]> git.proxmox.com Git - mirror_qemu.git/blob - hw/net/cadence_gem.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / net / cadence_gem.c
1 /*
2 * QEMU Cadence GEM emulation
3 *
4 * Copyright (c) 2011 Xilinx, Inc.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include <zlib.h> /* For crc32 */
27
28 #include "hw/net/cadence_gem.h"
29 #include "qapi/error.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "sysemu/dma.h"
33 #include "net/checksum.h"
34
35 #ifdef CADENCE_GEM_ERR_DEBUG
36 #define DB_PRINT(...) do { \
37 fprintf(stderr, ": %s: ", __func__); \
38 fprintf(stderr, ## __VA_ARGS__); \
39 } while (0)
40 #else
41 #define DB_PRINT(...)
42 #endif
43
44 #define GEM_NWCTRL (0x00000000/4) /* Network Control reg */
45 #define GEM_NWCFG (0x00000004/4) /* Network Config reg */
46 #define GEM_NWSTATUS (0x00000008/4) /* Network Status reg */
47 #define GEM_USERIO (0x0000000C/4) /* User IO reg */
48 #define GEM_DMACFG (0x00000010/4) /* DMA Control reg */
49 #define GEM_TXSTATUS (0x00000014/4) /* TX Status reg */
50 #define GEM_RXQBASE (0x00000018/4) /* RX Q Base address reg */
51 #define GEM_TXQBASE (0x0000001C/4) /* TX Q Base address reg */
52 #define GEM_RXSTATUS (0x00000020/4) /* RX Status reg */
53 #define GEM_ISR (0x00000024/4) /* Interrupt Status reg */
54 #define GEM_IER (0x00000028/4) /* Interrupt Enable reg */
55 #define GEM_IDR (0x0000002C/4) /* Interrupt Disable reg */
56 #define GEM_IMR (0x00000030/4) /* Interrupt Mask reg */
57 #define GEM_PHYMNTNC (0x00000034/4) /* Phy Maintenance reg */
58 #define GEM_RXPAUSE (0x00000038/4) /* RX Pause Time reg */
59 #define GEM_TXPAUSE (0x0000003C/4) /* TX Pause Time reg */
60 #define GEM_TXPARTIALSF (0x00000040/4) /* TX Partial Store and Forward */
61 #define GEM_RXPARTIALSF (0x00000044/4) /* RX Partial Store and Forward */
62 #define GEM_HASHLO (0x00000080/4) /* Hash Low address reg */
63 #define GEM_HASHHI (0x00000084/4) /* Hash High address reg */
64 #define GEM_SPADDR1LO (0x00000088/4) /* Specific addr 1 low reg */
65 #define GEM_SPADDR1HI (0x0000008C/4) /* Specific addr 1 high reg */
66 #define GEM_SPADDR2LO (0x00000090/4) /* Specific addr 2 low reg */
67 #define GEM_SPADDR2HI (0x00000094/4) /* Specific addr 2 high reg */
68 #define GEM_SPADDR3LO (0x00000098/4) /* Specific addr 3 low reg */
69 #define GEM_SPADDR3HI (0x0000009C/4) /* Specific addr 3 high reg */
70 #define GEM_SPADDR4LO (0x000000A0/4) /* Specific addr 4 low reg */
71 #define GEM_SPADDR4HI (0x000000A4/4) /* Specific addr 4 high reg */
72 #define GEM_TIDMATCH1 (0x000000A8/4) /* Type ID1 Match reg */
73 #define GEM_TIDMATCH2 (0x000000AC/4) /* Type ID2 Match reg */
74 #define GEM_TIDMATCH3 (0x000000B0/4) /* Type ID3 Match reg */
75 #define GEM_TIDMATCH4 (0x000000B4/4) /* Type ID4 Match reg */
76 #define GEM_WOLAN (0x000000B8/4) /* Wake on LAN reg */
77 #define GEM_IPGSTRETCH (0x000000BC/4) /* IPG Stretch reg */
78 #define GEM_SVLAN (0x000000C0/4) /* Stacked VLAN reg */
79 #define GEM_MODID (0x000000FC/4) /* Module ID reg */
80 #define GEM_OCTTXLO (0x00000100/4) /* Octects transmitted Low reg */
81 #define GEM_OCTTXHI (0x00000104/4) /* Octects transmitted High reg */
82 #define GEM_TXCNT (0x00000108/4) /* Error-free Frames transmitted */
83 #define GEM_TXBCNT (0x0000010C/4) /* Error-free Broadcast Frames */
84 #define GEM_TXMCNT (0x00000110/4) /* Error-free Multicast Frame */
85 #define GEM_TXPAUSECNT (0x00000114/4) /* Pause Frames Transmitted */
86 #define GEM_TX64CNT (0x00000118/4) /* Error-free 64 TX */
87 #define GEM_TX65CNT (0x0000011C/4) /* Error-free 65-127 TX */
88 #define GEM_TX128CNT (0x00000120/4) /* Error-free 128-255 TX */
89 #define GEM_TX256CNT (0x00000124/4) /* Error-free 256-511 */
90 #define GEM_TX512CNT (0x00000128/4) /* Error-free 512-1023 TX */
91 #define GEM_TX1024CNT (0x0000012C/4) /* Error-free 1024-1518 TX */
92 #define GEM_TX1519CNT (0x00000130/4) /* Error-free larger than 1519 TX */
93 #define GEM_TXURUNCNT (0x00000134/4) /* TX under run error counter */
94 #define GEM_SINGLECOLLCNT (0x00000138/4) /* Single Collision Frames */
95 #define GEM_MULTCOLLCNT (0x0000013C/4) /* Multiple Collision Frames */
96 #define GEM_EXCESSCOLLCNT (0x00000140/4) /* Excessive Collision Frames */
97 #define GEM_LATECOLLCNT (0x00000144/4) /* Late Collision Frames */
98 #define GEM_DEFERTXCNT (0x00000148/4) /* Deferred Transmission Frames */
99 #define GEM_CSENSECNT (0x0000014C/4) /* Carrier Sense Error Counter */
100 #define GEM_OCTRXLO (0x00000150/4) /* Octects Received register Low */
101 #define GEM_OCTRXHI (0x00000154/4) /* Octects Received register High */
102 #define GEM_RXCNT (0x00000158/4) /* Error-free Frames Received */
103 #define GEM_RXBROADCNT (0x0000015C/4) /* Error-free Broadcast Frames RX */
104 #define GEM_RXMULTICNT (0x00000160/4) /* Error-free Multicast Frames RX */
105 #define GEM_RXPAUSECNT (0x00000164/4) /* Pause Frames Received Counter */
106 #define GEM_RX64CNT (0x00000168/4) /* Error-free 64 byte Frames RX */
107 #define GEM_RX65CNT (0x0000016C/4) /* Error-free 65-127B Frames RX */
108 #define GEM_RX128CNT (0x00000170/4) /* Error-free 128-255B Frames RX */
109 #define GEM_RX256CNT (0x00000174/4) /* Error-free 256-512B Frames RX */
110 #define GEM_RX512CNT (0x00000178/4) /* Error-free 512-1023B Frames RX */
111 #define GEM_RX1024CNT (0x0000017C/4) /* Error-free 1024-1518B Frames RX */
112 #define GEM_RX1519CNT (0x00000180/4) /* Error-free 1519-max Frames RX */
113 #define GEM_RXUNDERCNT (0x00000184/4) /* Undersize Frames Received */
114 #define GEM_RXOVERCNT (0x00000188/4) /* Oversize Frames Received */
115 #define GEM_RXJABCNT (0x0000018C/4) /* Jabbers Received Counter */
116 #define GEM_RXFCSCNT (0x00000190/4) /* Frame Check seq. Error Counter */
117 #define GEM_RXLENERRCNT (0x00000194/4) /* Length Field Error Counter */
118 #define GEM_RXSYMERRCNT (0x00000198/4) /* Symbol Error Counter */
119 #define GEM_RXALIGNERRCNT (0x0000019C/4) /* Alignment Error Counter */
120 #define GEM_RXRSCERRCNT (0x000001A0/4) /* Receive Resource Error Counter */
121 #define GEM_RXORUNCNT (0x000001A4/4) /* Receive Overrun Counter */
122 #define GEM_RXIPCSERRCNT (0x000001A8/4) /* IP header Checksum Error Counter */
123 #define GEM_RXTCPCCNT (0x000001AC/4) /* TCP Checksum Error Counter */
124 #define GEM_RXUDPCCNT (0x000001B0/4) /* UDP Checksum Error Counter */
