]> git.proxmox.com Git - mirror_qemu.git/blob - hw/ne2000.c
new network emulation
[mirror_qemu.git] / hw / ne2000.c
1 /*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24 #include "vl.h"
25
26 /* debug NE2000 card */
27 //#define DEBUG_NE2000
28
29 #define MAX_ETH_FRAME_SIZE 1514
30
31 #define E8390_CMD 0x00 /* The command register (for all pages) */
32 /* Page 0 register offsets. */
33 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38 #define EN0_TSR 0x04 /* Transmit status reg RD */
39 #define EN0_TPSR 0x04 /* Transmit starting page WR */
40 #define EN0_NCR 0x05 /* Number of collision reg RD */
41 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42 #define EN0_FIFO 0x06 /* FIFO RD */
43 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
50 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
51 #define EN0_RSR 0x0c /* rx status reg RD */
52 #define EN0_RXCR 0x0c /* RX configuration reg WR */
53 #define EN0_TXCR 0x0d /* TX configuration reg WR */
54 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
55 #define EN0_DCFG 0x0e /* Data configuration reg WR */
56 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
57 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
58 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
59
60 #define EN1_PHYS 0x11
61 #define EN1_CURPAG 0x17
62 #define EN1_MULT 0x18
63
64 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
65 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
66
67 /* Register accessed at EN_CMD, the 8390 base addr. */
68 #define E8390_STOP 0x01 /* Stop and reset the chip */
69 #define E8390_START 0x02 /* Start the chip, clear reset */
70 #define E8390_TRANS 0x04 /* Transmit a frame */
71 #define E8390_RREAD 0x08 /* Remote read */
72 #define E8390_RWRITE 0x10 /* Remote write */
73 #define E8390_NODMA 0x20 /* Remote DMA */
74 #define E8390_PAGE0 0x00 /* Select page chip registers */
75 #define E8390_PAGE1 0x40 /* using the two high-order bits */
76 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
77
78 /* Bits in EN0_ISR - Interrupt status register */
79 #define ENISR_RX 0x01 /* Receiver, no error */
80 #define ENISR_TX 0x02 /* Transmitter, no error */
81 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
82 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
83 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
84 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
85 #define ENISR_RDC 0x40 /* remote dma complete */
86 #define ENISR_RESET 0x80 /* Reset completed */
87 #define ENISR_ALL 0x3f /* Interrupts we will enable */
88
89 /* Bits in received packet status byte and EN0_RSR*/
90 #define ENRSR_RXOK 0x01 /* Received a good packet */
91 #define ENRSR_CRC 0x02 /* CRC error */
92 #define ENRSR_FAE 0x04 /* frame alignment error */
93 #define ENRSR_FO 0x08 /* FIFO overrun */
94 #define ENRSR_MPA 0x10 /* missed pkt */
95 #define ENRSR_PHY 0x20 /* physical/multicast address */
96 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
97 #define ENRSR_DEF 0x80 /* deferring */
98
99 /* Transmitted packet status, EN0_TSR. */
100 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
101 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
102 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
103 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
104 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
105 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
106 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
107 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
108
109 #define NE2000_PMEM_SIZE (32*1024)
110 #define NE2000_PMEM_START (16*1024)
111 #define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
112 #define NE2000_MEM_SIZE NE2000_PMEM_END
113
114 typedef struct NE2000State {
115 uint8_t cmd;
116 uint32_t start;
117 uint32_t stop;
118 uint8_t boundary;
119 uint8_t tsr;
120 uint8_t tpsr;
121 uint16_t tcnt;
122 uint16_t rcnt;
123 uint32_t rsar;
124 uint8_t rsr;
125 uint8_t rxcr;
126 uint8_t isr;
127 uint8_t dcfg;
128 uint8_t imr;
129 uint8_t phys[6]; /* mac address */
130 uint8_t curpag;
