shift, erase_shift, addr_shift;
48 uint8_t *storage;
49 BlockDriverState *bdrv;
50 int mem_oob;
51
52 int cle, ale, ce, wp, gnd;
53
54 uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
55 uint8_t *ioaddr;
56 int iolen;
57
58 uint32_t cmd, addr;
59 int addrlen;
60 int status;
61 int offset;
62
63 void (*blk_write)(struct nand_flash_s *s);
64 void (*blk_erase)(struct nand_flash_s *s);
65 void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset);
66 };
67
68 # define NAND_NO_AUTOINCR 0x00000001
69 # define NAND_BUSWIDTH_16 0x00000002
70 # define NAND_NO_PADDING 0x00000004
71 # define NAND_CACHEPRG 0x00000008
72 # define NAND_COPYBACK 0x00000010
73 # define NAND_IS_AND 0x00000020
74 # define NAND_4PAGE_ARRAY 0x00000040
75 # define NAND_NO_READRDY 0x00000100
76 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK)
77
78 # define NAND_IO
79
80 # define PAGE(addr) ((addr) >> ADDR_SHIFT)
81 # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
82 # define PAGE_MASK ((1 << ADDR_SHIFT) - 1)
83 # define OOB_SHIFT (PAGE_SHIFT - 5)
84 # define OOB_SIZE (1 << OOB_SHIFT)
85 # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
86 # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8))
87
88 # define PAGE_SIZE 256
89 # define PAGE_SHIFT 8
90 # define PAGE_SECTORS 1
91 # define ADDR_SHIFT 8
92 # include "nand.c"
93 # define PAGE_SIZE 512
94 # define PAGE_SHIFT 9
95 # define PAGE_SECTORS 1
96 # define ADDR_SHIFT 8
97 # include "nand.c"
98 # define PAGE_SIZE 2048
99 # define PAGE_SHIFT 11
100 # define PAGE_SECTORS 4
101 # define ADDR_SHIFT 16
102 # include "nand.c"
103
104 /* Information based on Linux drivers/mtd/nand/nand_ids.c */
105 struct nand_info_s {
106 int size;
107 int width;
108 int page_shift;
109 int erase_shift;
110 uint32_t options;
111 } nand_flash_ids[0x100] = {
112 [0 ... 0xff] = { 0 },
113
114 [0x6e] = { 1, 8, 8, 4, 0 },
115 [0x64] = { 2, 8, 8, 4, 0 },
116 [0x6b] = { 4, 8, 9, 4, 0 },
117 [0xe8] = { 1, 8, 8, 4, 0 },
118 [0xec] = { 1, 8, 8, 4, 0 },
119 [0xea] = { 2, 8, 8, 4, 0 },
120 [0xd5] = { 4, 8, 9, 4, 0 },
121 [0xe3] = { 4, 8, 9, 4, 0 },
122 [0xe5] = { 4, 8, 9, 4, 0 },
123 [0xd6] = { 8, 8, 9, 4, 0 },
124
125 [0x39] = { 8, 8, 9, 4, 0 },
126 [0xe6] = { 8, 8, 9, 4, 0 },
127 [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
128 [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 },
129
130 [0x33] = { 16, 8, 9, 5, 0 },
131 [0x73] = { 16, 8, 9, 5, 0 },
132 [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
133 [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 },
134
135 [0x35] = { 32, 8, 9, 5, 0 },
136 [0x75] = { 32, 8, 9, 5, 0 },
137 [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
138 [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 },
139
140 [0x36] = { 64, 8, 9, 5, 0 },
141 [0x76] = { 64, 8, 9, 5, 0 },
142 [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
143 [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 },
144
145 [0x78] = { 128, 8, 9, 5, 0 },
146 [0x39] = { 128, 8, 9, 5, 0 },
147 [0x79] = { 128, 8, 9, 5, 0 },
148 [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
149 [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
150 [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
151 [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 },
152
153 [0x71] = { 256, 8, 9, 5, 0 },
154
155 /*
156 * These are the new chips with large page size. The pagesize and the
157 * erasesize is determined from the extended id bytes