125
126 #define GEM_1588S (0x000001D0/4) /* 1588 Timer Seconds */
127 #define GEM_1588NS (0x000001D4/4) /* 1588 Timer Nanoseconds */
128 #define GEM_1588ADJ (0x000001D8/4) /* 1588 Timer Adjust */
129 #define GEM_1588INC (0x000001DC/4) /* 1588 Timer Increment */
130 #define GEM_PTPETXS (0x000001E0/4) /* PTP Event Frame Transmitted (s) */
131 #define GEM_PTPETXNS (0x000001E4/4) /* PTP Event Frame Transmitted (ns) */
132 #define GEM_PTPERXS (0x000001E8/4) /* PTP Event Frame Received (s) */
133 #define GEM_PTPERXNS (0x000001EC/4) /* PTP Event Frame Received (ns) */
134 #define GEM_PTPPTXS (0x000001E0/4) /* PTP Peer Frame Transmitted (s) */
135 #define GEM_PTPPTXNS (0x000001E4/4) /* PTP Peer Frame Transmitted (ns) */
136 #define GEM_PTPPRXS (0x000001E8/4) /* PTP Peer Frame Received (s) */
137 #define GEM_PTPPRXNS (0x000001EC/4) /* PTP Peer Frame Received (ns) */
138
139 /* Design Configuration Registers */
140 #define GEM_DESCONF (0x00000280/4)
141 #define GEM_DESCONF2 (0x00000284/4)
142 #define GEM_DESCONF3 (0x00000288/4)
143 #define GEM_DESCONF4 (0x0000028C/4)
144 #define GEM_DESCONF5 (0x00000290/4)
145 #define GEM_DESCONF6 (0x00000294/4)
146 #define GEM_DESCONF6_64B_MASK (1U << 23)
147 #define GEM_DESCONF7 (0x00000298/4)
148
149 #define GEM_INT_Q1_STATUS (0x00000400 / 4)
150 #define GEM_INT_Q1_MASK (0x00000640 / 4)
151
152 #define GEM_TRANSMIT_Q1_PTR (0x00000440 / 4)
153 #define GEM_TRANSMIT_Q7_PTR (GEM_TRANSMIT_Q1_PTR + 6)
154
155 #define GEM_RECEIVE_Q1_PTR (0x00000480 / 4)
156 #define GEM_RECEIVE_Q7_PTR (GEM_RECEIVE_Q1_PTR + 6)
157
158 #define GEM_TBQPH (0x000004C8 / 4)
159 #define GEM_RBQPH (0x000004D4 / 4)
160
161 #define GEM_INT_Q1_ENABLE (0x00000600 / 4)
162 #define GEM_INT_Q7_ENABLE (GEM_INT_Q1_ENABLE + 6)
163
164 #define GEM_INT_Q1_DISABLE (0x00000620 / 4)
165 #define GEM_INT_Q7_DISABLE (GEM_INT_Q1_DISABLE + 6)
166
167 #define GEM_INT_Q1_MASK (0x00000640 / 4)
168 #define GEM_INT_Q7_MASK (GEM_INT_Q1_MASK + 6)
169
170 #define GEM_SCREENING_TYPE1_REGISTER_0 (0x00000500 / 4)
171
172 #define GEM_ST1R_UDP_PORT_MATCH_ENABLE (1 << 29)
173 #define GEM_ST1R_DSTC_ENABLE (1 << 28)
174 #define GEM_ST1R_UDP_PORT_MATCH_SHIFT (12)
175 #define GEM_ST1R_UDP_PORT_MATCH_WIDTH (27 - GEM_ST1R_UDP_PORT_MATCH_SHIFT + 1)
176 #define GEM_ST1R_DSTC_MATCH_SHIFT (4)
177 #define GEM_ST1R_DSTC_MATCH_WIDTH (11 - GEM_ST1R_DSTC_MATCH_SHIFT + 1)
178 #define GEM_ST1R_QUEUE_SHIFT (0)
179 #define GEM_ST1R_QUEUE_WIDTH (3 - GEM_ST1R_QUEUE_SHIFT + 1)
180
181 #define GEM_SCREENING_TYPE2_REGISTER_0 (0x00000540 / 4)
182
183 #define GEM_ST2R_COMPARE_A_ENABLE (1 << 18)
184 #define GEM_ST2R_COMPARE_A_SHIFT (13)
185 #define GEM_ST2R_COMPARE_WIDTH (17 - GEM_ST2R_COMPARE_A_SHIFT + 1)
186 #define GEM_ST2R_ETHERTYPE_ENABLE (1 << 12)
187 #define GEM_ST2R_ETHERTYPE_INDEX_SHIFT (9)
188 #define GEM_ST2R_ETHERTYPE_INDEX_WIDTH (11 - GEM_ST2R_ETHERTYPE_INDEX_SHIFT \
189 + 1)
190 #define GEM_ST2R_QUEUE_SHIFT (0)
191 #define GEM_ST2R_QUEUE_WIDTH (3 - GEM_ST2R_QUEUE_SHIFT + 1)
192
193 #define GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 (0x000006e0 / 4)
194 #define GEM_TYPE2_COMPARE_0_WORD_0 (0x00000700 / 4)
195
196 #define GEM_T2CW1_COMPARE_OFFSET_SHIFT (7)
197 #define GEM_T2CW1_COMPARE_OFFSET_WIDTH (8 - GEM_T2CW1_COMPARE_OFFSET_SHIFT + 1)
198 #define GEM_T2CW1_OFFSET_VALUE_SHIFT (0)
199 #define GEM_T2CW1_OFFSET_VALUE_WIDTH (6 - GEM_T2CW1_OFFSET_VALUE_SHIFT + 1)
200
201 /*****************************************/
202 #define GEM_NWCTRL_TXSTART 0x00000200 /* Transmit Enable */
203 #define GEM_NWCTRL_TXENA 0x00000008 /* Transmit Enable */
204 #define GEM_NWCTRL_RXENA 0x00000004 /* Receive Enable */
205 #define GEM_NWCTRL_LOCALLOOP 0x00000002 /* Local Loopback */
206
207 #define GEM_NWCFG_STRIP_FCS 0x00020000 /* Strip FCS field */
208 #define GEM_NWCFG_LERR_DISC 0x00010000 /* Discard RX frames with len err */
209 #define GEM_NWCFG_BUFF_OFST_M 0x0000C000 /* Receive buffer offset mask */
210 #define GEM_NWCFG_BUFF_OFST_S 14 /* Receive buffer offset shift */
211 #define GEM_NWCFG_UCAST_HASH 0x00000080 /* accept unicast if hash match */
212 #define GEM_NWCFG_MCAST_HASH 0x00000040 /* accept multicast if hash match */
213 #define GEM_NWCFG_BCAST_REJ 0x00000020 /* Reject broadcast packets */
214 #define GEM_NWCFG_PROMISC 0x00000010 /* Accept all packets */
215
216 #define GEM_DMACFG_ADDR_64B (1U << 30)
217 #define GEM_DMACFG_TX_BD_EXT (1U << 29)
218 #define GEM_DMACFG_RX_BD_EXT (1U << 28)
219 #define GEM_DMACFG_RBUFSZ_M 0x00FF0000 /* DMA RX Buffer Size mask */
220 #define GEM_DMACFG_RBUFSZ_S 16 /* DMA RX Buffer Size shift */
221 #define GEM_DMACFG_RBUFSZ_MUL 64 /* DMA RX Buffer Size multiplier */
222 #define GEM_DMACFG_TXCSUM_OFFL 0x00000800 /* Transmit checksum offload */
223
224 #define GEM_TXSTATUS_TXCMPL 0x00000020 /* Transmit Complete */
225 #define GEM_TXSTATUS_USED 0x00000001 /* sw owned descriptor encountered */
226
227 #define GEM_RXSTATUS_FRMRCVD 0x00000002 /* Frame received */
228 #define GEM_RXSTATUS_NOBUF 0x00000001 /* Buffer unavailable */
229
230 /* GEM_ISR GEM_IER GEM_IDR GEM_IMR */
231 #define GEM_INT_TXCMPL 0x00000080 /* Transmit Complete */
232 #define GEM_INT_TXUSED 0x00000008
233 #define GEM_INT_RXUSED 0x00000004
234 #define GEM_INT_RXCMPL 0x00000002
235
236 #define GEM_PHYMNTNC_OP_R 0x20000000 /* read operation */
237 #define GEM_PHYMNTNC_OP_W 0x10000000 /* write operation */
238 #define GEM_PHYMNTNC_ADDR 0x0F800000 /* Address bits */
239 #define GEM_PHYMNTNC_ADDR_SHFT 23
240 #define GEM_PHYMNTNC_REG 0x007C0000 /* register bits */
241 #define GEM_PHYMNTNC_REG_SHIFT 18
242
243 /* Marvell PHY definitions */
244 #define BOARD_PHY_ADDRESS 23 /* PHY address we will emulate a device at */
245
246 #define PHY_REG_CONTROL 0
247 #define PHY_REG_STATUS 1
248 #define PHY_REG_PHYID1 2
249 #define PHY_REG_PHYID2 3
250 #define PHY_REG_ANEGADV 4
251 #define PHY_REG_LINKPABIL 5
252 #define PHY_REG_ANEGEXP 6
253 #define PHY_REG_NEXTP 7
254 #define PHY_REG_LINKPNEXTP 8
255 #define PHY_REG_100BTCTRL 9
256 #define PHY_REG_1000BTSTAT 10
257 #define PHY_REG_EXTSTAT 15
258 #define PHY_REG_PHYSPCFC_CTL 16
259 #define PHY_REG_PHYSPCFC_ST 17
260 #define PHY_REG_INT_EN 18
261 #define PHY_REG_INT_ST 19
262 #define PHY_REG_EXT_PHYSPCFC_CTL 20
263 #define PHY_REG_RXERR 21
264 #define PHY_REG_EACD 22
265 #define PHY_REG_LED 24