131 uint8_t mult[8]; /* multicast mask array */
132 int irq;
133 PCIDevice *pci_dev;
134 VLANClientState *vc;
135 uint8_t macaddr[6];
136 uint8_t mem[NE2000_MEM_SIZE];
137 } NE2000State;
138
139 static void ne2000_reset(NE2000State *s)
140 {
141 int i;
142
143 s->isr = ENISR_RESET;
144 memcpy(s->mem, s->macaddr, 6);
145 s->mem[14] = 0x57;
146 s->mem[15] = 0x57;
147
148 /* duplicate prom data */
149 for(i = 15;i >= 0; i--) {
150 s->mem[2 * i] = s->mem[i];
151 s->mem[2 * i + 1] = s->mem[i];
152 }
153 }
154
155 static void ne2000_update_irq(NE2000State *s)
156 {
157 int isr;
158 isr = (s->isr & s->imr) & 0x7f;
159 #if defined(DEBUG_NE2000)
160 printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
161 s->irq, isr ? 1 : 0, s->isr, s->imr);
162 #endif
163 if (s->irq == 16) {
164 /* PCI irq */
165 pci_set_irq(s->pci_dev, 0, (isr != 0));
166 } else {
167 /* ISA irq */
168 pic_set_irq(s->irq, (isr != 0));
169 }
170 }
171
172 #define POLYNOMIAL 0x04c11db6
173
174 /* From FreeBSD */
175 /* XXX: optimize */
176 static int compute_mcast_idx(const uint8_t *ep)
177 {
178 uint32_t crc;
179 int carry, i, j;
180 uint8_t b;
181
182 crc = 0xffffffff;
183 for (i = 0; i < 6; i++) {
184 b = *ep++;
185 for (j = 0; j < 8; j++) {
186 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
187 crc <<= 1;
188 b >>= 1;
189 if (carry)
190 crc = ((crc ^ POLYNOMIAL) | carry);
191 }
192 }
193 return (crc >> 26);
194 }
195
196 /* return the max buffer size if the NE2000 can receive more data */
197 static int ne2000_can_receive(void *opaque)
198 {
199 NE2000State *s = opaque;
200 int avail, index, boundary;
201
202 if (s->cmd & E8390_STOP)
203 return 0;
204 index = s->curpag << 8;
205 boundary = s->boundary << 8;
206 if (index < boundary)
207 avail = boundary - index;
208 else
209 avail = (s->stop - s->start) - (index - boundary);
210 if (avail < (MAX_ETH_FRAME_SIZE + 4))
211 return 0;
212 return MAX_ETH_FRAME_SIZE;
213 }
214
215 #define MIN_BUF_SIZE 60
216
217 static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
218 {
219 NE2000State *s = opaque;
220 uint8_t *p;
221 int total_len, next, avail, len, index, mcast_idx;
222 uint8_t buf1[60];
223 static const uint8_t broadcast_macaddr[6] =
224 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
225
226 #if defined(DEBUG_NE2000)
227 printf("NE2000: received len=%d\n", size);
228 #endif
229
230 if (!ne2000_can_receive(s))
231 return;
232
233 /* XXX: check this */
234 if (s->rxcr & 0x10) {
235 /* promiscuous: receive all */
236 } else {
237 if (!memcmp(buf, broadcast_macaddr, 6)) {
238 /* broadcast address */
239 if (!(s->rxcr & 0x04))
240 return;
241 } else if (buf[0] & 0x01) {
242 /* multicast */
243 if (!(s->rxcr & 0x08))
244 return;
245 mcast_idx = compute_mcast_idx(buf);
246 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
247 return;
248 } else if (s->mem[0] == buf[0] &&
249 s->mem[2] == buf[1] &&
250 s->mem[4] == buf[2] &&
251 s->mem[6] == buf[3] &&
252 s->mem[8] == buf[4] &&
253 s->mem[10] == buf[5]) {
254 /* match */
255 } else {
256 return;
257 }
258 }
259
260
261 /* if too small buffer, then expand it */
262 if (size < MIN_BUF_SIZE) {
263 memcpy(buf1, buf, size);
264 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
265 buf = buf1;
266 size = MIN_BUF_SIZE;
267 }
268
269 index = s->curpag << 8;
270 /* 4 bytes for header */
271 total_len = size + 4;
272 /* address for next packet (4 bytes for CRC) */
273 next = index + ((total_len + 4 + 255) & ~0xff);
274 if (next >= s->stop)
275 next -= (s->stop - s->start);
276 /* prepare packet header */
277 p = s->mem + index;
278 s->rsr = ENRSR_RXOK; /* receive status */
279 /* XXX: check this */
280 if (buf[0] & 0x01)
281 s->rsr |= ENRSR_PHY;
282 p[0] = s->rsr;
283 p[1] = next >> 8;
284 p[2] = total_len;
285 p[3] = total_len >> 8;
286 index += 4;
287
288 /* write packet data */
289 while (size > 0) {
290 avail = s->stop - index;
291 len = size;
292 if (len > avail)
293 len = avail;
294 memcpy(s->mem + index, buf, len);
295 buf += len;
296 index += len;
297 if (index == s->stop)
298 index = s->start;
299 size -= len;
300 }
301 s->curpag = next >> 8;
302