158 */
159 # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
160 # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16)
161
162 /* 512 Megabit */
163 [0xa2] = { 64, 8, 0, 0, LP_OPTIONS },
164 [0xf2] = { 64, 8, 0, 0, LP_OPTIONS },
165 [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 },
166 [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 },
167
168 /* 1 Gigabit */
169 [0xa1] = { 128, 8, 0, 0, LP_OPTIONS },
170 [0xf1] = { 128, 8, 0, 0, LP_OPTIONS },
171 [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 },
172 [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 },
173
174 /* 2 Gigabit */
175 [0xaa] = { 256, 8, 0, 0, LP_OPTIONS },
176 [0xda] = { 256, 8, 0, 0, LP_OPTIONS },
177 [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 },
178 [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 },
179
180 /* 4 Gigabit */
181 [0xac] = { 512, 8, 0, 0, LP_OPTIONS },
182 [0xdc] = { 512, 8, 0, 0, LP_OPTIONS },
183 [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 },
184 [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 },
185
186 /* 8 Gigabit */
187 [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS },
188 [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS },
189 [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
190 [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 },
191
192 /* 16 Gigabit */
193 [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS },
194 [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS },
195 [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
196 [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 },
197 };
198
199 static void nand_reset(struct nand_flash_s *s)
200 {
201 s->cmd = NAND_CMD_READ0;
202 s->addr = 0;
203 s->addrlen = 0;
204 s->iolen = 0;
205 s->offset = 0;
206 s->status &= NAND_IOSTATUS_UNPROTCT;
207 }
208
209 static void nand_command(struct nand_flash_s *s)
210 {
211 switch (s->cmd) {
212 case NAND_CMD_READ0:
213 s->iolen = 0;
214 break;
215
216 case NAND_CMD_READID:
217 s->io[0] = s->manf_id;
218 s->io[1] = s->chip_id;
219 s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */
220 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
221 s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */
222 else
223 s->io[3] = 0xc0; /* Multi-plane */
224 s->ioaddr = s->io;
225 s->iolen = 4;
226 break;
227
228 case NAND_CMD_RANDOMREAD2:
229 case NAND_CMD_NOSERIALREAD2:
230 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
231 break;
232
233 s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1));
234 break;
235
236 case NAND_CMD_RESET:
237 nand_reset(s);
238 break;
239
240 case NAND_CMD_PAGEPROGRAM1:
241 s->ioaddr = s->io;
242 s->iolen = 0;
243 break;
244
245 case NAND_CMD_PAGEPROGRAM2:
246 if (s->wp) {
247 s->blk_write(s);
248 }
249 break;
250
251 case NAND_CMD_BLOCKERASE1:
252 break;
253
254 case NAND_CMD_BLOCKERASE2:
255 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)
256 s->addr <<= 16;
257 else
258 s->addr <<= 8;
259
260 if (s->wp) {
261 s->blk_erase(s);
262 }
263 break;
264
265 case NAND_CMD_READSTATUS:
266 s->io[0] = s->status;
267 s->ioaddr = s->io;
268 s->iolen = 1;
269 break;
270
271 default:
272 printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd);
273 }
274 }
275
276 /*
277 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip
278 * outputs are R/B and eight I/O pins.
279 *
280 * CE, WP and R/B are active low.