266 #define PHY_REG_LED_OVRD 25
267 #define PHY_REG_EXT_PHYSPCFC_CTL2 26
268 #define PHY_REG_EXT_PHYSPCFC_ST 27
269 #define PHY_REG_CABLE_DIAG 28
270
271 #define PHY_REG_CONTROL_RST 0x8000
272 #define PHY_REG_CONTROL_LOOP 0x4000
273 #define PHY_REG_CONTROL_ANEG 0x1000
274
275 #define PHY_REG_STATUS_LINK 0x0004
276 #define PHY_REG_STATUS_ANEGCMPL 0x0020
277
278 #define PHY_REG_INT_ST_ANEGCMPL 0x0800
279 #define PHY_REG_INT_ST_LINKC 0x0400
280 #define PHY_REG_INT_ST_ENERGY 0x0010
281
282 /***********************************************************************/
283 #define GEM_RX_REJECT (-1)
284 #define GEM_RX_PROMISCUOUS_ACCEPT (-2)
285 #define GEM_RX_BROADCAST_ACCEPT (-3)
286 #define GEM_RX_MULTICAST_HASH_ACCEPT (-4)
287 #define GEM_RX_UNICAST_HASH_ACCEPT (-5)
288
289 #define GEM_RX_SAR_ACCEPT 0
290
291 /***********************************************************************/
292
293 #define DESC_1_USED 0x80000000
294 #define DESC_1_LENGTH 0x00001FFF
295
296 #define DESC_1_TX_WRAP 0x40000000
297 #define DESC_1_TX_LAST 0x00008000
298
299 #define DESC_0_RX_WRAP 0x00000002
300 #define DESC_0_RX_OWNERSHIP 0x00000001
301
302 #define R_DESC_1_RX_SAR_SHIFT 25
303 #define R_DESC_1_RX_SAR_LENGTH 2
304 #define R_DESC_1_RX_SAR_MATCH (1 << 27)
305 #define R_DESC_1_RX_UNICAST_HASH (1 << 29)
306 #define R_DESC_1_RX_MULTICAST_HASH (1 << 30)
307 #define R_DESC_1_RX_BROADCAST (1 << 31)
308
309 #define DESC_1_RX_SOF 0x00004000
310 #define DESC_1_RX_EOF 0x00008000
311
312 #define GEM_MODID_VALUE 0x00020118
313
314 static inline uint64_t tx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
315 {
316 uint64_t ret = desc[0];
317
318 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
319 ret |= (uint64_t)desc[2] << 32;
320 }
321 return ret;
322 }
323
324 static inline unsigned tx_desc_get_used(uint32_t *desc)
325 {
326 return (desc[1] & DESC_1_USED) ? 1 : 0;
327 }
328
329 static inline void tx_desc_set_used(uint32_t *desc)
330 {
331 desc[1] |= DESC_1_USED;
332 }
333
334 static inline unsigned tx_desc_get_wrap(uint32_t *desc)
335 {
336 return (desc[1] & DESC_1_TX_WRAP) ? 1 : 0;
337 }
338
339 static inline unsigned tx_desc_get_last(uint32_t *desc)
340 {
341 return (desc[1] & DESC_1_TX_LAST) ? 1 : 0;
342 }
343
344 static inline void tx_desc_set_last(uint32_t *desc)
345 {
346 desc[1] |= DESC_1_TX_LAST;
347 }
348
349 static inline unsigned tx_desc_get_length(uint32_t *desc)
350 {
351 return desc[1] & DESC_1_LENGTH;
352 }
353
354 static inline void print_gem_tx_desc(uint32_t *desc, uint8_t queue)
355 {
356 DB_PRINT("TXDESC (queue %" PRId8 "):\n", queue);
357 DB_PRINT("bufaddr: 0x%08x\n", *desc);
358 DB_PRINT("used_hw: %d\n", tx_desc_get_used(desc));
359 DB_PRINT("wrap: %d\n", tx_desc_get_wrap(desc));
360 DB_PRINT("last: %d\n", tx_desc_get_last(desc));
361 DB_PRINT("length: %d\n", tx_desc_get_length(desc));
362 }
363
364 static inline uint64_t rx_desc_get_buffer(CadenceGEMState *s, uint32_t *desc)
365 {
366 uint64_t ret = desc[0] & ~0x3UL;
367
368 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
369 ret |= (uint64_t)desc[2] << 32;
370 }
371 return ret;
372 }
373
374 static inline int gem_get_desc_len(CadenceGEMState *s, bool rx_n_tx)
375 {
376 int ret = 2;
377
378 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
379 ret += 2;
380 }
381 if (s->regs[GEM_DMACFG] & (rx_n_tx ? GEM_DMACFG_RX_BD_EXT
382 : GEM_DMACFG_TX_BD_EXT)) {
383 ret += 2;
384 }
385
386 assert(ret <= DESC_MAX_NUM_WORDS);
387 return ret;
388 }
389
390 static inline unsigned rx_desc_get_wrap(uint32_t *desc)
391 {
392 return desc[0] & DESC_0_RX_WRAP ? 1 : 0;
393 }
394
395 static inline unsigned rx_desc_get_ownership(uint32_t *desc)
396 {
397 return desc[0] & DESC_0_RX_OWNERSHIP ? 1 : 0;
398 }
399
400 static inline void rx_desc_set_ownership(uint32_t *desc)
401 {
402 desc[0] |= DESC_0_RX_OWNERSHIP;
403 }
404
405 static inline void rx_desc_set_sof(uint32_t *desc)
406 {
407 desc[1] |= DESC_1_RX_SOF;
408 }
409
410 static inline void rx_desc_set_eof(uint32_t *desc)
411 {
412 desc[1] |= DESC_1_RX_EOF;
413 }
414
415 static inline void rx_desc_set_length(uint32_t *desc, unsigned len)
416 {
417 desc[1] &= ~DESC_1_LENGTH;
418 desc[1] |= len;
419 }
420
421 static inline void rx_desc_set_broadcast(uint32_t *desc)
422 {
423 desc[1] |= R_DESC_1_RX_BROADCAST;
424 }
425
426 static inline void rx_desc_set_unicast_hash(uint32_t *desc)
427 {
428 desc[1] |= R_DESC_1_RX_UNICAST_HASH;
429 }
430
431 static inline void rx_desc_set_multicast_hash(uint32_t *desc)
432 {
433 desc[1] |= R_DESC_1_RX_MULTICAST_HASH;
434 }
435
436 static inline void rx_desc_set_sar(uint32_t *desc, int sar_idx)
437 {
438 desc[1] = deposit32(desc[1], R_DESC_1_RX_SAR_SHIFT, R_DESC_1_RX_SAR_LENGTH,
439 sar_idx);
440 desc[1] |= R_DESC_1_RX_SAR_MATCH;
441 }
442
443 /* The broadcast MAC address: 0xFFFFFFFFFFFF */
444 static const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
445
446 /*
447 * gem_init_register_masks:
448 * One time initialization.
449 * Set masks to identify which register bits have magical clear properties
450 */
451 static void gem_init_register_masks(CadenceGEMState *s)
452 {
453 /* Mask of register bits which are read only */
454 memset(&s->regs_ro[0], 0, sizeof(s->regs_ro));
455 s->regs_ro[GEM_NWCTRL] = 0xFFF80000;
456 s->regs_ro[GEM_NWSTATUS] = 0xFFFFFFFF;
457 s->regs_ro[GEM_DMACFG] = 0x8E00F000;
458 s->regs_ro[GEM_TXSTATUS] = 0xFFFFFE08;
459 s->regs_ro[GEM_RXQBASE] = 0x00000003;
460 s->regs_ro[GEM_TXQBASE] = 0x00000003;
461 s->regs_ro[GEM_RXSTATUS] = 0xFFFFFFF0;
462 s->regs_ro[GEM_ISR] = 0xFFFFFFFF;
463 s->regs_ro[GEM_IMR] = 0xFFFFFFFF;
464 s->regs_ro[GEM_MODID] = 0xFFFFFFFF;
465
466 /* Mask of register bits which are clear on read */
467 memset(&s->regs_rtc[0], 0, sizeof(s->regs_rtc));
468 s->regs_rtc[GEM_ISR] = 0xFFFFFFFF;
469
470 /* Mask of register bits which are write 1 to clear */
471 memset(&s->regs_w1c[0], 0, sizeof(s->regs_w1c));
472 s->regs_w1c[GEM_TXSTATUS] = 0x000001F7;
473 s->regs_w1c[GEM_RXSTATUS] = 0x0000000F;
474
475 /* Mask of register bits which are write only */
476 memset(&s->regs_wo[0], 0, sizeof(s->regs_wo));
477 s->regs_wo[GEM_NWCTRL] = 0x00073E60;
478 s->regs_wo[GEM_IER] = 0x07FFFFFF;
479 s->regs_wo[GEM_IDR] = 0x07FFFFFF;
480 }
481
482 /*
483 * phy_update_link:
484 * Make the emulated PHY link state match the QEMU "interface" state.