303 /* now we can signal we have receive something */
304 s->isr |= ENISR_RX;
305 ne2000_update_irq(s);
306 }
307
308 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
309 {
310 NE2000State *s = opaque;
311 int offset, page, index;
312
313 addr &= 0xf;
314 #ifdef DEBUG_NE2000
315 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
316 #endif
317 if (addr == E8390_CMD) {
318 /* control register */
319 s->cmd = val;
320 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
321 s->isr &= ~ENISR_RESET;
322 /* test specific case: zero length transfert */
323 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
324 s->rcnt == 0) {
325 s->isr |= ENISR_RDC;
326 ne2000_update_irq(s);
327 }
328 if (val & E8390_TRANS) {
329 index = (s->tpsr << 8);
330 /* XXX: next 2 lines are a hack to make netware 3.11 work */
331 if (index >= NE2000_PMEM_END)
332 index -= NE2000_PMEM_SIZE;
333 /* fail safe: check range on the transmitted length */
334 if (index + s->tcnt <= NE2000_PMEM_END) {
335 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
336 }
337 /* signal end of transfert */
338 s->tsr = ENTSR_PTX;
339 s->isr |= ENISR_TX;
340 s->cmd &= ~E8390_TRANS;
341 ne2000_update_irq(s);
342 }
343 }
344 } else {
345 page = s->cmd >> 6;
346 offset = addr | (page << 4);
347 switch(offset) {
348 case EN0_STARTPG:
349 s->start = val << 8;
350 break;
351 case EN0_STOPPG:
352 s->stop = val << 8;
353 break;
354 case EN0_BOUNDARY:
355 s->boundary = val;
356 break;
357 case EN0_IMR:
358 s->imr = val;
359 ne2000_update_irq(s);
360 break;
361 case EN0_TPSR:
362 s->tpsr = val;
363 break;
364 case EN0_TCNTLO:
365 s->tcnt = (s->tcnt & 0xff00) | val;
366 break;
367 case EN0_TCNTHI:
368 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
369 break;
370 case EN0_RSARLO:
371 s->rsar = (s->rsar & 0xff00) | val;
372 break;
373 case EN0_RSARHI:
374 s->rsar = (s->rsar & 0x00ff) | (val << 8);
375 break;
376 case EN0_RCNTLO:
377 s->rcnt = (s->rcnt & 0xff00) | val;
378 break;
379 case EN0_RCNTHI:
380 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
381 break;
382 case EN0_RXCR:
383 s->rxcr = val;
384 break;
385 case EN0_DCFG:
386 s->dcfg = val;
387 break;
388 case EN0_ISR:
389 s->isr &= ~(val & 0x7f);
390 ne2000_update_irq(s);
391 break;
392 case EN1_PHYS ... EN1_PHYS + 5:
393 s->phys[offset - EN1_PHYS] = val;
394 break;
395 case EN1_CURPAG:
396 s->curpag = val;
397 break;
398 case EN1_MULT ... EN1_MULT + 7:
399 s->mult[offset - EN1_MULT] = val;
400 break;
401 }
402 }
403 }
404
405 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
406 {
407 NE2000State *s = opaque;
408 int offset, page, ret;
409
410 addr &= 0xf;
411 if (addr == E8390_CMD) {
412 ret = s->cmd;
413 } else {
414 page = s->cmd >> 6;
415 offset = addr | (page << 4);
416 switch(offset) {
417 case EN0_TSR:
418 ret = s->tsr;
419 break;
420 case EN0_BOUNDARY:
421 ret = s->boundary;
422 break;
423 case EN0_ISR:
424 ret = s->isr;
425 break;
426 case EN0_RSARLO:
427 ret = s->rsar & 0x00ff;
428 break;
429 case EN0_RSARHI:
430 ret = s->rsar >> 8;
431 break;
432 case EN1_PHYS ... EN1_PHYS + 5:
433 ret = s->phys[offset - EN1_PHYS];
434 break;
435 case EN1_CURPAG:
436 ret = s->curpag;
437 break;
438 case EN1_MULT ... EN1_MULT + 7:
439 ret = s->mult[offset - EN1_MULT];
440 break;
441 case EN0_RSR:
442 ret = s->rsr;
443 break;
444 case EN2_STARTPG:
445 ret = s->start >> 8;
446 break;
447 case EN2_STOPPG:
448 ret = s->stop >> 8;
449 break;
450 default:
451 ret = 0x00;
452 break;
453 }
454 }
455 #ifdef DEBUG_NE2000
456 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
457 #endif
458 return ret;
459 }
460
461 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
462 uint32_t val)
463 {
464 if (addr < 32 ||
465 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
466 s->mem[addr] = val;
467 }
468 }
469
470 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
471 uint32_t val)
472 {
473 addr &= ~1; /* XXX: check exact behaviour if not even */
474 if (addr < 32 ||
475 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
476 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
477 }
478 }
479
480 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