281 */
282 void nand_setpins(struct nand_flash_s *s,
283 int cle, int ale, int ce, int wp, int gnd)
284 {
285 s->cle = cle;
286 s->ale = ale;
287 s->ce = ce;
288 s->wp = wp;
289 s->gnd = gnd;
290 if (wp)
291 s->status |= NAND_IOSTATUS_UNPROTCT;
292 else
293 s->status &= ~NAND_IOSTATUS_UNPROTCT;
294 }
295
296 void nand_getpins(struct nand_flash_s *s, int *rb)
297 {
298 *rb = 1;
299 }
300
301 void nand_setio(struct nand_flash_s *s, uint8_t value)
302 {
303 if (!s->ce && s->cle) {
304 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
305 if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
306 return;
307 if (value == NAND_CMD_RANDOMREAD1) {
308 s->addr &= ~((1 << s->addr_shift) - 1);
309 s->addrlen = 0;
310 return;
311 }
312 }
313 if (value == NAND_CMD_READ0)
314 s->offset = 0;
315 else if (value == NAND_CMD_READ1) {
316 s->offset = 0x100;
317 value = NAND_CMD_READ0;
318 }
319 else if (value == NAND_CMD_READ2) {
320 s->offset = 1 << s->page_shift;
321 value = NAND_CMD_READ0;
322 }
323
324 s->cmd = value;
325
326 if (s->cmd == NAND_CMD_READSTATUS ||
327 s->cmd == NAND_CMD_PAGEPROGRAM2 ||
328 s->cmd == NAND_CMD_BLOCKERASE1 ||
329 s->cmd == NAND_CMD_BLOCKERASE2 ||
330 s->cmd == NAND_CMD_NOSERIALREAD2 ||
331 s->cmd == NAND_CMD_RANDOMREAD2 ||
332 s->cmd == NAND_CMD_RESET)
333 nand_command(s);
334
335 if (s->cmd != NAND_CMD_RANDOMREAD2) {
336 s->addrlen = 0;
337 s->addr = 0;
338 }
339 }
340
341 if (s->ale) {
342 s->addr |= value << (s->addrlen * 8);
343 s->addrlen ++;
344
345 if (s->addrlen == 1 && s->cmd == NAND_CMD_READID)
346 nand_command(s);
347
348 if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
349 s->addrlen == 3 && (
350 s->cmd == NAND_CMD_READ0 ||
351 s->cmd == NAND_CMD_PAGEPROGRAM1))
352 nand_command(s);
353 if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
354 s->addrlen == 4 && (
355 s->cmd == NAND_CMD_READ0 ||
356 s->cmd == NAND_CMD_PAGEPROGRAM1))
357 nand_command(s);
358 }
359
360 if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
361 if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift))
362 s->io[s->iolen ++] = value;
363 } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
364 if ((s->addr & ((1 << s->addr_shift) - 1)) <
365 (1 << s->page_shift) + (1 << s->oob_shift)) {
366 s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value;
367 s->addr ++;
368 }
369 }
370 }
371
372 uint8_t nand_getio(struct nand_flash_s *s)
373 {
374 int offset;
375
376 /* Allow sequential reading */
377 if (!s->iolen && s->cmd == NAND_CMD_READ0) {
378 offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
379 s->offset = 0;
380
381 s->blk_load(s, s->addr, offset);
382 if (s->gnd)
383 s->iolen = (1 << s->page_shift) - offset;
384 else
385 s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
386 }
387
388 if (s->ce || s->iolen <= 0)
389 return 0;
390
391 s->iolen --;
392 return *(s->ioaddr ++);
393 }
394
395 struct nand_flash_s *nand_init(int manf_id, int chip_id)
396 {
397 int pagesize;
398 struct nand_flash_s *s;
399
400 if (nand_flash_ids[chip_id].size == 0) {
401 cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n",
402 __FUNCTION__);
403 }
404
405 s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s));
406 s->bdrv = mtd_bdrv;
407 s->manf_id = manf_id;
408 s->chip_id = chip_id;
409 s->size = nand_flash_ids[s->chip_id].size << 20;
410 if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
411 s->page_shift = 11;
412 s->erase_shift = 6;
413 } else {
414 s->page_shift = nand_flash_ids[s->chip_id].page_shift;
415 s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
416 }
417
418 switch (1 << s->page_shift) {
419 case 256:
420 nand_init_256(s);
421 break;
422 case 512:
423 nand_init_512(s);
424 break;
425 case 2048:
426 nand_init_2048(s);
427 break;
428 default:
429 cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n",
430 __FUNCTION__);
431 }
432
433 pagesize = 1 << s->oob_shift;
434 s->mem_oob = 1;
435 if (s->bdrv && bdrv_getlength(s->bdrv) >=
436 (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
437 pagesize = 0;
438 s->mem_oob = 0;
439 }
440
441 if (!s->bdrv)
442 pagesize += 1 << s->page_shift;
443 if (pagesize)
444 s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize),
445 0xff, s->pages * pagesize);
446 return s;
447 }
448
449 void nand_done(struct nand_flash_s *s)
450 {
451 if (s->bdrv) {
452 bdrv_close(s->bdrv);
453 bdrv_delete(s->bdrv);
454 }
455
456 if (!s->bdrv || s->mem_oob)
457 free(s->storage);
458
459 free(s);
460 }
461
462 #else
463
464 /* Program a single page */
465 static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s)
466 {