485 */
486 static void phy_update_link(CadenceGEMState *s)
487 {
488 DB_PRINT("down %d\n", qemu_get_queue(s->nic)->link_down);
489
490 /* Autonegotiation status mirrors link status. */
491 if (qemu_get_queue(s->nic)->link_down) {
492 s->phy_regs[PHY_REG_STATUS] &= ~(PHY_REG_STATUS_ANEGCMPL |
493 PHY_REG_STATUS_LINK);
494 s->phy_regs[PHY_REG_INT_ST] |= PHY_REG_INT_ST_LINKC;
495 } else {
496 s->phy_regs[PHY_REG_STATUS] |= (PHY_REG_STATUS_ANEGCMPL |
497 PHY_REG_STATUS_LINK);
498 s->phy_regs[PHY_REG_INT_ST] |= (PHY_REG_INT_ST_LINKC |
499 PHY_REG_INT_ST_ANEGCMPL |
500 PHY_REG_INT_ST_ENERGY);
501 }
502 }
503
504 static int gem_can_receive(NetClientState *nc)
505 {
506 CadenceGEMState *s;
507 int i;
508
509 s = qemu_get_nic_opaque(nc);
510
511 /* Do nothing if receive is not enabled. */
512 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_RXENA)) {
513 if (s->can_rx_state != 1) {
514 s->can_rx_state = 1;
515 DB_PRINT("can't receive - no enable\n");
516 }
517 return 0;
518 }
519
520 for (i = 0; i < s->num_priority_queues; i++) {
521 if (rx_desc_get_ownership(s->rx_desc[i]) != 1) {
522 break;
523 }
524 };
525
526 if (i == s->num_priority_queues) {
527 if (s->can_rx_state != 2) {
528 s->can_rx_state = 2;
529 DB_PRINT("can't receive - all the buffer descriptors are busy\n");
530 }
531 return 0;
532 }
533
534 if (s->can_rx_state != 0) {
535 s->can_rx_state = 0;
536 DB_PRINT("can receive\n");
537 }
538 return 1;
539 }
540
541 /*
542 * gem_update_int_status:
543 * Raise or lower interrupt based on current status.
544 */
545 static void gem_update_int_status(CadenceGEMState *s)
546 {
547 int i;
548
549 if (!s->regs[GEM_ISR]) {
550 /* ISR isn't set, clear all the interrupts */
551 for (i = 0; i < s->num_priority_queues; ++i) {
552 qemu_set_irq(s->irq[i], 0);
553 }
554 return;
555 }
556
557 /* If we get here we know s->regs[GEM_ISR] is set, so we don't need to
558 * check it again.
559 */
560 if (s->num_priority_queues == 1) {
561 /* No priority queues, just trigger the interrupt */
562 DB_PRINT("asserting int.\n");
563 qemu_set_irq(s->irq[0], 1);
564 return;
565 }
566
567 for (i = 0; i < s->num_priority_queues; ++i) {
568 if (s->regs[GEM_INT_Q1_STATUS + i]) {
569 DB_PRINT("asserting int. (q=%d)\n", i);
570 qemu_set_irq(s->irq[i], 1);
571 }
572 }
573 }
574
575 /*
576 * gem_receive_updatestats:
577 * Increment receive statistics.
578 */
579 static void gem_receive_updatestats(CadenceGEMState *s, const uint8_t *packet,
580 unsigned bytes)
581 {
582 uint64_t octets;
583
584 /* Total octets (bytes) received */
585 octets = ((uint64_t)(s->regs[GEM_OCTRXLO]) << 32) |
586 s->regs[GEM_OCTRXHI];
587 octets += bytes;
588 s->regs[GEM_OCTRXLO] = octets >> 32;
589 s->regs[GEM_OCTRXHI] = octets;
590
591 /* Error-free Frames received */
592 s->regs[GEM_RXCNT]++;
593
594 /* Error-free Broadcast Frames counter */
595 if (!memcmp(packet, broadcast_addr, 6)) {
596 s->regs[GEM_RXBROADCNT]++;
597 }
598
599 /* Error-free Multicast Frames counter */
600 if (packet[0] == 0x01) {
601 s->regs[GEM_RXMULTICNT]++;
602 }
603
604 if (bytes <= 64) {
605 s->regs[GEM_RX64CNT]++;
606 } else if (bytes <= 127) {
607 s->regs[GEM_RX65CNT]++;
608 } else if (bytes <= 255) {
609 s->regs[GEM_RX128CNT]++;
610 } else if (bytes <= 511) {
611 s->regs[GEM_RX256CNT]++;
612 } else if (bytes <= 1023) {
613 s->regs[GEM_RX512CNT]++;
614 } else if (bytes <= 1518) {
615 s->regs[GEM_RX1024CNT]++;
616 } else {
617 s->regs[GEM_RX1519CNT]++;
618 }
619 }
620
621 /*
622 * Get the MAC Address bit from the specified position
623 */
624 static unsigned get_bit(const uint8_t *mac, unsigned bit)
625 {
626 unsigned byte;
627
628 byte = mac[bit / 8];
629 byte >>= (bit & 0x7);
630 byte &= 1;
631
632 return byte;
633 }
634
635 /*
636 * Calculate a GEM MAC Address hash index
637 */
638 static unsigned calc_mac_hash(const uint8_t *mac)
639 {
640 int index_bit, mac_bit;
641 unsigned hash_index;
642
643 hash_index = 0;
644 mac_bit = 5;
645 for (index_bit = 5; index_bit >= 0; index_bit--) {
646 hash_index |= (get_bit(mac, mac_bit) ^
647 get_bit(mac, mac_bit + 6) ^
648 get_bit(mac, mac_bit + 12) ^
649 get_bit(mac, mac_bit + 18) ^
650 get_bit(mac, mac_bit + 24) ^
651 get_bit(mac, mac_bit + 30) ^
652 get_bit(mac, mac_bit + 36) ^
653 get_bit(mac, mac_bit + 42)) << index_bit;
654 mac_bit--;
655 }
656
657 return hash_index;
658 }
659
660 /*
661 * gem_mac_address_filter:
662 * Accept or reject this destination address?
663 * Returns:
664 * GEM_RX_REJECT: reject
665 * >= 0: Specific address accept (which matched SAR is returned)
666 * others for various other modes of accept:
667 * GEM_RM_PROMISCUOUS_ACCEPT, GEM_RX_BROADCAST_ACCEPT,
668 * GEM_RX_MULTICAST_HASH_ACCEPT or GEM_RX_UNICAST_HASH_ACCEPT
669 */
670 static int gem_mac_address_filter(CadenceGEMState *s, const uint8_t *packet)
671 {
672 uint8_t *gem_spaddr;
673 int i;
674
675 /* Promiscuous mode? */
676 if (s->regs[GEM_NWCFG] & GEM_NWCFG_PROMISC) {
677 return GEM_RX_PROMISCUOUS_ACCEPT;
678 }
679
680 if (!memcmp(packet, broadcast_addr, 6)) {
681 /* Reject broadcast packets? */
682 if (s->regs[GEM_NWCFG] & GEM_NWCFG_BCAST_REJ) {
683 return GEM_RX_REJECT;
684 }
685 return GEM_RX_BROADCAST_ACCEPT;
686 }
687
688 /* Accept packets -w- hash match? */
689 if ((packet[0] == 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_MCAST_HASH)) ||
690 (packet[0] != 0x01 && (s->regs[GEM_NWCFG] & GEM_NWCFG_UCAST_HASH))) {
691 unsigned hash_index;
692
693 hash_index = calc_mac_hash(packet);
694 if (hash_index < 32) {
695 if (s->regs[GEM_HASHLO] & (1<<hash_index)) {
696 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
697 GEM_RX_UNICAST_HASH_ACCEPT;
698 }
699 } else {
700 hash_index -= 32;
701 if (s->regs[GEM_HASHHI] & (1<<hash_index)) {
702 return packet[0] == 0x01 ? GEM_RX_MULTICAST_HASH_ACCEPT :
703 GEM_RX_UNICAST_HASH_ACCEPT;
704 }
705 }
706 }
707
708 /* Check all 4 specific addresses */
709 gem_spaddr = (uint8_t *)&(s->regs[GEM_SPADDR1LO]);
710 for (i = 3; i >= 0; i--) {
711 if (s->sar_active[i] && !memcmp(packet, gem_spaddr + 8 * i, 6)) {
712 return GEM_RX_SAR_ACCEPT + i;
713 }
714 }
715
716 /* No address match; reject the packet */
717 return GEM_RX_REJECT;
718 }
719
720 /* Figure out which queue the received data should be sent to */
721 static int get_queue_from_screen(CadenceGEMState *s, uint8_t *rxbuf_ptr,
722 unsigned rxbufsize)
723 {
724 uint32_t reg;
725 bool matched, mismatched;
726 int i, j;
727
728 for (i = 0; i < s->num_type1_screeners; i++) {
729 reg = s->regs[GEM_SCREENING_TYPE1_REGISTER_0 + i];
730 matched = false;
731 mismatched = false;
732