481 uint32_t val)
482 {
483 addr &= ~1; /* XXX: check exact behaviour if not even */
484 if (addr < 32 ||
485 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
486 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
487 }
488 }
489
490 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
491 {
492 if (addr < 32 ||
493 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
494 return s->mem[addr];
495 } else {
496 return 0xff;
497 }
498 }
499
500 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
501 {
502 addr &= ~1; /* XXX: check exact behaviour if not even */
503 if (addr < 32 ||
504 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
505 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
506 } else {
507 return 0xffff;
508 }
509 }
510
511 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
512 {
513 addr &= ~1; /* XXX: check exact behaviour if not even */
514 if (addr < 32 ||
515 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
516 return le32_to_cpupu((uint32_t *)(s->mem + addr));
517 } else {
518 return 0xffffffff;
519 }
520 }
521
522 static inline void ne2000_dma_update(NE2000State *s, int len)
523 {
524 s->rsar += len;
525 /* wrap */
526 /* XXX: check what to do if rsar > stop */
527 if (s->rsar == s->stop)
528 s->rsar = s->start;
529
530 if (s->rcnt <= len) {
531 s->rcnt = 0;
532 /* signal end of transfert */
533 s->isr |= ENISR_RDC;
534 ne2000_update_irq(s);
535 } else {
536 s->rcnt -= len;
537 }
538 }
539
540 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
541 {
542 NE2000State *s = opaque;
543
544 #ifdef DEBUG_NE2000
545 printf("NE2000: asic write val=0x%04x\n", val);
546 #endif
547 if (s->rcnt == 0)
548 return;
549 if (s->dcfg & 0x01) {
550 /* 16 bit access */
551 ne2000_mem_writew(s, s->rsar, val);
552 ne2000_dma_update(s, 2);
553 } else {
554 /* 8 bit access */
555 ne2000_mem_writeb(s, s->rsar, val);
556 ne2000_dma_update(s, 1);
557 }
558 }
559
560 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
561 {
562 NE2000State *s = opaque;
563 int ret;
564
565 if (s->dcfg & 0x01) {
566 /* 16 bit access */
567 ret = ne2000_mem_readw(s, s->rsar);
568 ne2000_dma_update(s, 2);
569 } else {
570 /* 8 bit access */
571 ret = ne2000_mem_readb(s, s->rsar);
572 ne2000_dma_update(s, 1);
573 }
574 #ifdef DEBUG_NE2000
575 printf("NE2000: asic read val=0x%04x\n", ret);
576 #endif
577 return ret;
578 }
579
580 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
581 {
582 NE2000State *s = opaque;
583
584 #ifdef DEBUG_NE2000
585 printf("NE2000: asic writel val=0x%04x\n", val);
586 #endif
587 if (s->rcnt == 0)
588 return;
589 /* 32 bit access */
590 ne2000_mem_writel(s, s->rsar, val);
591 ne2000_dma_update(s, 4);
592 }
593
594 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
595 {
596 NE2000State *s = opaque;
597 int ret;
598
599 /* 32 bit access */
600 ret = ne2000_mem_readl(s, s->rsar);
601 ne2000_dma_update(s, 4);
602 #ifdef DEBUG_NE2000
603 printf("NE2000: asic readl val=0x%04x\n", ret);
604 #endif
605 return ret;
606 }
607
608 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
609 {
610 /* nothing to do (end of reset pulse) */
611 }
612
613 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
614 {
615 NE2000State *s = opaque;
616 ne2000_reset(s);
617 return 0;
618 }
619
620 static void ne2000_save(QEMUFile* f,void* opaque)
621 {
622 NE2000State* s=(NE2000State*)opaque;
623
624 qemu_put_8s(f, &s->cmd);
625 qemu_put_be32s(f, &s->start);
626 qemu_put_be32s(f, &s->stop);
627 qemu_put_8s(f, &s->boundary);
628 qemu_put_8s(f, &s->tsr);
629 qemu_put_8s(f, &s->tpsr);
630 qemu_put_be16s(f, &s->tcnt);
631 qemu_put_be16s(f, &s->rcnt);
632 qemu_put_be32s(f, &s->rsar);
633 qemu_put_8s(f, &s->rsr);
634 qemu_put_8s(f, &s->isr);
635 qemu_put_8s(f, &s->dcfg);
636 qemu_put_8s(f, &s->imr);
637 qemu_put_buffer(f, s->phys, 6);
638 qemu_put_8s(f, &s->curpag);
639 qemu_put_buffer(f, s->mult, 8);
640 qemu_put_be32s(f, &s->irq);
641 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
642 }
643
644 static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
645 {
646 NE2000State* s=(NE2000State*)opaque;