467 uint32_t off, page, sector, soff;
468 uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
469 if (PAGE(s->addr) >= s->pages)
470 return;
471
472 if (!s->bdrv) {
473 memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
474 s->offset, s->io, s->iolen);
475 } else if (s->mem_oob) {
476 sector = SECTOR(s->addr);
477 off = (s->addr & PAGE_MASK) + s->offset;
478 soff = SECTOR_OFFSET(s->addr);
479 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) {
480 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
481 return;
482 }
483
484 memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
485 if (off + s->iolen > PAGE_SIZE) {
486 page = PAGE(s->addr);
487 memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
488 MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
489 }
490
491 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1)
492 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
493 } else {
494 off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
495 sector = off >> 9;
496 soff = off & 0x1ff;
497 if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) {
498 printf("%s: read error in sector %i\n", __FUNCTION__, sector);
499 return;
500 }
501
502 memcpy(iobuf + soff, s->io, s->iolen);
503
504 if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1)
505 printf("%s: write error in sector %i\n", __FUNCTION__, sector);
506 }
507 s->offset = 0;
508 }
509
510 /* Erase a single block */
511 static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s)
512 {
513 uint32_t i, page, addr;
514 uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
515 addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
516
517 if (PAGE(addr) >= s->pages)
518 return;
519
520 if (!s->bdrv) {
521 memset(s->storage + PAGE_START(addr),
522 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
523 } else if (s->mem_oob) {
524 memset(s->storage + (PAGE(addr) << OOB_SHIFT),
525 0xff, OOB_SIZE << s->erase_shift);
526 i = SECTOR(addr);
527 page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift));
528 for (; i < page; i ++)
529 if (bdrv_write(s->bdrv, i, iobuf, 1) == -1)
530 printf("%s: write error in sector %i\n", __FUNCTION__, i);
531 } else {
532 addr = PAGE_START(addr);
533 page = addr >> 9;
534 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
535 printf("%s: read error in sector %i\n", __FUNCTION__, page);
536 memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
537 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
538 printf("%s: write error in sector %i\n", __FUNCTION__, page);
539
540 memset(iobuf, 0xff, 0x200);
541 i = (addr & ~0x1ff) + 0x200;
542 for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
543 i < addr; i += 0x200)
544 if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1)
545 printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9);
546
547 page = i >> 9;
548 if (bdrv_read(s->bdrv, page, iobuf, 1) == -1)
549 printf("%s: read error in sector %i\n", __FUNCTION__, page);
550 memset(iobuf, 0xff, addr & 0x1ff);
551 if (bdrv_write(s->bdrv, page, iobuf, 1) == -1)
552 printf("%s: write error in sector %i\n", __FUNCTION__, page);
553 }
554 }
555
556 static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s,
557 uint32_t addr, int offset)
558 {
559 if (PAGE(addr) >= s->pages)
560 return;
561
562 if (s->bdrv) {
563 if (s->mem_oob) {
564 if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1)
565 printf("%s: read error in sector %i\n",
566 __FUNCTION__, SECTOR(addr));
567 memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
568 s->storage + (PAGE(s->addr) << OOB_SHIFT),
569 OOB_SIZE);
570 s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
571 } else {
572 if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9,
573 s->io, (PAGE_SECTORS + 2)) == -1)
574 printf("%s: read error in sector %i\n",
575 __FUNCTION__, PAGE_START(addr) >> 9);
576 s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
577 }
578 } else {
579 memcpy(s->io, s->storage + PAGE_START(s->addr) +
580 offset, PAGE_SIZE + OOB_SIZE - offset);
581 s->ioaddr = s->io;
582 }
583
584 s->addr &= PAGE_SIZE - 1;
585 s->addr += PAGE_SIZE;
586 }
587
588 static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s)
589 {
590 s->oob_shift = PAGE_SHIFT - 5;
591 s->pages = s->size >> PAGE_SHIFT;
592 s->addr_shift = ADDR_SHIFT;
593
594 s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
595 s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
596 s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
597 }
598
599 # undef PAGE_SIZE
600 # undef PAGE_SHIFT
601 # undef PAGE_SECTORS
602 # undef ADDR_SHIFT
603 #endif /* NAND_IO */