733 /* Screening is based on UDP Port */
734 if (reg & GEM_ST1R_UDP_PORT_MATCH_ENABLE) {
735 uint16_t udp_port = rxbuf_ptr[14 + 22] << 8 | rxbuf_ptr[14 + 23];
736 if (udp_port == extract32(reg, GEM_ST1R_UDP_PORT_MATCH_SHIFT,
737 GEM_ST1R_UDP_PORT_MATCH_WIDTH)) {
738 matched = true;
739 } else {
740 mismatched = true;
741 }
742 }
743
744 /* Screening is based on DS/TC */
745 if (reg & GEM_ST1R_DSTC_ENABLE) {
746 uint8_t dscp = rxbuf_ptr[14 + 1];
747 if (dscp == extract32(reg, GEM_ST1R_DSTC_MATCH_SHIFT,
748 GEM_ST1R_DSTC_MATCH_WIDTH)) {
749 matched = true;
750 } else {
751 mismatched = true;
752 }
753 }
754
755 if (matched && !mismatched) {
756 return extract32(reg, GEM_ST1R_QUEUE_SHIFT, GEM_ST1R_QUEUE_WIDTH);
757 }
758 }
759
760 for (i = 0; i < s->num_type2_screeners; i++) {
761 reg = s->regs[GEM_SCREENING_TYPE2_REGISTER_0 + i];
762 matched = false;
763 mismatched = false;
764
765 if (reg & GEM_ST2R_ETHERTYPE_ENABLE) {
766 uint16_t type = rxbuf_ptr[12] << 8 | rxbuf_ptr[13];
767 int et_idx = extract32(reg, GEM_ST2R_ETHERTYPE_INDEX_SHIFT,
768 GEM_ST2R_ETHERTYPE_INDEX_WIDTH);
769
770 if (et_idx > s->num_type2_screeners) {
771 qemu_log_mask(LOG_GUEST_ERROR, "Out of range ethertype "
772 "register index: %d\n", et_idx);
773 }
774 if (type == s->regs[GEM_SCREENING_TYPE2_ETHERTYPE_REG_0 +
775 et_idx]) {
776 matched = true;
777 } else {
778 mismatched = true;
779 }
780 }
781
782 /* Compare A, B, C */
783 for (j = 0; j < 3; j++) {
784 uint32_t cr0, cr1, mask;
785 uint16_t rx_cmp;
786 int offset;
787 int cr_idx = extract32(reg, GEM_ST2R_COMPARE_A_SHIFT + j * 6,
788 GEM_ST2R_COMPARE_WIDTH);
789
790 if (!(reg & (GEM_ST2R_COMPARE_A_ENABLE << (j * 6)))) {
791 continue;
792 }
793 if (cr_idx > s->num_type2_screeners) {
794 qemu_log_mask(LOG_GUEST_ERROR, "Out of range compare "
795 "register index: %d\n", cr_idx);
796 }
797
798 cr0 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2];
799 cr1 = s->regs[GEM_TYPE2_COMPARE_0_WORD_0 + cr_idx * 2 + 1];
800 offset = extract32(cr1, GEM_T2CW1_OFFSET_VALUE_SHIFT,
801 GEM_T2CW1_OFFSET_VALUE_WIDTH);
802
803 switch (extract32(cr1, GEM_T2CW1_COMPARE_OFFSET_SHIFT,
804 GEM_T2CW1_COMPARE_OFFSET_WIDTH)) {
805 case 3: /* Skip UDP header */
806 qemu_log_mask(LOG_UNIMP, "TCP compare offsets"
807 "unimplemented - assuming UDP\n");
808 offset += 8;
809 /* Fallthrough */
810 case 2: /* skip the IP header */
811 offset += 20;
812 /* Fallthrough */
813 case 1: /* Count from after the ethertype */
814 offset += 14;
815 break;
816 case 0:
817 /* Offset from start of frame */
818 break;
819 }
820
821 rx_cmp = rxbuf_ptr[offset] << 8 | rxbuf_ptr[offset];
822 mask = extract32(cr0, 0, 16);
823
824 if ((rx_cmp & mask) == (extract32(cr0, 16, 16) & mask)) {
825 matched = true;
826 } else {
827 mismatched = true;
828 }
829 }
830
831 if (matched && !mismatched) {
832 return extract32(reg, GEM_ST2R_QUEUE_SHIFT, GEM_ST2R_QUEUE_WIDTH);
833 }
834 }
835
836 /* We made it here, assume it's queue 0 */
837 return 0;
838 }
839
840 static hwaddr gem_get_desc_addr(CadenceGEMState *s, bool tx, int q)
841 {
842 hwaddr desc_addr = 0;
843
844 if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
845 desc_addr = s->regs[tx ? GEM_TBQPH : GEM_RBQPH];
846 }
847 desc_addr <<= 32;
848 desc_addr |= tx ? s->tx_desc_addr[q] : s->rx_desc_addr[q];
849 return desc_addr;
850 }
851
852 static hwaddr gem_get_tx_desc_addr(CadenceGEMState *s, int q)
853 {
854 return gem_get_desc_addr(s, true, q);
855 }
856
857 static hwaddr gem_get_rx_desc_addr(CadenceGEMState *s, int q)
858 {
859 return gem_get_desc_addr(s, false, q);
860 }
861
862 static void gem_get_rx_desc(CadenceGEMState *s, int q)
863 {
864 hwaddr desc_addr = gem_get_rx_desc_addr(s, q);
865
866 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", desc_addr);
867
868 /* read current descriptor */
869 address_space_read(&s->dma_as, desc_addr, MEMTXATTRS_UNSPECIFIED,
870 (uint8_t *)s->rx_desc[q],
871 sizeof(uint32_t) * gem_get_desc_len(s, true));
872
873 /* Descriptor owned by software ? */
874 if (rx_desc_get_ownership(s->rx_desc[q]) == 1) {
875 DB_PRINT("descriptor 0x%" HWADDR_PRIx " owned by sw.\n", desc_addr);
876 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_NOBUF;
877 s->regs[GEM_ISR] |= GEM_INT_RXUSED & ~(s->regs[GEM_IMR]);
878 /* Handle interrupt consequences */
879 gem_update_int_status(s);
880 }
881 }
882
883 /*
884 * gem_receive:
885 * Fit a packet handed to us by QEMU into the receive descriptor ring.
886 */
887 static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
888 {
889 CadenceGEMState *s;
890 unsigned rxbufsize, bytes_to_copy;
891 unsigned rxbuf_offset;
892 uint8_t rxbuf[2048];
893 uint8_t *rxbuf_ptr;
894 bool first_desc = true;
895 int maf;
896 int q = 0;
897
898 s = qemu_get_nic_opaque(nc);
899
900 /* Is this destination MAC address "for us" ? */
901 maf = gem_mac_address_filter(s, buf);
902 if (maf == GEM_RX_REJECT) {
903 return -1;
904 }
905
906 /* Discard packets with receive length error enabled ? */
907 if (s->regs[GEM_NWCFG] & GEM_NWCFG_LERR_DISC) {
908 unsigned type_len;
909
910 /* Fish the ethertype / length field out of the RX packet */
911 type_len = buf[12] << 8 | buf[13];
912 /* It is a length field, not an ethertype */
913 if (type_len < 0x600) {
914 if (size < type_len) {
915 /* discard */
916 return -1;
917 }
918 }
919 }
920
921 /*
922 * Determine configured receive buffer offset (probably 0)
923 */
924 rxbuf_offset = (s->regs[GEM_NWCFG] & GEM_NWCFG_BUFF_OFST_M) >>
925 GEM_NWCFG_BUFF_OFST_S;
926
927 /* The configure size of each receive buffer. Determines how many
928 * buffers needed to hold this packet.
929 */
930 rxbufsize = ((s->regs[GEM_DMACFG] & GEM_DMACFG_RBUFSZ_M) >>
931 GEM_DMACFG_RBUFSZ_S) * GEM_DMACFG_RBUFSZ_MUL;
932 bytes_to_copy = size;
933
934 /* Hardware allows a zero value here but warns against it. To avoid QEMU
935 * indefinite loops we enforce a minimum value here
936 */
937 if (rxbufsize < GEM_DMACFG_RBUFSZ_MUL) {
938 rxbufsize = GEM_DMACFG_RBUFSZ_MUL;
939 }
940
941 /* Pad to minimum length. Assume FCS field is stripped, logic
942 * below will increment it to the real minimum of 64 when
943 * not FCS stripping
944 */
945 if (size < 60) {
946 size = 60;
947 }
948
949 /* Strip of FCS field ? (usually yes) */
950 if (s->regs[GEM_NWCFG] & GEM_NWCFG_STRIP_FCS) {
951 rxbuf_ptr = (void *)buf;
952 } else {
953 unsigned crc_val;
954
955 if (size > sizeof(rxbuf) - sizeof(crc_val)) {
956 size = sizeof(rxbuf) - sizeof(crc_val);
957 }
958 bytes_to_copy = size;
959 /* The application wants the FCS field, which QEMU does not provide.
960 * We must try and calculate one.