647
648 if (version_id != 1)
649 return -EINVAL;
650
651 qemu_get_8s(f, &s->cmd);
652 qemu_get_be32s(f, &s->start);
653 qemu_get_be32s(f, &s->stop);
654 qemu_get_8s(f, &s->boundary);
655 qemu_get_8s(f, &s->tsr);
656 qemu_get_8s(f, &s->tpsr);
657 qemu_get_be16s(f, &s->tcnt);
658 qemu_get_be16s(f, &s->rcnt);
659 qemu_get_be32s(f, &s->rsar);
660 qemu_get_8s(f, &s->rsr);
661 qemu_get_8s(f, &s->isr);
662 qemu_get_8s(f, &s->dcfg);
663 qemu_get_8s(f, &s->imr);
664 qemu_get_buffer(f, s->phys, 6);
665 qemu_get_8s(f, &s->curpag);
666 qemu_get_buffer(f, s->mult, 8);
667 qemu_get_be32s(f, &s->irq);
668 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
669
670 return 0;
671 }
672
673 void isa_ne2000_init(int base, int irq, NICInfo *nd)
674 {
675 NE2000State *s;
676
677 s = qemu_mallocz(sizeof(NE2000State));
678 if (!s)
679 return;
680
681 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
682 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
683
684 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
685 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
686 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
687 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
688
689 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
690 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
691 s->irq = irq;
692 memcpy(s->macaddr, nd->macaddr, 6);
693
694 ne2000_reset(s);
695
696 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
697
698 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
699 "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
700 s->macaddr[0],
701 s->macaddr[1],
702 s->macaddr[2],
703 s->macaddr[3],
704 s->macaddr[4],
705 s->macaddr[5]);
706
707 register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
708 }
709
710 /***********************************************************/
711 /* PCI NE2000 definitions */
712
713 typedef struct PCINE2000State {
714 PCIDevice dev;
715 NE2000State ne2000;
716 } PCINE2000State;
717
718 static void ne2000_map(PCIDevice *pci_dev, int region_num,
719 uint32_t addr, uint32_t size, int type)
720 {
721 PCINE2000State *d = (PCINE2000State *)pci_dev;
722 NE2000State *s = &d->ne2000;
723
724 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
725 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
726
727 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
728 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
729 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
730 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
731 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
732 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
733
734 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
735 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
736 }
737
738 void pci_ne2000_init(PCIBus *bus, NICInfo *nd)
739 {
740 PCINE2000State *d;
741 NE2000State *s;
742 uint8_t *pci_conf;
743
744 d = (PCINE2000State *)pci_register_device(bus,
745 "NE2000", sizeof(PCINE2000State),
746 -1,
747 NULL, NULL);
748 pci_conf = d->dev.config;
749 pci_conf[0x00] = 0xec; // Realtek 8029
750 pci_conf[0x01] = 0x10;
751 pci_conf[0x02] = 0x29;
752 pci_conf[0x03] = 0x80;
753 pci_conf[0x0a] = 0x00; // ethernet network controller
754 pci_conf[0x0b] = 0x02;
755 pci_conf[0x0e] = 0x00; // header_type
756 pci_conf[0x3d] = 1; // interrupt pin 0
757
758 pci_register_io_region(&d->dev, 0, 0x100,
759 PCI_ADDRESS_SPACE_IO, ne2000_map);
760 s = &d->ne2000;
761 s->irq = 16; // PCI interrupt
762 s->pci_dev = (PCIDevice *)d;
763 memcpy(s->macaddr, nd->macaddr, 6);
764 ne2000_reset(s);
765 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive, s);
766
767 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
768 "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
769 s->macaddr[0],
770 s->macaddr[1],
771 s->macaddr[2],
772 s->macaddr[3],
773 s->macaddr[4],
774 s->macaddr[5]);
775
776 /* XXX: instance number ? */
777 register_savevm("ne2000", 0, 1, ne2000_save, ne2000_load, s);
778 register_savevm("ne2000_pci", 0, 1, generic_pci_save, generic_pci_load,
779 &d->dev);
780 }