961 */
962
963 memcpy(rxbuf, buf, size);
964 memset(rxbuf + size, 0, sizeof(rxbuf) - size);
965 rxbuf_ptr = rxbuf;
966 crc_val = cpu_to_le32(crc32(0, rxbuf, MAX(size, 60)));
967 memcpy(rxbuf + size, &crc_val, sizeof(crc_val));
968
969 bytes_to_copy += 4;
970 size += 4;
971 }
972
973 DB_PRINT("config bufsize: %d packet size: %ld\n", rxbufsize, size);
974
975 /* Find which queue we are targeting */
976 q = get_queue_from_screen(s, rxbuf_ptr, rxbufsize);
977
978 while (bytes_to_copy) {
979 hwaddr desc_addr;
980
981 /* Do nothing if receive is not enabled. */
982 if (!gem_can_receive(nc)) {
983 return -1;
984 }
985
986 DB_PRINT("copy %d bytes to 0x%x\n", MIN(bytes_to_copy, rxbufsize),
987 rx_desc_get_buffer(s->rx_desc[q]));
988
989 /* Copy packet data to emulated DMA buffer */
990 address_space_write(&s->dma_as, rx_desc_get_buffer(s, s->rx_desc[q]) +
991 rxbuf_offset,
992 MEMTXATTRS_UNSPECIFIED, rxbuf_ptr,
993 MIN(bytes_to_copy, rxbufsize));
994 rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
995 bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
996
997 /* Update the descriptor. */
998 if (first_desc) {
999 rx_desc_set_sof(s->rx_desc[q]);
1000 first_desc = false;
1001 }
1002 if (bytes_to_copy == 0) {
1003 rx_desc_set_eof(s->rx_desc[q]);
1004 rx_desc_set_length(s->rx_desc[q], size);
1005 }
1006 rx_desc_set_ownership(s->rx_desc[q]);
1007
1008 switch (maf) {
1009 case GEM_RX_PROMISCUOUS_ACCEPT:
1010 break;
1011 case GEM_RX_BROADCAST_ACCEPT:
1012 rx_desc_set_broadcast(s->rx_desc[q]);
1013 break;
1014 case GEM_RX_UNICAST_HASH_ACCEPT:
1015 rx_desc_set_unicast_hash(s->rx_desc[q]);
1016 break;
1017 case GEM_RX_MULTICAST_HASH_ACCEPT:
1018 rx_desc_set_multicast_hash(s->rx_desc[q]);
1019 break;
1020 case GEM_RX_REJECT:
1021 abort();
1022 default: /* SAR */
1023 rx_desc_set_sar(s->rx_desc[q], maf);
1024 }
1025
1026 /* Descriptor write-back. */
1027 desc_addr = gem_get_rx_desc_addr(s, q);
1028 address_space_write(&s->dma_as, desc_addr,
1029 MEMTXATTRS_UNSPECIFIED,
1030 (uint8_t *)s->rx_desc[q],
1031 sizeof(uint32_t) * gem_get_desc_len(s, true));
1032
1033 /* Next descriptor */
1034 if (rx_desc_get_wrap(s->rx_desc[q])) {
1035 DB_PRINT("wrapping RX descriptor list\n");
1036 s->rx_desc_addr[q] = s->regs[GEM_RXQBASE];
1037 } else {
1038 DB_PRINT("incrementing RX descriptor list\n");
1039 s->rx_desc_addr[q] += 4 * gem_get_desc_len(s, true);
1040 }
1041
1042 gem_get_rx_desc(s, q);
1043 }
1044
1045 /* Count it */
1046 gem_receive_updatestats(s, buf, size);
1047
1048 s->regs[GEM_RXSTATUS] |= GEM_RXSTATUS_FRMRCVD;
1049 s->regs[GEM_ISR] |= GEM_INT_RXCMPL & ~(s->regs[GEM_IMR]);
1050
1051 /* Handle interrupt consequences */
1052 gem_update_int_status(s);
1053
1054 return size;
1055 }
1056
1057 /*
1058 * gem_transmit_updatestats:
1059 * Increment transmit statistics.
1060 */
1061 static void gem_transmit_updatestats(CadenceGEMState *s, const uint8_t *packet,
1062 unsigned bytes)
1063 {
1064 uint64_t octets;
1065
1066 /* Total octets (bytes) transmitted */
1067 octets = ((uint64_t)(s->regs[GEM_OCTTXLO]) << 32) |
1068 s->regs[GEM_OCTTXHI];
1069 octets += bytes;
1070 s->regs[GEM_OCTTXLO] = octets >> 32;
1071 s->regs[GEM_OCTTXHI] = octets;
1072
1073 /* Error-free Frames transmitted */
1074 s->regs[GEM_TXCNT]++;
1075
1076 /* Error-free Broadcast Frames counter */
1077 if (!memcmp(packet, broadcast_addr, 6)) {
1078 s->regs[GEM_TXBCNT]++;
1079 }
1080
1081 /* Error-free Multicast Frames counter */
1082 if (packet[0] == 0x01) {
1083 s->regs[GEM_TXMCNT]++;
1084 }
1085
1086 if (bytes <= 64) {
1087 s->regs[GEM_TX64CNT]++;
1088 } else if (bytes <= 127) {
1089 s->regs[GEM_TX65CNT]++;
1090 } else if (bytes <= 255) {
1091 s->regs[GEM_TX128CNT]++;
1092 } else if (bytes <= 511) {
1093 s->regs[GEM_TX256CNT]++;
1094 } else if (bytes <= 1023) {
1095 s->regs[GEM_TX512CNT]++;
1096 } else if (bytes <= 1518) {
1097 s->regs[GEM_TX1024CNT]++;
1098 } else {
1099 s->regs[GEM_TX1519CNT]++;
1100 }
1101 }
1102
1103 /*
1104 * gem_transmit:
1105 * Fish packets out of the descriptor ring and feed them to QEMU
1106 */
1107 static void gem_transmit(CadenceGEMState *s)
1108 {
1109 uint32_t desc[DESC_MAX_NUM_WORDS];
1110 hwaddr packet_desc_addr;
1111 uint8_t tx_packet[2048];
1112 uint8_t *p;
1113 unsigned total_bytes;
1114 int q = 0;
1115
1116 /* Do nothing if transmit is not enabled. */
1117 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1118 return;
1119 }
1120
1121 DB_PRINT("\n");
1122
1123 /* The packet we will hand off to QEMU.
1124 * Packets scattered across multiple descriptors are gathered to this
1125 * one contiguous buffer first.
1126 */
1127 p = tx_packet;
1128 total_bytes = 0;
1129
1130 for (q = s->num_priority_queues - 1; q >= 0; q--) {
1131 /* read current descriptor */
1132 packet_desc_addr = gem_get_tx_desc_addr(s, q);
1133
1134 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1135 address_space_read(&s->dma_as, packet_desc_addr,
1136 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1137 sizeof(uint32_t) * gem_get_desc_len(s, false));
1138 /* Handle all descriptors owned by hardware */
1139 while (tx_desc_get_used(desc) == 0) {
1140
1141 /* Do nothing if transmit is not enabled. */
1142 if (!(s->regs[GEM_NWCTRL] & GEM_NWCTRL_TXENA)) {
1143 return;
1144 }
1145 print_gem_tx_desc(desc, q);
1146
1147 /* The real hardware would eat this (and possibly crash).
1148 * For QEMU let's lend a helping hand.
1149 */
1150 if ((tx_desc_get_buffer(s, desc) == 0) ||
1151 (tx_desc_get_length(desc) == 0)) {
1152 DB_PRINT("Invalid TX descriptor @ 0x%x\n",
1153 (unsigned)packet_desc_addr);
1154 break;
1155 }
1156
1157 if (tx_desc_get_length(desc) > sizeof(tx_packet) -
1158 (p - tx_packet)) {
1159 DB_PRINT("TX descriptor @ 0x%x too large: size 0x%x space " \
1160 "0x%x\n", (unsigned)packet_desc_addr,
1161 (unsigned)tx_desc_get_length(desc),
1162 sizeof(tx_packet) - (p - tx_packet));
1163 break;
1164 }
1165
1166 /* Gather this fragment of the packet from "dma memory" to our
1167 * contig buffer.
1168 */
1169 address_space_read(&s->dma_as, tx_desc_get_buffer(s, desc),
1170 MEMTXATTRS_UNSPECIFIED,
1171 p, tx_desc_get_length(desc));
1172 p += tx_desc_get_length(desc);
1173 total_bytes += tx_desc_get_length(desc);
1174
1175 /* Last descriptor for this packet; hand the whole thing off */
1176 if (tx_desc_get_last(desc)) {
1177 uint32_t desc_first[DESC_MAX_NUM_WORDS];
1178 hwaddr desc_addr = gem_get_tx_desc_addr(s, q);
1179
1180 /* Modify the 1st descriptor of this packet to be owned by
1181 * the processor.
1182 */
1183 address_space_read(&s->dma_as, desc_addr,
1184 MEMTXATTRS_UNSPECIFIED,
1185 (uint8_t *)desc_first,
1186 sizeof(desc_first));
1187 tx_desc_set_used(desc_first);
1188 address_space_write(&s->dma_as, desc_addr,
1189 MEMTXATTRS_UNSPECIFIED,
1190 (uint8_t *)desc_first,
1191 sizeof(desc_first));
1192 /* Advance the hardware current descriptor past this packet */
1193 if (tx_desc_get_wrap(desc)) {
1194 s->tx_desc_addr[q] = s->regs[GEM_TXQBASE];
1195 } else {
1196 s->tx_desc_addr[q] = packet_desc_addr +
1197 4 * gem_get_desc_len(s, false);
1198 }
1199 DB_PRINT("TX descriptor next: 0x%08x\n", s->tx_desc_addr[q]);
1200
1201 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_TXCMPL;
1202 s->regs[GEM_ISR] |= GEM_INT_TXCMPL & ~(s->regs[GEM_IMR]);
1203
1204 /* Update queue interrupt status */
1205 if (s->num_priority_queues > 1) {
1206 s->regs[GEM_INT_Q1_STATUS + q] |=
1207 GEM_INT_TXCMPL & ~(s->regs[GEM_INT_Q1_MASK + q]);
1208 }
1209
1210 /* Handle interrupt consequences */
1211 gem_update_int_status(s);
1212
1213 /* Is checksum offload enabled? */
1214 if (s->regs[GEM_DMACFG] & GEM_DMACFG_TXCSUM_OFFL) {
1215 net_checksum_calculate(tx_packet, total_bytes);
1216 }
1217
1218 /* Update MAC statistics */
1219 gem_transmit_updatestats(s, tx_packet, total_bytes);
1220
1221 /* Send the packet somewhere */
1222 if (s->phy_loop || (s->regs[GEM_NWCTRL] &
1223 GEM_NWCTRL_LOCALLOOP)) {
1224 gem_receive(qemu_get_queue(s->nic), tx_packet,
1225 total_bytes);
1226 } else {
1227 qemu_send_packet(qemu_get_queue(s->nic), tx_packet,
1228 total_bytes);
1229 }
1230
1231 /* Prepare for next packet */
1232 p = tx_packet;
1233 total_bytes = 0;
1234 }
1235
1236 /* read next descriptor */
1237 if (tx_desc_get_wrap(desc)) {
1238 tx_desc_set_last(desc);
1239 packet_desc_addr = s->regs[GEM_TXQBASE];
1240 } else {
1241 packet_desc_addr += 4 * gem_get_desc_len(s, false);
1242 }
1243 DB_PRINT("read descriptor 0x%" HWADDR_PRIx "\n", packet_desc_addr);
1244 address_space_read(&s->dma_as, packet_desc_addr,
1245 MEMTXATTRS_UNSPECIFIED, (uint8_t *)desc,
1246 sizeof(uint32_t) * gem_get_desc_len(s, false));
1247 }
1248
1249 if (tx_desc_get_used(desc)) {
1250 s->regs[GEM_TXSTATUS] |= GEM_TXSTATUS_USED;
1251 s->regs[GEM_ISR] |= GEM_INT_TXUSED & ~(s->regs[GEM_IMR]);
1252 gem_update_int_status(s);
1253 }
1254 }
1255 }
1256
1257 static void gem_phy_reset(CadenceGEMState *s)
1258 {
1259 memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
1260 s->phy_regs[PHY_REG_CONTROL] = 0x1140;
1261 s->phy_regs[PHY_REG_STATUS] = 0x7969;
1262 s->phy_regs[PHY_REG_PHYID1] = 0x0141;
1263 s->phy_regs[PHY_REG_PHYID2] = 0x0CC2;
1264 s->phy_regs[PHY_REG_ANEGADV] = 0x01E1;
1265 s->phy_regs[PHY_REG_LINKPABIL] = 0xCDE1;
1266 s->phy_regs[PHY_REG_ANEGEXP] = 0x000F;
1267 s->phy_regs[PHY_REG_NEXTP] = 0x2001;
1268 s->phy_regs[PHY_REG_LINKPNEXTP] = 0x40E6;
1269 s->phy_regs[PHY_REG_100BTCTRL] = 0x0300;
1270 s->phy_regs[PHY_REG_1000BTSTAT] = 0x7C00;
1271 s->phy_regs[PHY_REG_EXTSTAT] = 0x3000;
1272 s->phy_regs[PHY_REG_PHYSPCFC_CTL] = 0x0078;
1273 s->phy_regs[PHY_REG_PHYSPCFC_ST] = 0x7C00;
1274 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL] = 0x0C60;
1275 s->phy_regs[PHY_REG_LED] = 0x4100;
1276 s->phy_regs[PHY_REG_EXT_PHYSPCFC_CTL2] = 0x000A;
1277 s->phy_regs[PHY_REG_EXT_PHYSPCFC_ST] = 0x848B;
1278
1279 phy_update_link(s);
1280 }
1281
1282 static void gem_reset(DeviceState *d)
1283 {
1284 int i;
1285 CadenceGEMState *s = CADENCE_GEM(d);
1286 const uint8_t *a;
1287 uint32_t queues_mask = 0;
1288
1289 DB_PRINT("\n");
1290
1291 /* Set post reset register values */
1292 memset(&s->regs[0], 0, sizeof(s->regs));
1293 s->regs[GEM_NWCFG] = 0x00080000;
1294 s->regs[GEM_NWSTATUS] = 0x00000006;
1295 s->regs[GEM_DMACFG] = 0x00020784;
1296 s->regs[GEM_IMR] = 0x07ffffff;
1297 s->regs[GEM_TXPAUSE] = 0x0000ffff;
1298 s->regs[GEM_TXPARTIALSF] = 0x000003ff;
1299 s->regs[GEM_RXPARTIALSF] = 0x000003ff;
1300 s->regs[GEM_MODID] = s->revision;
1301 s->regs[GEM_DESCONF] = 0x02500111;
1302 s->regs[GEM_DESCONF2] = 0x2ab13fff;
1303 s->regs[GEM_DESCONF5] = 0x002f2045;
1304 s->regs[GEM_DESCONF6] = GEM_DESCONF6_64B_MASK;
1305
1306 if (s->num_priority_queues > 1) {
1307 queues_mask = MAKE_64BIT_MASK(1, s->num_priority_queues - 1);
1308 s->regs[GEM_DESCONF6] |= queues_mask;
1309 }
1310
1311 /* Set MAC address */
1312 a = &s->conf.macaddr.a[0];
1313 s->regs[GEM_SPADDR1LO] = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24);
1314 s->regs[GEM_SPADDR1HI] = a[4] | (a[5] << 8);
1315
1316 for (i = 0; i < 4; i++) {
1317 s->sar_active[i] = false;
1318 }
1319
1320 gem_phy_reset(s);
1321
1322 gem_update_int_status(s);
1323 }
1324
1325 static uint16_t gem_phy_read(CadenceGEMState *s, unsigned reg_num)
1326 {
1327 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, s->phy_regs[reg_num]);
1328 return s->phy_regs[reg_num];
1329 }
1330
1331 static void gem_phy_write(CadenceGEMState *s, unsigned reg_num, uint16_t val)
1332 {
1333 DB_PRINT("reg: %d value: 0x%04x\n", reg_num, val);
1334
1335 switch (reg_num) {
1336 case PHY_REG_CONTROL:
1337 if (val & PHY_REG_CONTROL_RST) {
1338 /* Phy reset */
1339 gem_phy_reset(s);
1340 val &= ~(PHY_REG_CONTROL_RST | PHY_REG_CONTROL_LOOP);
1341 s->phy_loop = 0;
1342 }
1343 if (val & PHY_REG_CONTROL_ANEG) {
1344 /* Complete autonegotiation immediately */
1345 val &= ~PHY_REG_CONTROL_ANEG;
1346 s->phy_regs[PHY_REG_STATUS] |= PHY_REG_STATUS_ANEGCMPL;
1347 }
1348 if (val & PHY_REG_CONTROL_LOOP) {
1349 DB_PRINT("PHY placed in loopback\n");
1350 s->phy_loop = 1;
1351 } else {
1352 s->phy_loop = 0;
1353 }
1354 break;
1355 }
1356 s->phy_regs[reg_num] = val;
1357 }
1358
1359 /*
1360 * gem_read32:
1361 * Read a GEM register.
1362 */
1363 static uint64_t gem_read(void *opaque, hwaddr offset, unsigned size)
1364 {
1365 CadenceGEMState *s;
1366 uint32_t retval;
1367 s = (CadenceGEMState *)opaque;
1368
1369 offset >>= 2;
1370 retval = s->regs[offset];
1371
1372 DB_PRINT("offset: 0x%04x read: 0x%08x\n", (unsigned)offset*4, retval);
1373
1374 switch (offset) {
1375 case GEM_ISR:
1376 DB_PRINT("lowering irqs on ISR read\n");
1377 /* The interrupts get updated at the end of the function. */
1378 break;
1379 case GEM_PHYMNTNC:
1380 if (retval & GEM_PHYMNTNC_OP_R) {
1381 uint32_t phy_addr, reg_num;
1382
1383 phy_addr = (retval & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1384 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1385 reg_num = (retval & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1386 retval &= 0xFFFF0000;
1387 retval |= gem_phy_read(s, reg_num);
1388 } else {
1389 retval |= 0xFFFF; /* No device at this address */
1390 }
1391 }
1392 break;
1393 }
1394
1395 /* Squash read to clear bits */
1396 s->regs[offset] &= ~(s->regs_rtc[offset]);
1397
1398 /* Do not provide write only bits */
1399 retval &= ~(s->regs_wo[offset]);
1400
1401 DB_PRINT("0x%08x\n", retval);
1402 gem_update_int_status(s);
1403 return retval;
1404 }
1405
1406 /*
1407 * gem_write32:
1408 * Write a GEM register.
1409 */
1410 static void gem_write(void *opaque, hwaddr offset, uint64_t val,
1411 unsigned size)
1412 {
1413 CadenceGEMState *s = (CadenceGEMState *)opaque;
1414 uint32_t readonly;
1415 int i;
1416
1417 DB_PRINT("offset: 0x%04x write: 0x%08x ", (unsigned)offset, (unsigned)val);
1418 offset >>= 2;
1419
1420 /* Squash bits which are read only in write value */
1421 val &= ~(s->regs_ro[offset]);
1422 /* Preserve (only) bits which are read only and wtc in register */
1423 readonly = s->regs[offset] & (s->regs_ro[offset] | s->regs_w1c[offset]);
1424
1425 /* Copy register write to backing store */
1426 s->regs[offset] = (val & ~s->regs_w1c[offset]) | readonly;
1427
1428 /* do w1c */
1429 s->regs[offset] &= ~(s->regs_w1c[offset] & val);
1430
1431 /* Handle register write side effects */
1432 switch (offset) {
1433 case GEM_NWCTRL:
1434 if (val & GEM_NWCTRL_RXENA) {
1435 for (i = 0; i < s->num_priority_queues; ++i) {
1436 gem_get_rx_desc(s, i);
1437 }
1438 }
1439 if (val & GEM_NWCTRL_TXSTART) {
1440 gem_transmit(s);
1441 }
1442 if (!(val & GEM_NWCTRL_TXENA)) {
1443 /* Reset to start of Q when transmit disabled. */
1444 for (i = 0; i < s->num_priority_queues; i++) {
1445 s->tx_desc_addr[i] = s->regs[GEM_TXQBASE];
1446 }
1447 }
1448 if (gem_can_receive(qemu_get_queue(s->nic))) {
1449 qemu_flush_queued_packets(qemu_get_queue(s->nic));
1450 }
1451 break;
1452
1453 case GEM_TXSTATUS:
1454 gem_update_int_status(s);
1455 break;
1456 case GEM_RXQBASE:
1457 s->rx_desc_addr[0] = val;
1458 break;
1459 case GEM_RECEIVE_Q1_PTR ... GEM_RECEIVE_Q7_PTR:
1460 s->rx_desc_addr[offset - GEM_RECEIVE_Q1_PTR + 1] = val;
1461 break;
1462 case GEM_TXQBASE:
1463 s->tx_desc_addr[0] = val;
1464 break;
1465 case GEM_TRANSMIT_Q1_PTR ... GEM_TRANSMIT_Q7_PTR:
1466 s->tx_desc_addr[offset - GEM_TRANSMIT_Q1_PTR + 1] = val;
1467 break;
1468 case GEM_RXSTATUS:
1469 gem_update_int_status(s);
1470 break;
1471 case GEM_IER:
1472 s->regs[GEM_IMR] &= ~val;
1473 gem_update_int_status(s);
1474 break;
1475 case GEM_INT_Q1_ENABLE ... GEM_INT_Q7_ENABLE:
1476 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_ENABLE] &= ~val;
1477 gem_update_int_status(s);
1478 break;
1479 case GEM_IDR:
1480 s->regs[GEM_IMR] |= val;
1481 gem_update_int_status(s);
1482 break;
1483 case GEM_INT_Q1_DISABLE ... GEM_INT_Q7_DISABLE:
1484 s->regs[GEM_INT_Q1_MASK + offset - GEM_INT_Q1_DISABLE] |= val;
1485 gem_update_int_status(s);
1486 break;
1487 case GEM_SPADDR1LO:
1488 case GEM_SPADDR2LO:
1489 case GEM_SPADDR3LO:
1490 case GEM_SPADDR4LO:
1491 s->sar_active[(offset - GEM_SPADDR1LO) / 2] = false;
1492 break;
1493 case GEM_SPADDR1HI:
1494 case GEM_SPADDR2HI:
1495 case GEM_SPADDR3HI:
1496 case GEM_SPADDR4HI:
1497 s->sar_active[(offset - GEM_SPADDR1HI) / 2] = true;
1498 break;
1499 case GEM_PHYMNTNC:
1500 if (val & GEM_PHYMNTNC_OP_W) {
1501 uint32_t phy_addr, reg_num;
1502
1503 phy_addr = (val & GEM_PHYMNTNC_ADDR) >> GEM_PHYMNTNC_ADDR_SHFT;
1504 if (phy_addr == BOARD_PHY_ADDRESS || phy_addr == 0) {
1505 reg_num = (val & GEM_PHYMNTNC_REG) >> GEM_PHYMNTNC_REG_SHIFT;
1506 gem_phy_write(s, reg_num, val);
1507 }
1508 }
1509 break;
1510 }
1511
1512 DB_PRINT("newval: 0x%08x\n", s->regs[offset]);
1513 }
1514
1515 static const MemoryRegionOps gem_ops = {
1516 .read = gem_read,
1517 .write = gem_write,
1518 .endianness = DEVICE_LITTLE_ENDIAN,
1519 };
1520
1521 static void gem_set_link(NetClientState *nc)
1522 {
1523 CadenceGEMState *s = qemu_get_nic_opaque(nc);
1524
1525 DB_PRINT("\n");
1526 phy_update_link(s);
1527 gem_update_int_status(s);
1528 }
1529
1530 static NetClientInfo net_gem_info = {
1531 .type = NET_CLIENT_DRIVER_NIC,
1532 .size = sizeof(NICState),
1533 .can_receive = gem_can_receive,
1534 .receive = gem_receive,
1535 .link_status_changed = gem_set_link,
1536 };
1537
1538 static void gem_realize(DeviceState *dev, Error **errp)
1539 {
1540 CadenceGEMState *s = CADENCE_GEM(dev);
1541 int i;
1542
1543 address_space_init(&s->dma_as,
1544 s->dma_mr ? s->dma_mr : get_system_memory(), "dma");
1545
1546 if (s->num_priority_queues == 0 ||
1547 s->num_priority_queues > MAX_PRIORITY_QUEUES) {
1548 error_setg(errp, "Invalid num-priority-queues value: %" PRIx8,
1549 s->num_priority_queues);
1550 return;
1551 } else if (s->num_type1_screeners > MAX_TYPE1_SCREENERS) {
1552 error_setg(errp, "Invalid num-type1-screeners value: %" PRIx8,
1553 s->num_type1_screeners);
1554 return;
1555 } else if (s->num_type2_screeners > MAX_TYPE2_SCREENERS) {
1556 error_setg(errp, "Invalid num-type2-screeners value: %" PRIx8,
1557 s->num_type2_screeners);
1558 return;
1559 }
1560
1561 for (i = 0; i < s->num_priority_queues; ++i) {
1562 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq[i]);
1563 }
1564
1565 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1566
1567 s->nic = qemu_new_nic(&net_gem_info, &s->conf,
1568 object_get_typename(OBJECT(dev)), dev->id, s);
1569 }
1570
1571 static void gem_init(Object *obj)
1572 {
1573 CadenceGEMState *s = CADENCE_GEM(obj);
1574 DeviceState *dev = DEVICE(obj);
1575
1576 DB_PRINT("\n");
1577
1578 gem_init_register_masks(s);
1579 memory_region_init_io(&s->iomem, OBJECT(s), &gem_ops, s,
1580 "enet", sizeof(s->regs));
1581
1582 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
1583
1584 object_property_add_link(obj, "dma", TYPE_MEMORY_REGION,
1585 (Object **)&s->dma_mr,
1586 qdev_prop_allow_set_link_before_realize,
1587 OBJ_PROP_LINK_STRONG,
1588 &error_abort);
1589 }
1590
1591 static const VMStateDescription vmstate_cadence_gem = {
1592 .name = "cadence_gem",
1593 .version_id = 4,
1594 .minimum_version_id = 4,
1595 .fields = (VMStateField[]) {
1596 VMSTATE_UINT32_ARRAY(regs, CadenceGEMState, CADENCE_GEM_MAXREG),
1597 VMSTATE_UINT16_ARRAY(phy_regs, CadenceGEMState, 32),
1598 VMSTATE_UINT8(phy_loop, CadenceGEMState),
1599 VMSTATE_UINT32_ARRAY(rx_desc_addr, CadenceGEMState,
1600 MAX_PRIORITY_QUEUES),
1601 VMSTATE_UINT32_ARRAY(tx_desc_addr, CadenceGEMState,
1602 MAX_PRIORITY_QUEUES),
1603 VMSTATE_BOOL_ARRAY(sar_active, CadenceGEMState, 4),
1604 VMSTATE_END_OF_LIST(),
1605 }
1606 };
1607
1608 static Property gem_properties[] = {
1609 DEFINE_NIC_PROPERTIES(CadenceGEMState, conf),
1610 DEFINE_PROP_UINT32("revision", CadenceGEMState, revision,
1611 GEM_MODID_VALUE),
1612 DEFINE_PROP_UINT8("num-priority-queues", CadenceGEMState,
1613 num_priority_queues, 1),
1614 DEFINE_PROP_UINT8("num-type1-screeners", CadenceGEMState,
1615 num_type1_screeners, 4),
1616 DEFINE_PROP_UINT8("num-type2-screeners", CadenceGEMState,
1617 num_type2_screeners, 4),
1618 DEFINE_PROP_END_OF_LIST(),
1619 };
1620
1621 static void gem_class_init(ObjectClass *klass, void *data)
1622 {
1623 DeviceClass *dc = DEVICE_CLASS(klass);
1624
1625 dc->realize = gem_realize;
1626 dc->props = gem_properties;
1627 dc->vmsd = &vmstate_cadence_gem;
1628 dc->reset = gem_reset;
1629 }
1630
1631 static const TypeInfo gem_info = {
1632 .name = TYPE_CADENCE_GEM,
1633 .parent = TYPE_SYS_BUS_DEVICE,
1634 .instance_size = sizeof(CadenceGEMState),
1635 .instance_init = gem_init,
1636 .class_init = gem_class_init,
1637 };
1638
1639 static void gem_register_types(void)
1640 {
1641 type_register_static(&gem_info);
1642 }
1643
1644 type_init(gem_register_types)